Irrigation Water Quality Assessment in Egyptian Arid Lands, Utilizing Irrigation Water Quality Index and Geo-Spatial Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Samples’ Collection and Analysis
2.3. Sodium Adsorption Ratio (SAR) Determination
2.4. Sodium Percent (Na%) Determination
2.5. Capability of Water Movement in Soil (the Permeability Index (PI))
2.6. Irrigation Water Quality Index (IWQI)
3. Results
3.1. Water Quality Assessment Using IWQI
3.2. Water Quality Visualization
3.3. Evaluation of Water Quality for Irrigation Purposes
4. Discussion
4.1. Water Quality Assessment
4.2. The Water Quality Mapping
4.3. Evaluation of Water Quality for Irrigation Purposes
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. The Human Right to Water. Water Policy 1998, 1, 487–503. [Google Scholar] [CrossRef]
- Rockstrom, J. Balancing Water for Humans and Nature: The New Approach in Ecohydrology; Routledge: London, UK, 2013; p. 247. [Google Scholar]
- Moss, B. Water pollution by agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Abdel-Satar, A.M.; Ali, M.H.; Goher, M.E. Indices of water quality and metal pollution of Nile River, Egypt. Egypt. J. Aquat. Res. 2017, 43, 21–29. [Google Scholar] [CrossRef]
- Abbas, H.; Abuzaid, A.S.; Jahin, H.; Kasem, D. Assessing the quality of untraditional water sources for irrigation purposes in Al-Qalubiya Governorate, Egypt. Egypt. J. Soil Sci. 2020, 60, 157–166. [Google Scholar] [CrossRef]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Chang. 2011, 104, 599–627. [Google Scholar] [CrossRef]
- Megahed, H.A.; GabAllah, H.M.; Ramadan, R.H.; Abdelrahman, M.A.E.; D’Antonio, P.; Scopa, A.; Darwish, M.H. Groundwater Quality Assessment Using Multi-Criteria GIS Modeling in Drylands: A Case Study at El-Farafra Oasis, Egyptian Western Desert. Water 2023, 15, 1376. [Google Scholar] [CrossRef]
- Brookes, J.D.; Carey, C.C. Ensure availability and sustainable management of water and sanitation for all. UN Chron. 2015, 51, 15–16. [Google Scholar] [CrossRef]
- Gautam, U.; Tiwari, V.; Tripathi, V.K. Evaluation of groundwater quality of Prayagraj city using entropy water quality index (EWQI) and new integrated water quality index (IWQI). Sustain. Water Resour. Manag. 2022, 8, 57. [Google Scholar] [CrossRef]
- Gidey, A. Geospatial distribution modeling and determining suitability of water quality for irrigation purpose using geospatial methods and water quality index (WQI) in Northern Ethiopia. Appl. Water Sci. 2018, 8, 82. [Google Scholar] [CrossRef]
- Aravinthasamy, P.; Karunanidhi, D.; Subba Rao, N.; Subramani, T.; Srinivasa Moorthy, K. Irrigation risk assessment of water in a non-perennial river basin of South India: Implication from irrigation water quality index (IWQI) and geographical information system (GIS) approaches. Arab. J. Geosci. 2020, 13, 1125. [Google Scholar] [CrossRef]
- Yıldız, S.; Karakuş, C.B. Estimation of irrigation water quality index with development of an optimum model: A case study. Environment. Dev. Sustain. 2020, 22, 4771–4786. [Google Scholar] [CrossRef]
