Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Nutrient Composition in Water and Wastewater—Implications for Resource Recovery
3.2. Overview of Methods for Nutrient Recovery from Water and Wastewater
3.3. Nutrient-Recovery Strategies Using Hydrogels
3.3.1. Hydrogel Types
3.3.2. Nitrogen Recovery with Hydrogels
Nutrient | Source (Water, Wastewater, Industrial, etc.) [mg/L] | Hydrogel Type | Process Parameters (T, pH, t) | Sorption Models | Sorption Efficiency [mg/L] | Reusability | References |
---|---|---|---|---|---|---|---|
NH4+ | model solution 18–1800 | Superabsorbent with natural rubber-graft–poly (acrylic acid-co-acrylamide) network and linear poly (diallyldimethyl ammonium chloride) | t—30 min | Adsorption kinetic and isotherms described by the pseudo-second-order kinetic and Langmuir isotherm model | 234 | Biodegradable for soil applications, disintegration approximately 16% after 21 days | [55] |
NH4+ | Prepared solution 0–500 | Poly(acrylic acid)-grafted chitosan and biochar composite | T—25 °C, t–20 min | Langmuir model, pseudosecond-order model. | 149.25 (90%) | Fertilizer application due to the possibility of redistribution of adsorbed nutrients | [53] |
NH4+ | Domestic and synthetic wastewater | Tailored poly(acrylic acid)-based hydrogels | Hydrogel loadings 2.5, 5.0, 7.5 g/L, t—10 min | - | 8.3–10.1 (53–77%) | - | [19] |
NH4+ | Drainage water, main drainage water, fish pool water 6.70, 5.39, 6.56, respectively (sugarcane field waste) | Acrylic acid polymer hydrogel, nano Fe3O4 | pH 2–9.86, T 15–95 °C | - | Based on the medium type: 89.16%, 32.50%, 31.11% (40 mg of hydrogel applied) | The recovery after the 6th hydrogel recovery cycle using NaCl is still 43% of the starting value. | [20] |
NO3−, NH4+ | Aquaculture water | Ca-alginate beads (gelation method) with Nitzschia palea (bacteria) | - | - | Nitrate removal: 86.93%, ammonia 63.83% | Biodegradable with microorganisms for single use | [54] |
NH4+ | Prepared solution 900 | Sodium alginate-grafted poly(acrylic acid)/graphene oxide | t—1 h, T—25 °C, | Adsorption kinetic and isotherm described by the pseudo-second-order and Freundlich model | 118.8 | After adsorption, the hydrogel can be used as a fertilizer with a slow release of nutrients effect | [57] |
NO3− | - | Chitosan–ethylene glycol hydrogel | pH 3–11, T 20–40 °C | Isotherms of nitrate followed the Langmuir model | 49.04 | - | [58] |
NH4+ | Prepared solution 1–2000 | Poly (acrylic acid) hydrogel | t—30 min, T—10–50 °C, flow 0.5 mL/min | All models have been utilized to describe adsorption: Langmuir, Freundlich, Redlich–Peterson | 110.6–120.8 | After use in the bioreactor, still 81.1% of adsorption properties, regeneration per 10 adsorption | [59] |
NH4+ | Prepared solution 10–100 | Hydrogel composite with chitosan, acrylic acid, acrylamide, | t—30 min (equilibrium state), t—4 h, t—5–120 min (adsorption kinetic), T—25 °C, pH 3–10 | Langmuir isotherm model, the adsorption kinetics described by the pseudo-second-order model | 40.2 | After adsorption, the hydrogel can be used as a fertilizer with a slow release of nutrients effect | [51] |
NO3− | Industrial wastewater | Magnetic hydrogel | t—5 min | - | 81.7% | Capacity 188 mg/g, use for 60 cycles adsorption–desorption | [50] |
NH4+ | Prepared solution 100 | Feather protein-grafted poly(potassium acrylate)/polyvinyl alcohol semi-interpenetrating polymer networks | pH 2–12, T—20–40 °C, t—30 min–4 h | Kinetic analysis the pseudo-second-order model, adsorption isotherms of hydrogel described by the Freundlich model | 287.68 | After adsorption, the hydrogel can be used as a fertilizer with a slow release of nutrients effect | [52] |
3.3.3. Phosphorus Recovery with Hydrogels
3.4. Sustainable Hydrogels for Nutrient Recovery
3.5. Environmental Implications and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pathmudi, V.R.; Khatri, N.; Kumar, S.; Abdul-Qawy, A.S.H.; Vyas, A.K. A Systematic Review of IoT Technologies and Their Constituents for Smart and Sustainable Agriculture Applications. Sci. Afr. 2023, 19, e01577. [Google Scholar] [CrossRef]
- Quddus, M.A.; Anwar, M.B.; Alam, M.K.; Ahmed, R.; Sarker, K.K.; Islam, M.A.; Islam, M.T.; Kobeasy, M.I.; Gaber, A.; Ahmed, S. Modification of Nutrient Requirements for a Four Crop-Based Cropping System to Increase System Productivity, Maintain Soil Fertility, and Achieve Sustainable Intensification. Sustainability 2022, 14, 7194. [Google Scholar] [CrossRef]
- Ruffatto, K.; Emaminejad, S.A.; Juneja, A.; Kurambhatti, C.; Margenot, A.; Singh, V.; Cusick, R.D. Mapping the National Phosphorus Recovery Potential from Centralized Wastewater and Corn Ethanol Infrastructure. Environ. Sci. Technol. 2022, 56, 8691–8701. [Google Scholar] [CrossRef]
- Martín-Hernández, E.; Taifouris, M.; Martín, M. Addressing the Contribution of Agricultural Systems to the Phosphorus Pollution Challenge: A Multi-Dimensional Perspective. Front. Chem. Eng. 2022, 4, 970707. [Google Scholar] [CrossRef]
- Jayakumar, A.; Jose, V.K.; Lee, J.M. Hydrogels for Medical and Environmental Applications. Small Methods 2020, 4, 1900735. [Google Scholar] [CrossRef]
- Khan, M.; Lo, I.M.C. A Holistic Review of Hydrogel Applications in the Adsorptive Removal of Aqueous Pollutants: Recent Progress, Challenges, and Perspectives. Water Res. 2016, 106, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Wujcicki, Ł.; Kluczka, J. Recovery of Phosphate(V) Ions from Water and Wastewater Using Chitosan-Based Sorbents Modified—A Literature Review. Int. J. Mol. Sci. 2023, 24, 12060. [Google Scholar] [CrossRef]
