Use of Directed Lactic Fermentation to Obtain Plant-Based, Upcycled Beverage from Milk Thistle Endosperm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Plant Material
2.2. Lactic Fermentation (LF) of MTE Extract—Preparation of MTE Fermented Beverage
2.3. Nutrition Value of MTE Extracts
2.4. Sylimarin Content in MTE and MTE Extracts
2.5. Determination of Total Amino Acid (AA) Content
2.6. PDCAAS (Protein Digestibility-Corrected Amino Acid Score) Calculation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Dynamics of the Lactic Fermentation Process of MTE Extract
3.2. Nutritional Parameter Changes during MTE Extract Lactic Fermentation
3.3. Changes in Amino Acid Profile and Content during Fermentation
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mordor Intelligence Europe Non-Dairy Yogurt Market Size & Share Analysis—Growth Trends & Forecasts Up to 2029. Available online: https://www.mordorintelligence.com/industry-reports/europe-non-dairy-yogurt-market (accessed on 4 April 2024).
- Jaeger, S.R.; Giacalone, D.; Jin, D.; Ryan, G.S.; Cardello, A.V. Information about Health and Environmental Benefits Has Minimal Impact on Consumer Responses to Commercial Plant-Based Yoghurts. Food Qual. Prefer. 2023, 106, 104820. [Google Scholar] [CrossRef]
- Boeck, T.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Nutritional Properties and Health Aspects of Pulses and Their Use in Plant-based Yogurt Alternatives. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3858–3880. [Google Scholar] [CrossRef] [PubMed]
- Greis, M.; Sainio, T.; Katina, K.; Nolden, A.A.; Kinchla, A.J.; Seppä, L.; Partanen, R. Physicochemical Properties and Mouthfeel in Commercial Plant-Based Yogurts. Foods 2022, 11, 941. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.E.; Kinchla, A.J.; Nolden, A.A. A Comparison of the Nutritional Profile and Nutrient Density of Commercially Available Plant-Based and Dairy Yogurts in the United States. Front. Nutr. 2023, 10, 1195045. [Google Scholar] [CrossRef] [PubMed]
- Rombaut, N.; Tixier, A.; Bily, A.; Chemat, F. Green Extraction Processes of Natural Products as Tools for Biorefinery. Biofuels Bioprod. Biorefining 2014, 8, 530–544. [Google Scholar] [CrossRef]
- Penha, C.B.; Santos, V.D.P.; Speranza, P.; Kurozawa, L.E. Plant-Based Beverages: Ecofriendly Technologies in the Production Process. Innov. Food Sci. Emerg. Technol. 2021, 72, 102760. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of Plant-Based Milk Alternatives for Improved Flavour and Nutritional Value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed]
- Grom, L.C.; Rocha, R.S.; Balthazar, C.F.; Guimarães, J.T.; Coutinho, N.M.; Barros, C.P.; Pimentel, T.C.; Venâncio, E.L.; Collopy Junior, I.; Maciel, P.M.C.; et al. Postprandial Glycemia in Healthy Subjects: Which Probiotic Dairy Food Is More Adequate? J. Dairy Sci. 2020, 103, 1110–1119. [Google Scholar] [CrossRef]
- da Costa, G.M.; de Paula, M.M.; Costa, G.N.; Esmerino, E.A.; Silva, R.; de Freitas, M.Q.; Barão, C.E.; Cruz, A.G.; Pimentel, T.C. Preferred Attribute Elicitation Methodology Compared to Conventional Descriptive Analysis: A Study Using Probiotic Yogurt Sweetened with Xylitol and Added with Prebiotic Components. J. Sens. Stud. 2020, 35, e12602. [Google Scholar] [CrossRef]
- Tangyu, M.; Fritz, M.; Tan, J.P.; Ye, L.; Bolten, C.J.; Bogicevic, B.; Wittmann, C. Flavour by Design: Food-Grade Lactic Acid Bacteria Improve the Volatile Aroma Spectrum of Oat Milk, Sunflower Seed Milk, Pea Milk, and Faba Milk towards Improved Flavour and Sensory Perception. Microb. Cell Fact. 2023, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Korcz, E.; Varga, L. Exopolysaccharides from Lactic Acid Bacteria: Techno-Functional Application in the Food Industry. Trends Food Sci. Technol. 2021, 110, 375–384. [Google Scholar] [CrossRef]