- Şener, Ş.; Varol, S.; Şener, E. Evaluation of sustainable water utilization using index methods (WQI and IWQI), multivariate analysis, and GIS: The case of Akşehir District (Konya/Turkey). Environ. Sci. Pollut. Res. 2021, 28, 47991–48010. [Google Scholar] [CrossRef] [PubMed]
- El Behairy, R.A.; El Baroudy, A.A.; Ibrahim, M.M.; Kheir, A.M.; Shokr, M.S. Modelling and assessment of irrigation water quality index using GIS in semi-arid region for sustainable agriculture. Water Air Soil Pollut. 2021, 232, 352. [Google Scholar] [CrossRef]
- Marghade, D.; Malpe, D.B.; Duraisamy, K.; Patil, P.D.; Li, P. Hydrogeochemical evaluation, suitability, and health risk assessment of water in the watershed of Godavari basin, Maharashtra, Central India. Environ. Sci. Pollut. Res. 2021, 28, 18471–18494. [Google Scholar] [CrossRef] [PubMed]
- Tlili-Zrelli, B.; Hamzaoui-Azaza, F.; Gueddari, M.; Bouhlila, R. Geochemistry and quality assessment of water using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (Northeastern Tunisia). Arab. J. Geosci. 2013, 6, 3545–3561. [Google Scholar] [CrossRef]
- Singh, S.; Ghosh, N.C.; Gurjar, S.; Krishan, G.; Kumar, S.; Berwal, P. Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environ. Monit. Assess. 2018, 190, 29. [Google Scholar] [CrossRef] [PubMed]
- Akoto, O.; Adopler, A.; Tepkor, H.E.; Opoku, F. A comprehensive evaluation of surface water quality and potential health risk assessments of Sisa River, Kumasi. Water Sustain. Dev. 2021, 15, 100654. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Said, R. The River Nile Geology and Hydrology and Utilization; Pergamon Press: Oxford, UK, 1993; p. 320. [Google Scholar]
- Rashed, H.S. Utilizing Sustainable Land Management Model for Sustainability Index Assessment in El-Menoufia Governorate, Egypt. J. Soil Sci. Agric. Eng. 2020, 11, 81–90. [Google Scholar] [CrossRef]
- Clesceri, L.S. Standard Methods for Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1998; 9p. [Google Scholar]
- PerkinElmer, Inc. Analysis of Potable and Waste Waters by US EPA Method 200.7 Using the Optima 8300 ICP-OES and prepFAST Auto-Dilution/Calibration System. Application Notebook 2013, Volume 28, Issue 9. Available online: https://www.spectroscopyonline.com/view/analysis-potable-and-waste-waters-us-epa-method-2007-using-optima-8300-icp-oes-and-prepfast-auto-dil (accessed on 28 June 2024).
- El-Fattah Hassan, E.A.; Saeed, A.M.; Abdalla, N.A. Bacteriological and Physicochemical Screening of Some Irrigation Canals at Nile Delta, Egypt. Egypt. J. Exp. Biol. (Zool.) 2018, 14, 287–297. [Google Scholar] [CrossRef]
- Spandana, M.P.; Suresh, K.R.; Prathima, B. Developing an irrigation water quality index for Vrishabavathi command area. Int. J. Eng. Res. Technol. 2013, 2, 821–830. [Google Scholar] [CrossRef]
- Wilcox, L. Classification and Use of Irrigation Waters (No. 969); US Department of Agriculture, National Agricultural Library: Washington, DC, USA, 1955.