- Hu, H.; Tong, Y.W.; He, Y. Current Insight into Enhanced Strategies and Interaction Mechanisms of Hydrogel Materials for Phosphate Removal and Recovery from Wastewater. Sci. Total Environ. 2023, 892, 164514. [Google Scholar] [CrossRef]
- Lambers, H. Annual Review of Plant Biology Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef]
- Bechtaoui, N.; Rabiu, M.K.; Raklami, A.; Oufdou, K.; Hafidi, M.; Jemo, M. Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Front. Plant Sci. 2021, 12, 679916. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 171–190. ISBN 9789811090448. [Google Scholar]
- Kishorekumar, R.; Bulle, M.; Wany, A.; Gupta, K.J. An Overview of Important Enzymes Involved in Nitrogen Assimilation of Plants. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2020; Volume 2057, pp. 1–13. [Google Scholar]
- Chojnacka, K.; Skrzypczak, D.; Szopa, D.; Izydorczyk, G.; Moustakas, K.; Witek-Krowiak, A. Management of Biological Sewage Sludge: Fertilizer Nitrogen Recovery as the Solution to Fertilizer Crisis. J. Environ. Manag. 2023, 326, 116602. [Google Scholar] [CrossRef] [PubMed]
- diCenzo, G.C.; Tesi, M.; Pfau, T.; Mengoni, A.; Fondi, M. Genome-Scale Metabolic Reconstruction of the Symbiosis between a Leguminous Plant and a Nitrogen-Fixing Bacterium. Nat. Commun. 2020, 11, 2574. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pal, P. Assessing the Feasibility of N and P Recovery by Struvite Precipitation from Nutrient-Rich Wastewater: A Review. Environ. Sci. Pollut. Res. 2015, 22, 17453–17464. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Zhang, J.; Liang, S. Nutrient Recovery from Wastewater: From Technology to Economy. Bioresour. Technol. Rep. 2020, 11, 100425. [Google Scholar] [CrossRef]
- Ngatia, L.; Grace, J.M., III; Moriasi, D.; Taylor, R. Nitrogen and Phosphorus Eutrophication in Marine Ecosystems. In Monitoring of Marine Pollution; IntechOpen: London, UK, 2019. [Google Scholar]
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Cruz, H.; Laycock, B.; Strounina, E.; Seviour, T.; Oehmen, A.; Pikaar, I. Modified Poly(Acrylic Acid)-Based Hydrogels for Enhanced Mainstream Removal of Ammonium from Domestic Wastewater. Environ. Sci. Technol. 2020, 54, 9573–9583. [Google Scholar] [CrossRef] [PubMed]
- Fazilati, A.; Mokhtarian, N.; Latifi, A.M.; Fazilati, M. Synthesis of Acrylic Acid Polymer Hydrogel Nano Fe3O4 to Remove Ammonia from Sugarcane Field Waste. Adv. Mater. Sci. Eng. 2020, 2020, 9204523. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Hasan, M.N.; Altaf, M.M.; Khan, N.A.; Khan, A.H.; Khan, A.A.; Ahmed, S.; Kumar, P.S.; Naushad, M.; Rajapaksha, A.U.; Iqbal, J.; et al. Recent Technologies for Nutrient Removal and Recovery from Wastewaters: A Review. Chemosphere 2021, 277, 130328. [Google Scholar] [CrossRef]
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and Prospects of Different Adsorbents for Phosphorus Uptake and Recovery from Water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Li, X.; Nan, H.; Jiang, H.; Wang, H.; Wang, C. Research Trends on Phosphorus Removal from Wastewater: A Review and Bibliometric Analysis from 2000 to 2022. J. Water Process Eng. 2023, 55, 104201. [Google Scholar] [CrossRef]
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus Adsorption by Functionalized Biochar: A Review. Environ. Chem. Lett. 2022, 21, 497–524. [Google Scholar] [CrossRef]
- Wang, C.; Lin, X.; Zhang, X.; Show, P.L. Research Advances on Production and Application of Algal Biochar in Environmental Remediation. Environ. Pollut. 2024, 348, 123860. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.K.; Straka, L. New Directions in Biological Nitrogen Removal and Recovery from Wastewater. Curr. Opin. Biotechnol. 2019, 57, 50–55. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Exploring Technological Alternatives of Nutrient Recovery from Digestate as a Secondary Resource. Renew. Sustain. Energy Rev. 2020, 134, 110379. [Google Scholar] [CrossRef]
- Viruela, A.; Robles, Á.; Durán, F.; Ruano, M.V.; Barat, R.; Ferrer, J.; Seco, A. Performance of an Outdoor Membrane Photobioreactor for Resource Recovery from Anaerobically Treated Sewage. J. Clean. Prod. 2018, 178, 665–674. [Google Scholar] [CrossRef]
- García, D.; Alcántara, C.; Blanco, S.; Pérez, R.; Bolado, S.; Muñoz, R. Enhanced Carbon, Nitrogen and Phosphorus Removal from Domestic Wastewater in a Novel Anoxic-Aerobic Photobioreactor Coupled with Biogas Upgrading. Chem. Eng. J. 2017, 313, 424–434. [Google Scholar] [CrossRef]
- Cerrillo, M.; Riau, V.; Bonmatí, A. Recent Advances in Bioelectrochemical Systems for Nitrogen and Phosphorus Recovery Using Membranes. Membranes 2023, 13, 186. [Google Scholar] [CrossRef]
- Rosemarin, A.; Macura, B.; Carolus, J.; Barquet, K.; Ek, F.; Järnberg, L.; Lorick, D.; Johannesdottir, S.; Pedersen, S.M.; Koskiaho, J.; et al. Circular Nutrient Solutions for Agriculture and Wastewater—A Review of Technologies and Practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Mittal, H.; Ray, S.S.; Okamoto, M. Recent Progress on the Design and Applications of Polysaccharide-Based Graft Copolymer Hydrogels as Adsorbents for Wastewater Purification. Macromol. Mater. Eng. 2016, 301, 496–522. [Google Scholar] [CrossRef]