- Onyesom, I.; Enaholo, A.; Mordi, J. Effect of Processing Techniques on the Contents of Flatulence Factors and Emulsion Properties of Cowpea (Vigna unguiculata). J. Appl. Sci. Environ. Manag. 2005, 9, 65–72. [Google Scholar] [CrossRef]
- Soetan, K.; Oyewole, O. The Need for Adequate Processing to Reduce the Anti- Nutritional Factors in Plants Used as Human Foods and Animal Feeds: A Review. Afr. J. Food Sci. 2009, 3, 223–232. [Google Scholar]
- Wang, Y.-C.; Yu, R.-C.; Yang, H.-Y.; Chou, C.-C. Sugar and Acid Contents in Soymilk Fermented with Lactic Acid Bacteria Alone or Simultaneously with Bifidobacteria. Food Microbiol. 2003, 20, 333–338. [Google Scholar] [CrossRef]
- Amritha, G.K.; Venkateswaran, G. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis. Probiotics Antimicrob. Proteins 2018, 10, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Rekha, C.R.; Vijayalakshmi, G. Bioconversion of Isoflavone Glycosides to Aglycones, Mineral Bioavailability and Vitamin B Complex in Fermented Soymilk by Probiotic Bacteria and Yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Meinlschmidt, P.; Ueberham, E.; Lehmann, J.; Schweiggert-Weisz, U.; Eisner, P. Immunoreactivity, Sensory and Physicochemical Properties of Fermented Soy Protein Isolate. Food Chem. 2016, 205, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Vij, S. α-Galactosidase Activity and Oligosaccharides Reduction Pattern of Indigenous Lactobacilli during Fermentation of Soy Milk. Food Biosci. 2018, 22, 32–37. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, J.; Yang, S.; Wen, R.; Liu, L.; Du, P.; Li, C.; Zhang, G. Fermentation of Mung Bean Milk by Lactococcus Lactis: Focus on the Physicochemical Properties, Antioxidant Capacities and Sensory Evaluation. Food Biosci. 2022, 48, 101798. [Google Scholar] [CrossRef]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential Non-Dairy Probiotic Products—A Healthy Approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Masiá, C.; Geppel, A.; Jensen, P.E.; Buldo, P. Effect of Lactobacillus rhamnosus on Physicochemical Properties of Fermented Plant-Based Raw Materials. Foods 2021, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Chawafambira, A.; Jombo, T.Z.; Mkungunugwa, T. Effect of Lacticaseibacillus rhamnosus Yoba Fermentation on Physicochemical Properties, Amino Acids, and Antioxidant Activity of Cowpea-Peanut Milk. J. Food Qual. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Ziarno, M.; Bryś, J.; Parzyszek, M.; Veber, A. Effect of Lactic Acid Bacteria on the Lipid Profile of Bean-Based Plant Substitute of Fermented Milk. Microorganisms 2020, 8, 1348. [Google Scholar] [CrossRef] [PubMed]
- Mathipa-Mdakane, M.G.; Thantsha, M.S. Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022, 11, 785. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, M.; Ren, M.; Bao, H.; Wang, Q.; Wang, N.; Sun, S.; Xu, J.; Yang, X.; Zhao, X.; et al. From Medical Herb to Functional Food: Development of a Fermented Milk Containing Silybin and Protein from Milk Thistle. Foods 2023, 12, 1308. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Haraf, G.; Zając, A.; Krzos, G. Milk Thistle (Silybum marianum (L.) Gaertner) Endosperm as an Alternative Protein Source for a Sustainable Food System (SFS)—Pilot Studies. Sustainability 2023, 15, 14411. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Asioli, D.; Banovic, M.; Perito, M.A.; Peschel, A.O.; Stancu, V. Defining Upcycled Food: The Dual Role of Upcycling in Reducing Food Loss and Waste. Trends Food Sci. Technol. 2023, 132, 132–137. [Google Scholar] [CrossRef]
- Bridgens, B.; Powell, M.; Farmer, G.; Walsh, C.; Reed, E.; Royapoor, M.; Gosling, P.; Hall, J.; Heidrich, O. Creative Upcycling: Reconnecting People, Materials and Place through Making. J. Clean. Prod. 2018, 189, 145–154. [Google Scholar] [CrossRef]
- Ellen McArthur Foundation Circularity Indicators: An Approach to Measuring Circularity: METHODOLOGY. Available online: https://emf.thirdlight.com/link/3jtevhlkbukz-9of4s4/@/preview/1?o (accessed on 4 April 2024).