- Singh, V.K.; Kumar, D.; Kashyap, P.S.; Singh, P.K.; Kumar, A.; Singh, S.K. Modelling of soil permeability using different data driven algorithms based on physical properties of soil. J. Hydrol. 2020, 580, 124223. [Google Scholar] [CrossRef]
- Doneen, L. Notes on Water Science and Engineering; Department of Water Science and Engineering, University of California: Davis, CA, USA, 1964; Paper 4001. [Google Scholar]
- Makki, Z.F.; Zuhaira, A.A.; Al-Jubouri, S.M.; Al-Hamd, R.K.S.; Cunningham, L.S. GIS-based assessment of water quality for drinking and irrigation purposes in central Iraq. Environ. Monit. Assess. 2021, 193, 107. [Google Scholar] [CrossRef] [PubMed]
- Abbasnia, A.; Radfard, M.; Mahvi, A.H.; Nabizadeh, R.; Yousefi, M.; Soleimani, H.; Ali Mohammadi, M. Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief 2018, 19, 623–631. [Google Scholar] [CrossRef]
- Meireles, A.C.M.; de Andrade, E.M.; Chaves, L.C.G.; Frischkorn, H.; Crisostomo, L.A. A new proposal of the classification of irrigation water. Rev. Cienc. Agron. 2010, 41, 349–357. [Google Scholar] [CrossRef]
- Dhakate, R.; Guguloth, S.; Srinivas, B. Hydrochemical appraisal of groundwater quality for drinking and agricultural utility in a granitic terrain of Maheshwaram area of Ranga Reddy district, Telangana State, India. HydroResearch 2021, 4, 11–23. [Google Scholar] [CrossRef]
- Hamdy, A. Saline irrigation management for a sustainable use. In Non-Conventional Water Use: WASAMED Project; Hamdy, A., El Gamal, F., Lamaddalena, N., Bogliotti, C., Guelloubi, R., Eds.; CIHEAM/EU DG Research: Bari, Italy, 2005; pp. 3–42. [Google Scholar]
- Tomaz, A.; Palma, P.; Fialho, S.; Lima, A.; Alvarenga, P.; Potes, M.; Costa, M.J.; Salgado, R. Risk assessment of irrigation-related soil salinization and sodification in Mediterranean areas. Water 2020, 12, 3569. [Google Scholar] [CrossRef]
- El Mountassir, O.; Bahir, M. The assessment of the groundwater quality in the coastal aquifers of the Essaouira Basin, southwestern Morocco, using hydrogeochemistry and isotopic signatures. Water 2023, 15, 1769. [Google Scholar] [CrossRef]
- Qadir, M.; Sposito, G.; Smith, C.J.; Oster, J.D. Reassessing irrigation water quality guidelines for sodicity hazard. Agric. Water Manag. 2021, 255, 107054. [Google Scholar] [CrossRef]
- Kayikcioglu, H.H. Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions. J. Environ. Manag. 2012, 102, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, M.K. Reclamation of saline-sodic soils for sustainable agriculture in Egypt. In Sustainability of Agricultural Environment in Egypt: Part II; Negm, A., Abu-hashim, M., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2018; Volume 77, pp. 69–92. [Google Scholar] [CrossRef]
- Sayed, Y.A.; Fadl, M.E. Agricultural Sustainability Evaluation of the New Reclaimed Soils at Dairut Area, Assiut, Egypt using GIS Modeling. Egypt. J. Remote Sens. Space Sci. 2021, 24, 707–719. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, H.; Xu, P.; Hou, K.; Yang, F. Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China. Ecotoxicol. Environ. Saf. 2021, 212, 111992. [Google Scholar] [CrossRef] [PubMed]
- Ayers, R.S.; Westcott, D.W. Water Quality for Agriculture; FAO, UNITED NATIONS: Rome, Italy, 1994; Volume 97. [Google Scholar]