- Chen, J.; Park, K. Synthesis and Characterization of Superporous Hydrogel Composites. J. Control. Release 2000, 65, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-Based Hydrogel Materials: Chemistry, Properties and Their Prospective Applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, M.R.; Aouada, F.A.; Fajardo, A.R.; Martins, A.F.; Paulino, A.T.; Davi, M.F.T.; Rubira, A.F.; Muniz, E.C. Superabsorbent Hydrogels Based on Polysaccharides for Application in Agriculture as Soil Conditioner and Nutrient Carrier: A Review. Eur. Polym. J. 2015, 72, 365–385. [Google Scholar] [CrossRef]
- Rodrigues Sousa, H.; Lima, I.S.; Neris, L.M.L.; Silva, A.S.; Santos Nascimento, A.M.S.; Araújo, F.P.; Ratke, R.F.; Silva, D.A.; Osajima, J.A.; Bezerra, L.R.; et al. Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients. Molecules 2021, 26, 2680. [Google Scholar] [CrossRef] [PubMed]
- Palanivelu, S.D.; Armir, N.A.Z.; Zulkifli, A.; Hair, A.H.A.; Salleh, K.M.; Lindsey, K.; Che-Othman, M.H.; Zakaria, S. Hydrogel Application in Urban Farming: Potentials and Limitations—A Review. Polymers 2022, 14, 2590. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Yap, J.X.; Leo, C.P.; Chang, C.K.; Show, P.-L. Polysaccharide Hydrogels for Controlling the Nutrient Release. Sep. Purif. Rev. 2023, 53, 276–288. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Buwalda, S.J.; Boere, K.W.M.; Dijkstra, P.J.; Feijen, J.; Vermonden, T.; Hennink, W.E. Hydrogels in a Historical Perspective: From Simple Networks to Smart Materials. J. Control. Release 2014, 190, 254–273. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Chen, H.; Cheng, D. Environmentally Friendly Hydrogel: A Review of Classification, Preparation and Application in Agriculture. Sci. Total Environ. 2022, 846, 157303. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.M.; Frazar, E.M.; Klaus, M.V.X.; Paul, P.; Hilt, J.Z. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv. Healthc. Mater. 2022, 11, e2101820. [Google Scholar] [CrossRef] [PubMed]
- Mu, R.; Liu, B.; Chen, X.; Wang, N.; Yang, J. Hydrogel Adsorbent in Industrial Wastewater Treatment and Ecological Environment Protection. Environ. Technol. Innov. 2020, 20, 101107. [Google Scholar] [CrossRef]
- Weerasundara, L.; Gabriele, B.; Figoli, A.; Ok, Y.-S.; Bundschuh, J. Hydrogels: Novel Materials for Contaminant Removal in Water—A Review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1970–2014. [Google Scholar] [CrossRef]
- Lee, Y.; Song, W.J.; Sun, J.-Y. Hydrogel Soft Robotics. Mater. Today Phys. 2020, 15, 100258. [Google Scholar] [CrossRef]
- Piccoli, I.; Camarotto, C.; Squartini, A.; Longo, M.; Gross, S.; Maggini, M.; Cabrera, M.L.; Morari, F. Hydrogels for Agronomical Application: From Soil Characteristics to Crop Growth: A Review. Agron. Sustain. Dev. 2024, 44, 22. [Google Scholar] [CrossRef]
- Ozay, O.; Ekici, S.; Baran, Y.; Aktas, N.; Sahiner, N. Removal of Toxic Metal Ions with Magnetic Hydrogels. Water Res. 2009, 43, 4403–4411. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Yan, D.Y.S.; Khan, M.; Zhang, Z.; Lo, I.M.C. Application of Magnetic Hydrogel for Anionic Pollutants Removal from Wastewater with Adsorbent Regeneration and Reuse. J. Hazard. Toxic. Radioact. Waste 2017, 21, 04016008. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Mu, B.; Zong, L.; Wang, X.; Wang, A. One-Step Green Construction of Granular Composite Hydrogels for Ammonia Nitrogen Recovery from Wastewater for Crop Growth Promotion. Environ. Technol. Innov. 2024, 33, 103465. [Google Scholar] [CrossRef]
- Su, Y.; Liu, J.; Yue, Q.; Li, Q.; Gao, B. Adsorption of Ammonium and Phosphate by Feather Protein Based Semi-Interpenetrating Polymer Networks Hydrogel as a Controlled-Release Fertilizer. Environ. Technol. 2014, 35, 446–455. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, S.; Guan, Y. Excellent Adsorption-Desorption of Ammonium by a Poly(Acrylic Acid)-Grafted Chitosan and Biochar Composite for Sustainable Agricultural Development. ACS Sustain. Chem. Eng. 2020, 8, 16451–16462. [Google Scholar] [CrossRef]
- Saxena, A.; Mishra, B.; Tiwari, A. Development of Diatom Entrapped Alginate Beads and Application of Immobilized Cells in Aquaculture. Environ. Technol. Innov. 2021, 23, 101736. [Google Scholar] [CrossRef]
- Cui, Y.; Xiang, Y.; Deng, Z.; Zhang, Z.; Li, L.; Wei, J.; Gui, W.; Xu, Y. Preparation of Natural Rubber Based Semi-IPNs Superabsorbent and Its Adsorption Behavior for Ammonium. Int. J. Biol. Macromol. 2021, 166, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Kioussis, D.R.; Kofinas, P. Characterization of Anion Diffusion in Polymer Hydrogels Used for Wastewater Remediation. Polymer 2005, 46, 9342–9347. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Li, C.; Cheng, C.; Zheng, Y. Adsorption of Ammonium by Graphene Oxide-Based Composites Prepared by UV Irradiation and Using as Slow-Release Fertilizer. J. Polym. Environ. 2018, 26, 4311–4320. [Google Scholar] [CrossRef]
- Chen, C.; Guo, Y.; Long, L.; Chen, K.; Hu, X.; Xue, Y. Biodegradable Chitosan-Ethylene Glycol Hydrogel Effectively Adsorbs Nitrate in Water. Environ. Sci. Pollut. Res. 2020, 27, 32762–32769. [Google Scholar] [CrossRef]
- He, M.; Ng, T.C.A.; Huang, S.; Xu, B.; Ng, H.Y. Ammonium Removal and Recovery from Effluent of AnMBR Treating Real Domestic Wastewater Using Polymeric Hydrogel. Sep. Purif. Technol. 2022, 296, 121376. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Kowalkowska, A.; Filipkowska, U.; Struk-Sokołowska, J.; Bolozan, L.; Gache, L.; Ilie, M. Recovery of Phosphorus as Soluble Phosphates from Aqueous Solutions Using Chitosan Hydrogel Sorbents. Sci. Rep. 2021, 11, 16766. [Google Scholar] [CrossRef]