- Teleszko, M.; Zając, A.; Krzos, G.P. 444467 Fermented Protein Extract from Milk Thistle and Method of Obtaining It; Polish Patent Offic: Warszawa, Poland, 2023. (In Polish)
- Teleszko, M.; Zając, A.; Rusak, T. Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. Var. Sativa) as Prospective Plant Sources for Food Production. Molecules 2022, 27, 1448. [Google Scholar] [CrossRef] [PubMed]
- PN-EN 13805:2014-11; Food Products—Determination of Trace Elements—Pressure Mineralization. European Standard Commimitee: Bruxelles, Belgium, 2014.
- PN-EN 13804:2013-06; Food Products—Determination of Trace Elements and Their Chemical Forms—General Remarks and Specific Requirements. European Standard Commimitee: Bruxelles, Belgium, 2014.
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty Acid Profiles and Health Lipid Indices in the Breast Muscles of Local Polish Goose Varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Consiglio d’Europa. Direzione europea per la qualità dei farmaci e cura della salute, E.P.C. In European Pharmacopoeia: 11. Edition: Supplement 11.3: Published in Accordance with the Convention on the Elaboration of a European Pharmacopoeia (European Treaty Series N. 50); European Treaty Series; Council of Europe: London, UK, 2022; ISBN 9789287192592. [Google Scholar]
- Henderson, J.W.; Robert, D.R.; Brian, A.B.; Cliff, W. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. In Amino Acid Analysis Using Zorbax Eclipse-AAA Columns and the Agilent 1100 HPLC; Agilent Technologies, Application Note 2000; Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.agilent.com/cs/library/chromatograms/59801193.pdf&ved=2ahUKEwih6ISzzvCGAxUWsFYBHfxnAmwQFnoECBAQAQ&usg=AOvVaw30_QZx-0o0Whkcg5ZD1Ste (accessed on 4 April 2024).
- Haraf, G.; Wołoszyn, J.; Okruszek, A.; Orkusz, A.; Wereńska, M. Nutritional Value of Proteins and Lipids in Breast Muscle of Geese from Four Different Polish Genotypes. Eur. Poult. Sci. 2018, 82, 224. [Google Scholar] [CrossRef]
- Çevikkalp, S.A.; Löker, G.B.; Yaman, M.; Amoutzopoulos, B. A Simplified HPLC Method for Determination of Tryptophan in Some Cereals and Legumes. Food Chem. 2016, 193, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Untea, A.E.; Margareta, O.; Panaite, T. Development and Validation of an RP-HPLC Method for Methionine, Cystine and Lysine Separation and Determination in Corn Samples. Rev. Chim. 2013, 64, 673–679. [Google Scholar]
- Dietary Protein Quality Evaluation in Human Nutrition. Report of an FAQ Expert Consultation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 92.