- Karakuş, C.B.; Yıldız, S. Evaluation for irrigation water purposes of groundwater quality in the vicinity of Sivas City Centre (Turkey) by using GIS and an irrigation water quality index. Irrig. Drain. 2020, 69, 121–137. [Google Scholar] [CrossRef]
- Batarseh, M.; Imreizeeq, E.; Tilev, S.; Al Alaween, M.; Suleiman, W.; Al Remeithi, A.M.; Al Tamimi, M.K.; Al Alawneh, M. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) & GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundw. Sustain. Dev. 2021, 14, 100611. [Google Scholar] [CrossRef]
- Taher, M.E.S.; Ghoneium, A.M.; Hopcroft, R.R.; ElTohamy, W.S. Temporal and spatial variations of surface water quality in the Nile River of Damietta Region, Egypt. Environ. Monit. Assess. 2021, 193, 128. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekarapandian, M.; Chandran, S.; Saranya Devi, D.; Kumar, V. Spatial and temporal variation of groundwater quality and its suitability for irrigation and drinking purpose using GIS and WQI in an urban fringe. J. Afr. Earth Sci. 2016, 124, 270–288. [Google Scholar] [CrossRef]
- Gharaibeh, M.A.; Eltaif, N.I.; Shunnar, O.F. Leaching and reclamation of calcareous saline-sodic soil by moderately saline and moderate-SAR water using gypsum and calcium chloride. J. Plant Nutr. Soil Sci. 2009, 172, 713–719. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.P.; Chakraborty, A.; Bera, A.; Saha, R. Suitability assessment of groundwater quality for irrigational use in Sagardighi block, Murshidabad district, West Bengal. Appl. Water Sci. 2022, 12, 38. [Google Scholar] [CrossRef]
- Singh, K.K.; Tewari, G.; Kumar, S. Evaluation of groundwater quality for suitability of irrigation purposes: A case study in the Udham Singh Nagar, Uttarakhand. J. Chem. 2020, 2020, 6924026. [Google Scholar] [CrossRef]
- Miró, M.; Estela, J.M.; Cerdà, V. Application of flowing-stream techniques to water analysis: Part II. General quality parameters and anionic compounds: Halogenated, Sulphur and metalloid species. Talanta 2004, 62, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, S.; Mondal, P. Groundwater suitability assessment based on water quality index and hadrochemical characterization of Suri Sadar Sub-division, West Bengal. Ecol. Inform. 2021, 64, 101335. [Google Scholar] [CrossRef]
- Al-Bassam, A.M.; Khalil, A.R. Durov Pwin: A new version to plot the expanded Durov diagram for hydro-chemical data analysis. Comput. Geosci. 2012, 42, 1–6. [Google Scholar] [CrossRef]
- Tolera, M.B.; Choi, H.; Chang, S.W.; Chung, I.-M. Groundwater quality evaluation for different uses in the lower Ketar Watershed, Ethiopia. Environ. Geochem. Health 2020, 42, 3059–3078. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Shrestha, S.M.; Pradhan, A.M.S. Assessment of spring water quality of Khandbari Municipality in Sankhuwasabha District, Eastern Nepal. Environ. Sci. Pollut. Res. 2023, 30, 98452–98469. [Google Scholar] [CrossRef] [PubMed]
- Aregahegn, Z.; Zerihun, M. Study on irrigation water quality in the rift valley areas of Awash river basin, Ethiopia. Appl. Environ. Soil Sci. 2021, 2021, 8844745. [Google Scholar] [CrossRef]