- Tan, A.X.; Michalski, E.; Ilavsky, J.; Jun, Y.-S. Engineering Calcium-Bearing Mineral/Hydrogel Composites for Effective Phosphate Recovery. ACS ES T Eng. 2021, 1, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Sirajo, L.; Zaini, M.A.A. Existing and Emerging Technologies for the Removal of Orthophosphate from Wastewater by Agricultural Waste Adsorbents: A Review. Biomass Convers. Biorefinery 2023, 13, 12349–12365. [Google Scholar] [CrossRef]
- Ilia, G. Phosphorus Containing Hydrogels. Polym. Adv. Technol. 2009, 20, 707–722. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Kong, H.; Wang, J.; Zhang, G.; Shen, F.; Liu, F.; Huang, Z. Lanthanum-calcium Bimetallic-Modified Attapulgite- Chitosan Hydrogel Beads for Efficient Phosphate Removal from Water: Performance Evaluation, Mechanistic and Life Cycle Assessment. Carbohydr. Polym. 2024, 338, 122183. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Wang, Y.; Li, Z.; Wang, X.; Duan, C.; Zhao, W.; Xiong, C.; Nie, S.; Xu, Y.; Ni, Y. A Multifunctional Self-Crosslinked Chitosan/Cationic Guar Gum Composite Hydrogel and Its Versatile Uses in Phosphate-Containing Water Treatment and Energy Storage. Carbohydr. Polym. 2020, 244, 116472. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Govender, P.P.; Mamo, M.A.; Tamulevicius, S.; Thakur, V.K. Recent Progress in Gelatin Hydrogel Nanocomposites for Water Purification and Beyond. Vacuum 2017, 146, 396–408. [Google Scholar] [CrossRef]
- Hasan, M.N.; Shenashen, M.A.; Hasan, M.M.; Znad, H.; Awual, M.R. Assessing of Cesium Removal from Wastewater Using Functionalized Wood Cellulosic Adsorbent. Chemosphere 2021, 270, 128668. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Deng, L.; Li, K.; Lu, H.; Wang, R.; Li, W. Adsorption of Malachite Green in Aqueous Solution Using Sugarcane Bagasse-Barium Carbonate Composite. Colloid. Interface Sci. Commun. 2021, 44, 100485. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Jiang, W.; Yang, P. Study on the Efficacy of Sodium Alginate Gel Particles Immobilized Microorganism SBBR for Wastewater Treatment. J. Environ. Chem. Eng. 2022, 10, 107134. [Google Scholar] [CrossRef]
- Kube, M.; Fan, L.; Roddick, F. Alginate-Immobilised Algal Wastewater Treatment Enhanced by Species Selection. Algal Res. 2021, 54, 102219. [Google Scholar] [CrossRef]
- Munjur, H.M.; Hasan, M.N.; Awual, M.R.; Islam, M.M.; Shenashen, M.A.; Iqbal, J. Biodegradable Natural Carbohydrate Polymeric Sustainable Adsorbents for Efficient Toxic Dye Removal from Wastewater. J. Mol. Liq. 2020, 319, 114356. [Google Scholar] [CrossRef]
- Grover, A.; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Vikrant, K.; Kim, K.-H.; Brown, R.J.C. Magnesium/Aluminum Layered Double Hydroxides Intercalated with Starch for Effective Adsorptive Removal of Anionic Dyes. J. Hazard. Mater. 2022, 424, 127454. [Google Scholar] [CrossRef]
- Omer, A.M.; Dey, R.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Ziora, Z.M. Insights into Recent Advances of Chitosan-Based Adsorbents for Sustainable Removal of Heavy Metals and Anions. Arab. J. Chem. 2022, 15, 103543. [Google Scholar] [CrossRef]
- Desbrières, J.; Guibal, E. Chitosan for Wastewater Treatment. Polym. Int. 2018, 67, 7–14. [Google Scholar] [CrossRef]
- Thagira Banu, H.; Karthikeyan, P.; Meenakshi, S. Lanthanum (III) Encapsulated Chitosan-Montmorillonite Composite for the Adsorptive Removal of Phosphate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2018, 112, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, P.; Meenakshi, S. In-Situ Fabrication of Cerium Incorporated Chitosan-β-Cyclodextrin Microspheres as an Effective Adsorbent for Toxic Anions Removal. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100272. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, H.; Rong, H. Development of Polyaminated Chitosan-Zirconium(IV) Complex Bead Adsorbent for Highly Efficient Removal and Recovery of Phosphorus in Aqueous Solutions. Int. J. Biol. Macromol. 2020, 164, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, P.; Banu, H.A.T.; Meenakshi, S. Synthesis and Characterization of Metal Loaded Chitosan-Alginate Biopolymeric Hybrid Beads for the Efficient Removal of Phosphate and Nitrate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Nthumbi, R.M.; Catherine Ngila, J.; Moodley, B.; Kindness, A.; Petrik, L. Application of Chitosan/Polyacrylamide Nanofibres for Removal of Chromate and Phosphate in Water. Phys. Chem. Earth Parts A/B/C 2012, 50–52, 243–251. [Google Scholar] [CrossRef]
- Ghormade, V.; Pathan, E.K.; Deshpande, M.V. Can Fungi Compete with Marine Sources for Chitosan Production? Int. J. Biol. Macromol. 2017, 104, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, X.; Liu, Y.; Zhang, T. Review on Preparation and Adsorption Properties of Chitosan and Chitosan Composites. Polym. Bull. 2022, 79, 2633–2665. [Google Scholar] [CrossRef]