- Zhu, S.; Dong, Y.; Tu, J.; Zhou, Y.; Dai, C. Amino Acid Composition and in Vitro Digestibility of Protein Isolates from Silybum Marianum. J. Food, Agric. Environ. 2013, 11, 136–140. [Google Scholar]
- Bernal-Castro, C.A.; Díaz-Moreno, C.; Gutiérrez-Cortés, C. Inclusion of Prebiotics on the Viability of a Commercial Lactobacillus casei Subsp. Rhamnosus Culture in a Tropical Fruit Beverage. J. Food Sci. Technol. 2019, 56, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Montet, D.; Ray, R.; Zakhia-Rozis, N. Lactic Acid Fermentation of Vegetables and Fruits. In Microorganisms and Fermentation of Traditional Foods; CRC Press: Boca Raton, FL, USA, 2014; pp. 108–140. [Google Scholar]
- Ibrahim, S. Lactic Acid Bacteria: Lactobacillus Spp.: Other Species. In Reference Module in Food Science; 2016; ISBN 9780081005965. Available online: https://www.sciencedirect.com/science/article/abs/pii/B978008100596500857X?via%3Dihub (accessed on 4 April 2024).
- Senedese, A.L.C.; Maciel Filho, R.; Maciel, M.R.W. L-Lactic Acid Production by Lactobacillus Rhamnosus ATCC 10863. Sci. World J. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- EC Regulation (EC). No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; Official Journal of the European Union. 2006; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1924-20141213 (accessed on 4 April 2024).
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Di Giacinto, G.; Bahmid, N.A.; Mehdizadeh, M.; et al. An Overview of Fermentation in the Food Industry—Looking Back from a New Perspective. Bioresour. Bioprocess. 2023, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Engels, W.; Siu, J.; van Schalkwijk, S.; Wesselink, W.; Jacobs, S.; Bachmann, H. Metabolic Conversions by Lactic Acid Bacteria during Plant Protein Fermentations. Foods 2022, 11, 1005. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K. Microbial Lipases Form Versatile Tools for Biotechnology. Trends Biotechnol. 1998, 16, 396–403. [Google Scholar] [CrossRef]
- Katz, M.; Medina, R.; Gonzalez, S.; Oliver, G. Esterolytic and Lipolytic Activities of Lactic Acid Bacteria Isolated from Ewe’s Milk and Cheese. J. Food Prot. 2002, 65, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Torres, M.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R. Production and Characterization of a Tributyrin Esterase from Lactobacillus Plantarum Suitable for Cheese Lipolysis. J. Dairy Sci. 2014, 97, 6737–6744. [Google Scholar] [CrossRef] [PubMed]
- Abeijón Mukdsi, M.C.; Medina, R.B.; Katz, M.B.; Pivotto, R.; Gatti, P.; González, S.N. Contribution of Lactic Acid Bacteria Esterases to the Release of Fatty Acids in Miniature Ewe’s Milk Cheese Models. J. Agric. Food Chem. 2009, 57, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Câmara, S.; Dapkevicius, A.; Riquelme, C.; Elias, R.; Silva, C.; Malcata, F.; Dapkevicius, M. Potential of Lactic Acid Bacteria from Pico Cheese for Starter Culture Development. Food Sci. Technol. Int. 2019, 25, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health Issues and Technological Aspects of Plant-Based Alternative Milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Brothers, C.J. Nutritional Content and Health Profile of Non-Dairy Plant-Based Yogurt Alternatives. Nutrients 2021, 13, 4069. [Google Scholar] [CrossRef]