- Darwesh, N.; Allam, M.; Meng, Q.; Helfdhallah, A.A.; Naser Ramzy, S.; El Kharrim, K.; Al Maliki, A.A.; Belghyti, D. Using Piper trilinear diagrams and principal component analysis to determine variation in hydrochemical faces and understand the evolution of groundwater in Sidi Slimane Region, Morocco. Egypt. J. Aquat. Biol. Fish. 2019, 23, 17–30. [Google Scholar] [CrossRef]
- Igibah, C.E.; Tanko, J.A. Assessment of urban groundwater quality using Piper trilinear and multivariate techniques: A case study in the Abuja, North-central, Nigeria. Environ. Syst. Res. 2019, 8, 14. [Google Scholar] [CrossRef]
- El-Rawy, M.; Ismail, E.; Abdalla, O. Assessment of groundwater quality using GIS, hydrogeochemistry, and factor statistical analysis in Qena Governorate, Egypt. Desalination Water Treat. 2019, 162, 14–29. [Google Scholar] [CrossRef]
Parameter | Detection/Reporting Limit | Method |
---|---|---|
pH field [-] | - | APHA 4500-H + B, 21st Ed. |
EC [μS cm−1] | 1 | APHA 2510 B, 21st Ed. |
Calcium [mg L−1] | APHA 3500-Ca B, 21st Ed. | |
Magnesium [mg L−1] | ICP-OES, EPA200.7 Rev 04 | |
Sodium [mg L−1] | 0.05 | |
Potassium [mg L−1] | 0.02 | |
Chloride [mg L−1] | 0.2 | APHA 4110 B, 21st Ed. |
Bicarbonate [mg L−1] | 1 | APHA 2320 B, 21st Ed. |
Value Range | Water Classification | Number of Samples |
---|---|---|
<6 | Excellent | 12 |
6–9 | Good | 54 |
>9 | Permissible | 44 |
Total | 110 |
Value Range | Water Classification | Number of Samples |
---|---|---|
<20 | Excellent | 0 |
20–40 | Good | 0 |
40–60 | Permissible | 4 |
60–80 | Doubtful | 103 |
>80 | Unsuitable | 3 |
Total | 110 |
qi | EC (µS cm−1) | SAR (meq L−1)1/2 | Na+ | Cl− | HCO3− |
---|---|---|---|---|---|
meq L−1 | |||||
85–100 | 200–750 | <3 | 2–3 | <4 | 1–1.5 |
60–85 | 750–1500 | 3–6 | 3–6 | 4–7 | 1.5–4.5 |
35–60 | 1500–3000 | 6–12 | 6–9 | 7–10 | 4.5–8.5 |
0–35 | ˂200 or ≥3000 | >12 | ˂2 or ≥9 | >10 | ˂1 or ≥8.5 |
Parameter | Weight (wi) |
---|---|
EC (µS cm−1) | 0.21 |
Na+ | 0.20 |
HCO3− | 0.20 |
Cl− | 0.19 |
SAR | 0.20 |
Total | 1.000 |
EC (µS cm−1) | SAR (meq/L−1)1/2 | Na+ (meq L−1) | Cl− (meq L−1) | HCO3− (meq L−1) | |
---|---|---|---|---|---|
Minimum | 672 | 4.8 | 8.1 | 5.4 | 1.7 |
Maximum | 3348 | 10.3 | 34.3 | 44.2 | 3.6 |
Average | 1311.9 | 6.3 | 16.2 | 16.1 | 2.2 |
Standard Deviation | 930.1 | 1.8 | 8.2 | 11.5 | 0.63 |
IWQI Values and Type of Restriction | Percentage of Water Samples | Recommendation for Crops and Soil | |
---|---|---|---|
Soil | Type of Plants | ||
85–100 No Restriction (NR) | 61.8% | May be used for the majority of soils with low probability of causing salinity and sodicity problems, being recommended for leaching within irrigation practices, except for in soils with extremely low permeability. | No toxicity risk for most plants |
70–85 Low Restriction (LR) | 21.8% | Recommended for use in irrigated soils with light texture or moderate permeability, being recommended for salt leaching. Soil sodicity in heavy texture soils may occur, being recommended to avoid its use in soils with high clay content. | Avoid salt-sensitive plants |
55–70 Moderate Restriction (MR) | 10.9% | May be used in soils with moderate- to high-permeability values, being suggested for moderate leaching of salts. | Plants with moderate tolerance to salts may be grown |