- Liu, B.; Yu, Y.; Han, Q.; Lou, S.; Zhang, L.; Zhang, W. Fast and Efficient Phosphate Removal on Lanthanum-Chitosan Composite Synthesized by Controlling the Amount of Cross-Linking Agent. Int. J. Biol. Macromol. 2020, 157, 247–258. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Mielcarek, A. Sorption of Nutrients (Orthophosphate, Nitrate III and V) in an Equimolar Mixture of P–PO4, N–NO2 and N–NO3 Using Chitosan. Arab. J. Chem. 2019, 12, 4104–4117. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Ding, J.; Zhang, Z.; Gao, C.; Halimi, M.; Demey, H.; Yang, Z.; Yang, W. High Phosphate Removal Using La(OH)3 Loaded Chitosan Based Composites and Mechanistic Study. J. Environ. Sci. 2021, 106, 105–115. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, L.; Shen, W.; An, Q.; Xiao, Z.; Wang, H.; Cai, W.; Zhai, S.; Li, Z. Function Integrated Chitosan-Based Beads with throughout Sorption Sites and Inherent Diffusion Network for Efficient Phosphate Removal. Carbohydr. Polym. 2020, 230, 115639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, X.; Zhang, Z.; Chen, Z. Removal of Phosphate from Aqueous Solution by Chitosan Coated and Lanthanum Loaded Biochar Derived from Urban Dewatered Sewage Sludge: Adsorption Mechanism and Application to Lab-Scale Columns. Water Sci. Technol. 2021, 84, 3891–3906. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, L. Removal of Phosphate Anions Using the Modified Chitosan Beads: Adsorption Kinetic, Isotherm and Mechanism Studies. Powder Technol. 2015, 277, 112–119. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J. Facile Synthesis of Zr(IV)-Crosslinked Carboxymethyl Cellulose/Carboxymethyl Chitosan Hydrogel Using PEG as Pore-Forming Agent for Enhanced Phosphate Removal. Int. J. Biol. Macromol. 2021, 176, 558–566. [Google Scholar] [CrossRef]
- Hu, P.; Liu, Q.; Wang, J.; Huang, R. Phosphate Removal by Ce(III)-impregnated Crosslinked Chitosan Complex from Aqueous Solutions. Polym. Eng. Sci. 2017, 57, 44–51. [Google Scholar] [CrossRef]
- Ma, P.; Ding, W.; Yuan, J.; Yi, L.; Zhang, H. Total Recycle Strategy of Phosphorus Recovery from Wastewater Using Granule Chitosan Inlaid with γ-AlOOH. Environ. Res. 2020, 184, 109309. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, A.; Meenakshi, S. Effective Utilization of the Functional Groups in Chitosan by Loading Zn(II) for the Removal of Nitrate and Phosphate. Desalination Water Treat. 2014, 54, 1674–1683. [Google Scholar] [CrossRef]
- An, B.; Jung, K.-Y.; Lee, S.-H.; Lee, S.; Choi, J.-W. Effective Phosphate Removal from Synthesized Wastewater Using Copper–Chitosan Bead: Batch and Fixed-Bed Column Studies. Water Air Soil. Pollut. 2014, 225, 2050. [Google Scholar] [CrossRef]
- Kumar, I.A.; Viswanathan, N. Preparation and Testing of a Tetra-Amine Copper(II) Chitosan Bead System for Enhanced Phosphate Remediation. Carbohydr. Polym. 2018, 183, 173–182. [Google Scholar] [CrossRef]
- Deng, L.; Guan, Q.; Ning, P.; He, L.; Zhang, D. Synthesis of 3D Calcium-Modified Microspheres for Fast Purification of Simulated Phosphate Wastewater. J. Water Process Eng. 2021, 42, 102182. [Google Scholar] [CrossRef]
- Li, L.; Chen, Q.; Zhao, C.; Guo, B.; Xu, X.; Liu, T.; Zhao, L. A Novel Chitosan Modified Magnesium Impregnated Corn Straw Biochar for Ammonium and Phosphate Removal from Simulated Livestock Wastewater. Environ. Technol. Innov. 2022, 26, 102519. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, X.; Grattieri, M.; Macazo, F.C.; Cai, R.; Minteer, S.D. A Sustainable Adsorbent for Phosphate Removal: Modifying Multi-Walled Carbon Nanotubes with Chitosan. J. Mater. Sci. 2018, 53, 12641–12649. [Google Scholar] [CrossRef]
- Kumar, I.A.; Viswanathan, N. Development of Multivalent Metal Ions Imprinted Chitosan Biocomposites for Phosphate Sorption. Int. J. Biol. Macromol. 2017, 104, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Hosseinifard, M. Highly Efficient Removal of Phosphate by Lanthanum Modified Nanochitosan-Hierarchical ZSM-5 Zeolite Nanocomposite: Characteristics and Mechanism. Cellulose 2020, 27, 4637–4664. [Google Scholar] [CrossRef]
- Aswin Kumar, I.; Viswanathan, N. Development and Reuse of Amine-Grafted Chitosan Hybrid Beads in the Retention of Nitrate and Phosphate. J. Chem. Eng. Data 2018, 63, 147–158. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, N.; Feng, C.; Zhang, Z. Adsorption for Phosphate by Crosslinked/Non-Crosslinked-Chitosan-Fe(III) Complex Sorbents: Characteristic and Mechanism. Chem. Eng. J. 2018, 353, 361–372. [Google Scholar] [CrossRef]
- Cui, X.; Li, H.; Yao, Z.; Shen, Y.; He, Z.; Yang, X.; Ng, H.Y.; Wang, C.-H. Removal of Nitrate and Phosphate by Chitosan Composited Beads Derived from Crude Oil Refinery Waste: Sorption and Cost-Benefit Analysis. J. Clean. Prod. 2019, 207, 846–856. [Google Scholar] [CrossRef]
- Mahaninia, M.H.; Wilson, L.D. Cross-linked Chitosan Beads for Phosphate Removal from Aqueous Solution. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Bozorgpour, F.; Ramandi, H.F.; Jafari, P.; Samadi, S.; Yazd, S.S.; Aliabadi, M. Removal of Nitrate and Phosphate Using Chitosan/Al2O3/Fe3O4 Composite Nanofibrous Adsorbent: Comparison with Chitosan/Al2O3/Fe3O4 Beads. Int. J. Biol. Macromol. 2016, 93, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, A.; Meenakshi, S. A Novel Quaternized Chitosan–Melamine–Glutaraldehyde Resin for the Removal of Nitrate and Phosphate Anions. Int. J. Biol. Macromol. 2014, 64, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, P.; Liu, J. Triethylene Tetramine Functionalized Magnetic Graphene Oxide Chitosan Composite with Superior Capacity for the Removal of Phosphate. J. Chem. Eng. Data 2017, 62, 3341–3352. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Z.; Cong, H.; Wang, Q.; Wang, X. Surface Chitosan-Coated Fe3O4 Immobilized Lignin for Adsorbed Phosphate Radicals in Solution. Biochem. Eng. J. 2022, 187, 108662. [Google Scholar] [CrossRef]