- Apostol, L.; Iorga, C.S.; Moşoiu, C.E.; Mustățea, G.; Cucu, Ș.E. Nutrient Composition of Partially Defatted Milk Thistle Seeds. In Proceedings of the Scientific Bulletin; Series, F., Ed.; Apostol 2017 NUTRIENTCO; Biotechnologies: Delhi, India, 2017. [Google Scholar]
- Giri, S.S.; Sen, S.S.; Saha, S.; Sukumaran, V.; Park, S.C. Use of a Potential Probiotic, Lactobacillus Plantarum L7, for the Preparation of a Rice-Based Fermented Beverage. Front. Microbiol. 2018, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Day, C.N.; Morawicki, R.O. Effects of Fermentation by Yeast and Amylolytic Lactic Acid Bacteria on Grain Sorghum Protein Content and Digestibility. J. Food Qual. 2018, 2018, 3964392. [Google Scholar] [CrossRef]
- Fallah, M.; Davoodvandi, A.; Nikmanzar, S.; Aghili, S.; Mirazimi, S.M.A.; Aschner, M.; Rashidian, A.; Hamblin, M.R.; Chamanara, M.; Naghsh, N.; et al. Silymarin (Milk Thistle Extract) as a Therapeutic Agent in Gastrointestinal Cancer. Biomed. Pharmacother. 2021, 142, 112024. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Ashtary-Larky, D.; Asbaghi, O.; Farrokhi, V.; Jadidi, Y.; Mofidi, F.; Mohammadian, M.; Afrisham, R. Effects of Silymarin Supplementation on Liver and Kidney Functions: A Systematic Review and Dose–Response Meta-analysis. Phyther. Res. 2024, 38, 2572–2593. [Google Scholar] [CrossRef] [PubMed]
- Kurkin, V.A.; Ryzhov, V.M.; Biryukova, O.V.; Mel’nikova, N.B.; Selekhov, V.V. Interaction of Milk-Thistle-Fruit Flavanonols with Langmuir Monolayers of Lecithin and Bilayers of Liposomes. Pharm. Chem. J. 2009, 43, 101–109. [Google Scholar] [CrossRef]
- Wu, J.-W.; Lin, L.-C.; Hung, S.-C.; Chi, C.-W.; Tsai, T.-H. Analysis of Silibinin in Rat Plasma and Bile for Hepatobiliary Excretion and Oral Bioavailability Application. J. Pharm. Biomed. Anal. 2007, 45, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Medici, E.; Craig, W.J.; Rowland, I. A Comprehensive Analysis of the Nutritional Composition of Plant-Based Drinks and Yogurt Alternatives in Europe. Nutrients 2023, 15, 3415. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Agriculture: Washington, DC, USA, 2020.
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress Physiology of Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed]
- Alrosan, M.; Tan, T.-C.; Koh, W.Y.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H. Overview of Fermentation Process: Structure-Function Relationship on Protein Quality and Non-Nutritive Compounds of Plant-Based Proteins and Carbohydrates. Crit. Rev. Food Sci. Nutr. 2023, 63, 7677–7691. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, Y.; Yu, J.; Wang, F.; Li, X.; Liu, Y.; Ma, X. Changes of Proteins and Amino Acids in Soymilk during Lactic Acid Fermentation and Subsequent Storage. J. Food Meas. Charact. 2022, 16, 4728–4737. [Google Scholar] [CrossRef]