40–55 High Restriction (HR) | 5.5% | May be used in soils with high permeability without compact layers. High-frequency irrigation schedule should be adopted for water with EC above 2000 µS cm−1 and SAR above 7.0. | Should be used for irrigation of plants with moderate to high tolerance to salts with special salinity control practices, except water with low Na, Cl, and HCO3 values |
0–40 Severe Restriction (SR) | 0% (0 samples) | Should be avoided for irrigation under normal conditions. In special cases, may be used occasionally. Water with low-salt levels and high SAR requires gypsum application. In high saline content water, soils must have high permeability, and excess water should be applied to avoid salt accumulation. | Only plants with high salt tolerance, except for waters with extremely low values of Na+, Cl−, and HCO3− |
qi EC | qi SAR | qi Na+ | qi HCO3− | qi Cl− | EC qi*wi | SAR qiwi | Na+ qi*wi | HCO3− qi*wi | Cl−qi*wi | IWQI | |
---|---|---|---|---|---|---|---|---|---|---|---|
Min | 9.9 | 4.8 | 8.1 | 1.7 | 5.4 | 2.1 | 0.9 | 1.7 | 0.4 | 1.1 | 40 |
Max | 14.4 | 10.3 | 34.3 | 3.6 | 44.2 | 3. | 1.9 | 7 | 0.7 | 8.6 | 99.9 |
Average | 13.3 | 8.8 | 26.2 | 3.1 | 33.5 | 2.8 | 1.7 | 5.3 | 0.6 | 6.5 | 83.8 |
Standard Deviation | 1.6 | 1.8 | 8.2 | 0.63 | 11.5 | 0.3 | 0.3 | 1.7 | 0.1 | 2.2 | 19.7 |
Category | SAR (meq L−1)1/2 | Water Samples (%) | EC (μS cm−1) | Water Samples (%) | Chloride (meq L−1) | Water Samples (%) |
---|---|---|---|---|---|---|
Excellent | <10 | 10 | <700 | 5 | <70 | 100 |
Good | 10–18 | 90 | 700–3000 | 85 | 70–250 | 0 |
Permissible | 18–26 | 0 | 3000–4000 | 10 | 250–350 | 0 |
Doubtful | 26–35 | 0 | 4000–6000 | 0 | 350–450 | 0 |
Unsuitable | >35 | 0 | >6000 | 0 | >450 | 0 |
SAR | Very High-S4 | C1S4 = 0% | C2S4 = 0% | C3S4 = 0.9% | C4S4 = 0% |
High-S3 | C1S3 = 0% | C2S3 = 0% | C3S3 = 9.1% | C4S3 = 11.8% | |
Middle-S2 | C1S2 = 0% | C2S2 = 0% | C3S2 = 70.9% | C4S2 = 0% | |
Low-S1 | C1S1 = 0% | C2S1 = 0.9% | C3S1 = 6.4% | C4S1 = 0% | |
Low-C1 | Middle-C2 | High-C3 | Very High-C4 | ||
EC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadl, M.E.; ElFadl, D.M.A.; Hussien, E.A.A.; Zekari, M.; Shams, E.M.; Drosos, M.; Scopa, A.; Megahed, H.A. Irrigation Water Quality Assessment in Egyptian Arid Lands, Utilizing Irrigation Water Quality Index and Geo-Spatial Techniques. Sustainability 2024, 16, 6259. https://doi.org/10.3390/su16146259
Fadl ME, ElFadl DMA, Hussien EAA, Zekari M, Shams EM, Drosos M, Scopa A, Megahed HA. Irrigation Water Quality Assessment in Egyptian Arid Lands, Utilizing Irrigation Water Quality Index and Geo-Spatial Techniques. Sustainability. 2024; 16(14):6259. https://doi.org/10.3390/su16146259
Chicago/Turabian StyleFadl, Mohamed E., Doaa M. Abou ElFadl, Elhussieny A. Abou Hussien, Mohammedi Zekari, Eltaher M. Shams, Marios Drosos, Antonio Scopa, and Hanaa A. Megahed. 2024. "Irrigation Water Quality Assessment in Egyptian Arid Lands, Utilizing Irrigation Water Quality Index and Geo-Spatial Techniques" Sustainability 16, no. 14: 6259. https://doi.org/10.3390/su16146259
APA StyleFadl, M. E., ElFadl, D. M. A., Hussien, E. A. A., Zekari, M., Shams, E. M., Drosos, M., Scopa, A., & Megahed, H. A. (2024). Irrigation Water Quality Assessment in Egyptian Arid Lands, Utilizing Irrigation Water Quality Index and Geo-Spatial Techniques. Sustainability, 16(14), 6259. https://doi.org/10.3390/su16146259