- Salehi, S.; Hosseinifard, M. Optimized Removal of Phosphate and Nitrate from Aqueous Media Using Zirconium Functionalized Nanochitosan-Graphene Oxide Composite. Cellulose 2020, 27, 8859–8883. [Google Scholar] [CrossRef]
- Yang, S.; Chen, X.; Zhang, Z.; Jin, P.; Zhang, Q.; Wang, X. The Removal of Phosphate from Aqueous Solution through Chemical Filtration Using a Sponge Filter. Chem. Lett. 2018, 47, 89–91. [Google Scholar] [CrossRef]
- Aguado, R.J.; Mazega, A.; Tarrés, Q.; Delgado-Aguilar, M. The Role of Electrostatic Interactions of Anionic and Cationic Cellulose Derivatives for Industrial Applications: A Critical Review. Ind. Crops Prod. 2023, 201, 116898. [Google Scholar] [CrossRef]
- Tagyan, A.I.; Yasser, M.M.; Mousa, A.M.; Alkhalifah, D.H.M.; Hozzein, W.N.; Marzouk, M.A. Potential Application of Innovative Aspergillus Terreus/ Sodium Alginate Composite Beads as Eco-Friendly and Sustainable Adsorbents for Alizarin Red S Dye: Isotherms and Kinetics Models. Microorganisms 2023, 11, 1135. [Google Scholar] [CrossRef] [PubMed]
- Haq, F.; Mehmood, S.; Haroon, M.; Kiran, M.; Waseem, K.; Aziz, T.; Farid, A. Role of Starch Based Materials as a Bio-Sorbents for the Removal of Dyes and Heavy Metals from Wastewater. J. Polym. Environ. 2022, 30, 1730–1748. [Google Scholar] [CrossRef]
- Haq, F.; Yu, H.; Wang, L.; Teng, L.; Haroon, M.; Khan, R.U.; Mehmood, S.; Bilal-Ul-Amin; Ullah, R.S.; Khan, A.; et al. Advances in Chemical Modifications of Starches and Their Applications. Carbohydr. Res. 2019, 476, 12–35. [Google Scholar] [CrossRef]
- Dong, Y.; Ghasemzadeh, M.; Khorsandi, Z.; Sheibani, R.; Nasrollahzadeh, M. Starch-Based Hydrogels for Environmental Applications: A Review. Int. J. Biol. Macromol. 2024, 269, 131956. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wei, H.; Liu, Y.; Li, S.; Wang, G.; Guo, T.; Han, H. An in Situ Reactive Spray-Drying Strategy for Facile Preparation of Starch-Chitosan Based Hydrogel Microspheres for Water Treatment Application. Chem. Eng. Process.-Process Intensif. 2021, 168, 108548. [Google Scholar] [CrossRef]
- Shrivastava, J.; Bajpai, A.K. Starch-Based Hydrogels. In Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine; Elsevier: Amsterdam, The Netherlands, 2021; pp. 75–112. [Google Scholar]
- Wang, X.; Tarahomi, M.; Sheibani, R.; Xia, C.; Wang, W. Progresses in Lignin, Cellulose, Starch, Chitosan, Chitin, Alginate, and Gum/Carbon Nanotube (Nano)Composites for Environmental Applications: A Review. Int. J. Biol. Macromol. 2023, 241, 124472. [Google Scholar] [CrossRef]
- Saberi, A.; Alipour, E.; Sadeghi, M. Superabsorbent Magnetic Fe3O4-Based Starch-Poly (Acrylic Acid) Nanocomposite Hydrogel for Efficient Removal of Dyes and Heavy Metal Ions from Water. J. Polym. Res. 2019, 26, 271. [Google Scholar] [CrossRef]
- Atnafu, T.; Leta, S. Plasticized Magnetic Starch-Based Fe3O4 Clay Polymer Nanocomposites for Phosphate Adsorption from Aqueous Solution. Heliyon 2021, 7, e07973. [Google Scholar] [CrossRef]
- Gupta, A.D.; Rawat, K.P.; Bhadauria, V.; Singh, H. Recent Trends in the Application of Modified Starch in the Adsorption of Heavy Metals from Water: A Review. Carbohydr. Polym. 2021, 269, 117763. [Google Scholar] [CrossRef]
- Chen, M.; Long, A.; Zhang, W.; Wang, Z.; Xiao, X.; Gao, Y.; Zhou, L.; Li, Y.; Wang, J.; Sun, S.; et al. Recent Advances in Alginate-Based Hydrogels for the Adsorption–Desorption of Heavy Metal Ions from Water: A Review. Sep. Purif. Technol. 2025, 353, 128265. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Kandel, D.R.; Kim, J.T.; Siengchin, S.; Lee, J. Recent Advances in Cellulose- and Alginate-Based Hydrogels for Water and Wastewater Treatment: A Review. Carbohydr. Polym. 2024, 323, 121339. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Abd El-Monaem, E.M.; Elshishini, H.M.; El-Aqapa, H.G.; Hosny, M.; Abdelfatah, A.M.; Ahmed, M.S.; Hammad, E.N.; El-Subruiti, G.M.; Fawzy, M.; et al. Recent Developments in Alginate-Based Adsorbents for Removing Phosphate Ions from Wastewater: A Review. RSC Adv. 2022, 12, 8228–8248. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, H.; Yang, H. Phosphate Removal from Wastewater by Magnetic Amorphous Lanthanum Silicate Alginate Hydrogel Beads. Minerals 2022, 12, 171. [Google Scholar] [CrossRef]
- Wu, B.; Wan, J.; Zhang, Y.; Pan, B.; Lo, I.M.C. Selective Phosphate Removal from Water and Wastewater Using Sorption: Process Fundamentals and Removal Mechanisms. Environ. Sci. Technol. 2020, 54, 50–66. [Google Scholar] [CrossRef]
- Seida, Y.; Tokuyama, H. Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent. Gels 2022, 8, 220. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Chen, H.; Gao, Y.; Zhou, L.; Wan, J.; Li, Y.; Tang, M.; Peng, Y.; Wang, B.; et al. Efficient Phosphate Removal from Water by Multi-Engineered PVA/SA Matrix Double Network Hydrogels: Influencing Factors and Removal Mechanism. Sep. Purif. Technol. 2024, 336, 126261. [Google Scholar] [CrossRef]
- Rahni, S.Y.; Mirghaffari, N.; Rezaei, B.; Ghaziaskar, H.S. Removal of Phosphate from Aqueous Solutions Using a New Modified Bentonite-Derived Hydrogel. Water Air Soil. Pollut. 2014, 225, 1916. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Dong, S.; Li, X.; Liu, C. Synchronously Construction of Hierarchical Porous Channels and Cationic Surface Charge on Lanthanum-Hydrogel for Rapid Phosphorus Removal. Environ. Res. 2023, 236, 116730. [Google Scholar] [CrossRef]
- De France, K.J.; Xu, F.; Hoare, T. Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities. Adv. Healthc. Mater. 2018, 7, 1700927. [Google Scholar] [CrossRef]