- do Amaral Santos, C.C.A.; da Silva Libeck, B.; Schwan, R.F. Co-Culture Fermentation of Peanut-Soy Milk for the Development of a Novel Functional Beverage. Int. J. Food Microbiol. 2014, 186, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.; Wittig, M.; Zelena, K.; Krings, U.; Bez, J.; Eisner, P.; Berger, R.G. Lactic Fermentation to Improve the Aroma of Protein Extracts of Sweet Lupin (Lupinus angustifolius). Food Chem. 2011, 128, 330–337. [Google Scholar] [CrossRef]
- Fernández, M.; Zúñiga, M. Amino Acid Catabolic Pathways of Lactic Acid Bacteria. Crit. Rev. Microbiol. 2006, 32, 155–183. [Google Scholar] [CrossRef] [PubMed]
- Hutson, S. Structure and Function of Branched Chain Aminotransferases; Elsevier: Amsterdam, The Netherlands, 2001; pp. 175–206. [Google Scholar]
- Li, E.; Zhu, Q.; Pang, D.; Liu, F.; Liao, S.; Zou, Y. Analysis of Lactobacillus Rhamnosus GG in Mulberry Galacto-Oligosaccharide Medium by Comparative Transcriptomics and Metabolomics. Front. Nutr. 2022, 9, 853271. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Sun, Y.; Wu, T.; Kwok, L.-Y.; Wang, J.; Zhang, H. Metabolic Profiling and Growth Characteristics of a Spaceflight-Induced Mutant of Lacticaseibacillus rhamnosus: Unveiling Enhanced Carbohydrate and Amino Acid Metabolism for Improved Probiotic Potential. Food Biosci. 2024, 58, 103758. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Histidine Metabolism and Function. J. Nutr. 2020, 150, 2570S–2575S. [Google Scholar] [CrossRef] [PubMed]
- Maintz, L.; Novak, N. Histamine and Histamine Intolerance. Am. J. Clin. Nutr. 2007, 85, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Galili, G.; Amir, R. Fortifying Plants with the Essential Amino Acids Lysine and Methionine to Improve Nutritional Quality. Plant Biotechnol. J. 2013, 11, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Tangyu, M.; Fritz, M.; Aragao-Börner, R.; Ye, L.; Bogicevic, B.; Bolten, C.J.; Wittmann, C. Genome-Based Selection and Application of Food-Grade Microbes for Chickpea Milk Fermentation towards Increased l-Lysine Content, Elimination of Indigestible Sugars, and Improved Flavour. Microb. Cell Fact. 2021, 20, 109. [Google Scholar] [CrossRef] [PubMed]
Parameter | Content in Fresh Matter (FM) | Content in Dry Matter (DM) |
---|---|---|
Energy value [kJ/100 g] | 1966.50 ± 10.61 | 2120.53 ± 9.95 |
Energy value [kcal/100 g] | 477.00 ± 2.83 | 514.56 ± 2.69 |
Crude protein [%] | 19.63 ± 0.01 | 21.10 ± 0.00 |
Fat (total) [%] | 36.32 ± 0.47 | 39.40 ± 0.47 |
Saturated fatty acid (SFA) [g/100 g] | 7.23 ± 0.06 | 7.77 ± 0.06 |
Sugars [%] | 1.82 ± 0.03 | 1.96 ± 0.03 |
Carbohydrates [%] | 2.40 ± 0.52 | 2.57 ± 0.56 |
Total ash [%] | 5.00 ± 0.21 | 5.21 ± 0.22 |