- Zong, D.; Zhang, X.; Yin, X.; Wang, F.; Yu, J.; Zhang, S.; Ding, B. Electrospun Fibrous Sponges: Principle, Fabrication, and Applications. Adv. Fiber Mater. 2022, 4, 1434–1462. [Google Scholar] [CrossRef]
- Sharma, G.; Thakur, B.; Naushad, M.; Kumar, A.; Stadler, F.J.; Alfadul, S.M.; Mola, G.T. Applications of Nanocomposite Hydrogels for Biomedical Engineering and Environmental Protection. Environ. Chem. Lett. 2018, 16, 113–146. [Google Scholar] [CrossRef]
- Niazi, M.; Alizadeh, E.; Zarebkohan, A.; Seidi, K.; Ayoubi-Joshaghani, M.H.; Azizi, M.; Dadashi, H.; Mahmudi, H.; Javaheri, T.; Jaymand, M.; et al. Advanced Bioresponsive Multitasking Hydrogels in the New Era of Biomedicine. Adv. Funct. Mater. 2021, 31, 2104123. [Google Scholar] [CrossRef]
- Sharma, A.; Thatai, K.S.; Kuthiala, T.; Singh, G.; Arya, S.K. Employment of Polysaccharides in Enzyme Immobilization. React. Funct. Polym. 2021, 167, 105005. [Google Scholar] [CrossRef]
- Meena, J.; Gupta, A.; Ahuja, R.; Singh, M.; Panda, A.K. Recent Advances in Nano-Engineered Approaches Used for Enzyme Immobilization with Enhanced Activity. J. Mol. Liq. 2021, 338, 116602. [Google Scholar] [CrossRef]
- Burdick, J.A.; Mauck, R.L. (Eds.) Biomaterials for Tissue Engineering Applications; Springer: Vienna, Austria, 2011; ISBN 978-3-7091-0384-5. [Google Scholar]
- Sharma, M.; Tellili, N.; Kacem, I.; Rouissi, T. Microbial Biopolymers: From Production to Environmental Applications—A Review. Appl. Sci. 2024, 14, 5081. [Google Scholar] [CrossRef]
- Kolodynska, D.; Skiba, A.; Gorecka, B.; Hubicki, Z. Hydrogels from Fundaments to Application. In Emerging Concepts in Analysis and Applications of Hydrogels; InTech: London, UK, 2016. [Google Scholar]
- Li, I.C.; Chen, Y.H.; Chen, Y.C. Sodium Alginate-g-Poly(Sodium Acrylate) Hydrogel for the Adsorption–Desorption of Ammonium Nitrogen from Aqueous Solution. J. Water Process Eng. 2022, 49, 102999. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, Y.; Wang, A. Rapid and Wide PH-Independent Ammonium-Nitrogen Removal Using a Composite Hydrogel with Three-Dimensional Networks. Chem. Eng. J. 2012, 179, 90–98. [Google Scholar] [CrossRef]
- Dou, Z.; Xie, X. Chitosan-Montmorillonite-Fe Nanocomposite Hydrogel for Phosphate Recovery and Reuse. ACS ES T Eng. 2023, 3, 682–689. [Google Scholar] [CrossRef]
- Manna, A.; Lahiri, S.; Sen, K.; Banerjee, K. Fe(III) Cross-Linked Cellulose-Agar Hydrogel Beads for Efficient Phosphate Removal from Aqueous Solutions. Environ. Monit. Assess. 2024, 196, 1–23. [Google Scholar] [CrossRef]
- Wang, B.; Hu, X.; Zhou, D.; Zhang, H.; Chen, R.; Guo, W.; Wang, H.; Zhang, W.; Hong, Z.; Lyu, W. Highly Selective and Sustainable Clean-up of Phosphate from Aqueous Phase by Eco-Friendly Lanthanum Cross-Linked Polyvinyl Alcohol/Alginate/Palygorskite Composite Hydrogel Beads. J. Clean. Prod. 2021, 298, 126878. [Google Scholar] [CrossRef]
- Xi, H.; Li, Q.; Yang, Y.; Zhang, J.; Guo, F.; Wang, X.; Xu, S.; Ruan, S. Highly Effective Removal of Phosphate from Complex Water Environment with Porous Zr-Bentonite Alginate Hydrogel Beads: Facile Synthesis and Adsorption Behavior Study. Appl. Clay Sci. 2021, 201, 105919. [Google Scholar] [CrossRef]
- Wang, B.; Hu, X.; Li, L.; Xie, Y.; Chen, R.; Guo, W.; Wang, H.; Wang, M.; Shi, J.; Chen, L.; et al. Enhanced Phosphate Removal by Filler Encapsulation and Surface Engineering Using SA/PVA Matrix: Fabrication Optimization, Adsorption Behaviors and Inner Removal Mechanism. Chem. Eng. J. 2023, 472, 145073. [Google Scholar] [CrossRef]
- Fu, J.; Leo, C.P.; Chang, C.K. Nutrient Recovery and Pollutant Removal Using Carboxymethyl Cellulose/Microfibrillated Cellulose Hydrogel: Templating Effects of CaCO3 Nanoparticles. J. Water Process Eng. 2024, 58, 104869. [Google Scholar] [CrossRef]
- Malicevic, S.; Garcia Pacheco, A.P.; Lamont, K.; Estepa, K.M.; Daguppati, P.; van de Vegte, J.; Marangoni, A.G.; Pensini, E. Phosphate Removal from Water Using Alginate/Carboxymethylcellulose/Aluminum Beads and Plaster of Paris. Water Environ. Res. 2020, 92, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Mikula, K.; Izydorczyk, G.; Mironiuk, M.; Szopa, D.; Chojnacka, K.; Witek-Krowiak, A. Selection of Matrix Material for Hydrogel Carriers of Plant Micronutrients. J. Mater. Sci. 2024, 59, 3031–3048. [Google Scholar] [CrossRef]
- Tan, X.; Yi, L.; Duan, Z.; Wu, X.; Ali, I.; Gao, L. Phosphorus Recovery from Wastewater Using Extracellular Polymeric Substances (EPS)-like Hydrogels. J. Water Process Eng. 2023, 52, 103512. [Google Scholar] [CrossRef]
- Huang, Y.X.; Liu, M.J.; Chen, S.; Jasmi, I.I.; Tang, Y.; Lin, S. Enhanced Adsorption and Slow Release of Phosphate by Dolomite–Alginate Composite Beads as Potential Fertilizer. Water Environ. Res. 2019, 91, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, K.; Siwek, H.; Kitczak, T.; Włodarczyk, M. Fertilization with Municipal Wastewater Phosphorus Adsorbed to Alginate Beads: Results from a Pot Experiment with Italian Ryegrass. Agronomy 2021, 11, 2142. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Gil, F.; Izydorczyk, G.; Mikula, K.; Gersz, A.; Hoppe, V.; Chojnacka, K.; Witek-Krowiak, A. Innovative Bio-Waste-Based Multilayer Hydrogel Fertilizers as a New Solution for Precision Agriculture. J. Environ. Manag. 2022, 321, 116002. [Google Scholar] [CrossRef]
Nutrient | Source | Form of Hydrogel | Material | Form of Hydrogel Modification | Process Parameters | Sorption Efficiency (mg/g) | References |
---|---|---|---|---|---|---|---|