Fiber [%] | 29.41 ± 0.24 | 31.78 ± 0.24 |
Sylimarin [%] | 0.98 ± 0.00 | 1.05 ± 0.24 |
Parameter | Unfermented MTE Extract | Fermented MTE Extract |
---|---|---|
Energy value [kJ/100 mL] | 188.00 ± 10.61 | 189.00 ± 9.95 |
Energy value [kcal/100 mL] | 45.00 ± 2.83 | 46.00 ± 2.69 |
[kcal] from protein per 100 kcal | 19.73 | 19.13 |
Protein [g/100 mL] | 2.22 ± 0.11 | 2.20 ± 0.11 |
Fat (total) [g/100 mL] | 3.28 ± 0.33 | 3.50 ± 0.35 |
Saturated fatty acid (SFA) [g/100 mL] | 0.62 ± 0.12 | 0.73 ± 0.15 |
* Unsaturated fatty acids (UFA) [g/100 mL] | 2.66 ± 0.21 | 2.77 ± 0.23 |
Sugars [g/100 g] | 1.40 ± 0.20 | 1.00 ± 0.10 |
Carbohydrates [%] | 1.40 ± 0.10 | 1.00 ± 0.10 |
Total ash [%] | 0.18 ± 0.03 | 0.19 ± 0.03 |
Fiber [%] | 0.65 ± 0.10 | 0.61 ± 0.09 |
Sodium [mg/100 mL] | 32.60 ± 3.30 | 33.20 ± 3.30 |
Calcium [mg/100 mL] | 14.90 ± 1.50 | 15.31 ± 1.50 |
Sylimarin [%] | 0.00 ± 0.00 | 0.00 ± 0.00 |
Parameter | Milk Thistle | Soy [65] | Coconut [65] | Oat [65] | Cashew [57] | Pea [57] |
---|---|---|---|---|---|---|
Energy value [kcal] | 74 | 62–132 | 93–260 | 59–126 | 140–150 | 160 |
Protein [g] | 3.3 | 5–9 | 0.6–2.3 | 1.1–2.3 | 3 | 6 |
Fat (total) [g] | 5.2 | 2.4–5.1 | 6–25.5 | 1.4–6.8 | 6–7 | 6 |
Saturated fatty acid [g] | 1.1 | 0.3–0.9 | 5–22.5 | 0.2–5.6 | 1–1.5 | 0.5 |
Sugars [g] | 1.5 | 0–15 | 0–10.8 | 0.6–8.7 | 12–13 | 15 |
Carbohydrates [g] | 1.5 | 0–18 | 5.6–16.8 | 5.9–20.9 | 19–20 | 19–20 |
Salt [g] | 0.12 | 0.15 | 0.05–0.6 | 0.11–0.2 | unknown | unknown |
Fiber [g] | 0.9 | 0–4.7 | 0–5.9 | 0–4.7 | 1–1 | 0 |
Amino Acid | Amino Acid Contents in Unfermented Extract | PDCAAS (Children 6 Months to 3 Years) [%] | PDCAAS (Older Children, Adolescents, and Adults) [%] | ||
---|---|---|---|---|---|
g/100 g of DM | g/100 g of FM | g/100 g of Total AA | |||
Asp (aspartic acid) | 1.40 ± 0.15 | 0.107 ± 0.011 | 9.86 | ||
Glu (glutamic acid) | 2.85 ± 0.21 | 0.217 ± 0.016 | 20.02 | ||
Ser (serine) | 0.71 ± 0.07 | 0.054 ± 0.006 | 5.01 | ||
His (histidine) | 0.37 ± 0.04 | 0.028 ± 0.003 | 2.58 | 112.08 | 140.11 |
Gly (glycine) | 0.77 ± 0.05 | 0.059 ± 0.004 | 5.40 | ||
Thr (threonine) | 0.51 ± 0.05 | 0.039 ± 0.004 | 3.59 | 100.80 | 124.99 |
Arg (arginine) | 1.48 ± 0.10 | 0.113 ± 0.008 | 10.38 | ||
Ala (alanine) | 0.62 ± 0.06 | 0.047 ± 0.005 | 4.38 | ||
Tyr (tyrosine) | 0.53 ± 0.03 | 0.040 ± 0.003 | 3.71 | ||
Val (valine) | 0.64 ± 0.05 | 0.049 ± 0.004 | 4.48 | 90.61 | 97.40 |
Phe (phenylalanine) | 0.65 ± 0.07 | 0.050 ± 0.005 | 4.56 | ||
Ile (isoleucine) | 0.60 ± 0.06 | 0.046 ± 0.005 | 4.21 | 114.41 | 122.03 |
Leu (leucine) | 0.93 ± 0.09 | 0.071 ± 0.007 | 6.53 | 86.06 | 93.11 |
Hyp (hydroxyproline) | 0.00 ± 0.00 | 0.000 ± 0.000 | 0.00 | ||
Pro (proline) | 0.51 ± 0.05 | 0.039 ± 0.004 | 3.57 | ||
Lys (lysine) | 0.68 ± 0.08 | 0.052 ± 0.006 | 4.79 | 73.11 | 86.82 |
Cys (cysteine) | 0.28 ± 0.06 | 0.022 ± 0.002 | 1.98 | ||
Met (methionine) | 0.28 ± 0.20 | 0.021 ± 0.015 | 1.98 | ||
Trp (tryptophan) | 0.42 ± 0.03 | 0.032 ± 0.002 | 2.96 | 302.43 | 389.50 |