PO43− | Water and wastewater | Hydrogel beads (wet or dry) | chitosan | without modification (CSH) | pH neutral and slightly alkaline | 57.84 | [83] |
crosslinked (CSH) | 60 min; pH 4, 295 K | 4.70 | [84] | ||||
non-crosslinking (CSH) | 60 min, pH 3; 295 K | 7.86 | [60,84] | ||||
chitosan and alginate | with metal ions Fe3+ (Fe–CS–Alg) | pH 3–6 | 84.74 | [79] | |||
chitosan | Lanthanum hydroxide (La3+), zirconium, and iron | pH 3 and 7 | 160 | [85] | |||
chitosan + polydopamine coating (PDA) | La3+ (La–CS@PDA) | 300 min; pH 3, 295 K | 195 | [86] | |||
chitosan | La– (SBC–CS) | 660 min; pH 4.3, 298 K | 81.54 | [87] | |||
Zr4+ (ZCSB) | 50 min; pH 4, 288 K | 62 | [88] | ||||
chitosan modified with polyethylene polyamide | Zr4+ | pH 3 | 104 | [78] | |||
arboxymethyl cellulose/carboxymethyl chitosan crosslinked | Zr(IV) (Zr-CMC/CMCS) | 400 min; pH 2, 298 K | 93.5 | [89] | |||
chitosan | zirconium oxide (HZCSB) | 2160 min; pH 6.7, 298 K | 42.02 | [89] | |||
crosslinked chitosan complex | Ce(III) (Ce-CCS) | 30 min; pH 4–6, 298 K | 45 | [90] | |||
chitosan cyclodextrin sorbent | Ce3+ (Ce–CS–β–CD) | 40 min; pH 6, 303 K | 89 | [77] | |||
chitosan encrusted -AlOOH | AlOOH (Y–AlOOH@CS) | 30 min; pH 4–6, 298 K | 45.82 | [91] | |||
chitosan | Zn2+ (ZnCCSB) | 90 min; pH 4–7; 295 K | 67.5 | [92] | |||
chitosan (CSB) | CB–G–Cu | 720 min; pH 7, 295 K | 53.6 | [93] | |||
chitosan (CS) | Copper tetraamine (II) (TAC) TAC@CS | 40 min; 303 K | 43.32 | [94] | |||
Ca–CS, | 20 min; pH 7, 298 K | 23.7 | [95] | ||||
chitosan with biocarbon | CS–MgCBC | 180 min; pH 3–6, 298 K | 221.89 | [96] | |||
CS/MWCNT | 30 min; pH 3, 293 K | 36.1 | [97] | ||||
chitosan with zeolite or mineral | La–CS-MMT | 30 min; pH 5.3, 303 K | 128.5 | [76] | |||
Zr@CsKN | 30 min; pH 3–7, 303 K | 40.58 | [98] | ||||
NCs@ZSM–5H/La | 5 min, pH 5 | 151.51 | [99] | ||||
AFMCS | 40 min; pH 3–7, 313 K | 42.95 | [100] | ||||
CS–Fe | K | 15.7 | [101] | ||||
LC–CS–Fe | 900 min; pH 5 | 62.72 | [102] | ||||
PO42− | Water and wastewater | Hydrogel beads (wet or dry) | chitosan chitosan (CS) | chitosan with glutaraldehyde (GA) and epichlorohydrin (EP), | pH 8.5 | 52.1 | [103] |
PO43− | Water and wastewater | Nanofibers | CS/Al2O3–Fe3O4 | 60 min; 293 K | 135.1 | [104] | |
ZrO2/SiO2 NM | 60 min; pH 5, 298 K | 57.38 | [104] | ||||
CS–PAA | 60 min; pH 4.5, 298 K | 392 | [80] | ||||
CS/QCMGR | pH 3–10, 303 K | 159.48 | [105] | ||||
Ground and fine chitosan forms | TETA–MGO/CS | 50 min; 298 K | 353.36 | [106] | |||
CS–Li@Fe | 60 min; pH 2–10 | 98 | [83,107] | ||||
Nanoparticles and sponges | NC@GO/Zr | 20 min; pH 5, 313 K | 172.4 | [108] | |||
LaFGO | 120 min, pH 3 | 13.12 | [109] |
Nutrient | Hydrogel | Eluent Type | Release Efficiency/ Reusability Analysis | References |
---|---|---|---|---|
N | Poly (acrylic acid) (PAA) hydrogel | 0.1–2 M HCl | <5% decrease in capacity after 10 sorption–desorption cycles | [59] |
N | Sodium alginate-g-poly(sodium acrylate) | 1 M NaOH | <27% decrease in capacity after 9 sorption–desorption cycles | [139] |
N | Chitosan-grafted poly(acrylic acid)/unexpanded vermiculite (CTS-g-PAA/UVMT) | 0.1 M NaOH | No observed decrease in capacity after 5 sorption–desorption cycles | [140] |
P | Chitosan–MMT–Fe scaffold | 0.2 M CH3COOH, 0.015 M NH4F, 0.2 M NH4Cl, and 0.012 M HCl | Release 43.9 ± 3.1% | [141] |
P | Chitosan–MMT–Fe scaffold | water | Release 72.4% after 11 volumes of water | [141] |
P | Fe(III) crosslinked cellulose–agar | NaOH, HCl, NaCl, and EDTA | Complete release after 2 cycles of elution with 0.1 M NaCl removal efficiency of regenerated sorbent was 42% after 6 cycles of sorption–desorption | [142] |
P | Zr(IV)-crosslinked carboxymethyl cellulose/carboxymethyl chitosan hydrogel | 0.8% NaOH | Not measured; gradually reduced adsorption capacity with increasing desorption–sorption cycle time (90% after 6 cycles) | [89] |
P | Lanthanum crosslinked polyvinyl alcohol/alginate/palygorskite composite hydrogel | 0.1 M HCl | No observed decrease in capacity after 5 sorption–desorption cycles | [143] |
P | Zr-bentonite alginate hydrogel | 0.1 M NaOH | 87.1% in first cycle; 67.4% after 5 sorption–desorption cycles (with constant sorption capacity) | [144] |
P | SA/PVA | 4 M NaOH | 60% of sorption capacity after 5 cycles | [145] |
P | SA/PVA crosslinked with La(III) | 3.0 M (NaOH + NaCl) | No observed decrease in capacity after 8 sorption–desorption cycles | [127] |
P | Carboxymethyl cellulose/microfibrillated cellulose hydrogel | 0.15 M HCl | <10% decrease in capacity after 6 sorption–desorption cycles | [146] |
P | Alginate/carboxymethylcellulose/aluminum | pH 2.3–11.6 | Desorption of 60% P at pH = 9 | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szopa, D.; Wróbel, P.; Anwajler, B.; Witek-Krowiak, A. Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview. Sustainability 2024, 16, 6321. https://doi.org/10.3390/su16156321
Szopa D, Wróbel P, Anwajler B, Witek-Krowiak A. Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview. Sustainability. 2024; 16(15):6321. https://doi.org/10.3390/su16156321
Chicago/Turabian StyleSzopa, Daniel, Paulina Wróbel, Beata Anwajler, and Anna Witek-Krowiak. 2024. "Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview" Sustainability 16, no. 15: 6321. https://doi.org/10.3390/su16156321
APA StyleSzopa, D., Wróbel, P., Anwajler, B., & Witek-Krowiak, A. (2024). Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview. Sustainability, 16(15), 6321. https://doi.org/10.3390/su16156321