Totals | 14.23 | 1.086 | 100.00 | ||
Sulfur AA (Met+Cys) | 0.56 | 0.043 | 3.96 | 127.60 | 149.79 |
Aromatic AA (Phe+Tyr) | 1.18 | 0.090 | 8.27 | 138.31 | 175.42 |
Amino Acid | Amino Acid Contents in Fermented Extract | PDCAAS (Children 6 Months to 3 Years) [%] | PDCAAS (Older Children, Adolescents, and Adults) [%] | ||
---|---|---|---|---|---|
g/100 g of DM | g/100 g of FM | g/100 g of Total AA | |||
Asp (aspartic acid) | 1.33 ± 0.14 | 0.096 ± 0.010 | 9.53 ↓ | ||
Glu (glutamic acid) | 2.83 ± 0.18 | 0.204 ± 0.013 | 20.21 ↑ | ||
Ser (serine) | 0.71 ± 0.08 | 0.051 ± 0.006 | 5.05 ↑ | ||
His (histidine) | 0.39 ± 0.04 | 0.028 ± 0.003 | 2.80 ↑ | 121.62 ↑ | 152.03 ↑ |
Gly (glycine) | 0.78 ± 0.06 | 0.057 ± 0.004 | 5.60 ↑ | ||
Thr (threonine) | 0.52 ± 0.05 | 0.038 ± 0.004 | 3.71 ↑ | 103.99 ↑ | 128.94 ↑ |
Arg (arginine) | 1.28 ± 0.13 | 0.092 ± 0.009 | 9.12 ↓ | ||
Ala (alanine) | 0.64 ± 0.07 | 0.047 ± 0.00 | 4.61 ↑ | ||
Tyr (tyrosine) | 0.57 ± 0.06 | 0.041 ± 0.00 | 4.05 ↑ | ||
Val (valine) | 0.65 ± 0.07 | 0.047 ± 0.005 | 4.68 ↑ | 94.63 ↑ | 101.73 ↑ |
Phe (phenylalanine) | 0.65 ± 0.11 | 0.047± 0.008 | 4.63 ↑ | ||
Ile (isoleucine) | 0.55 ± 0.13 | 0.039 ± 0.010 | 3.90 ↓ | 106.00 ↓ | 113.06 ↓ |
Leu (leucine) | 0.95 ± 0.11 | 0.068 ± 0.008 | 6.77 ↑ | 89.11 ↑ | 96.42 ↑ |
Hyp (hydroxyproline) | 0.00 ± 0.00 | 0.000 ± 0.00 | 0.00 ↑↓ | ||
Pro (proline) | 0.45 ± 0.02 | 0.033 ± 0.002 | 3.21 ↓ | ||
Lys (lysine) | 0.69± 0.09 | 0.050 ± 0.006 | 4.95 ↑ | 75.42 ↑ | 89.56 ↑ |
Cys (cysteine) | 0.30 ± 0.06 | 0.022 ± 0.008 | 2.18 ↑ | ||
Met (methionine) | 0.28 ± 0.12 | 0.020 ± 0.014 | 2.02 ↑ | ||
Trp (tryptophan) | 0.42 ± 0.01 | 0.030 ± 0.001 | 2.98 ↑ | 304.37 ↑ | 391.99 ↑ |
Totals | 13.99 | 1.011 | 100.00 | ||
Sulfur AA (Met+Cys) | 0.58 | 0.042 | 4.15 | 134.90 ↑ | 158.36 ↑ |
Aromatic AA (Phe+Tyr) | 1.22 | 0.088 | 8.68 | 144.90 ↑ | 183.89 ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleszko, M.; Haraf, G.; Zając, A.; Garncarek, Z.; Górska, K.; Krzos, G.; Hałaburda, A.; Kotecki, P. Use of Directed Lactic Fermentation to Obtain Plant-Based, Upcycled Beverage from Milk Thistle Endosperm. Sustainability 2024, 16, 5342. https://doi.org/10.3390/su16135342
Teleszko M, Haraf G, Zając A, Garncarek Z, Górska K, Krzos G, Hałaburda A, Kotecki P. Use of Directed Lactic Fermentation to Obtain Plant-Based, Upcycled Beverage from Milk Thistle Endosperm. Sustainability. 2024; 16(13):5342. https://doi.org/10.3390/su16135342
Chicago/Turabian StyleTeleszko, Mirosława, Gabriela Haraf, Adam Zając, Zbigniew Garncarek, Katarzyna Górska, Grzegorz Krzos, Agnieszka Hałaburda, and Paweł Kotecki. 2024. "Use of Directed Lactic Fermentation to Obtain Plant-Based, Upcycled Beverage from Milk Thistle Endosperm" Sustainability 16, no. 13: 5342. https://doi.org/10.3390/su16135342
APA StyleTeleszko, M., Haraf, G., Zając, A., Garncarek, Z., Górska, K., Krzos, G., Hałaburda, A., & Kotecki, P. (2024). Use of Directed Lactic Fermentation to Obtain Plant-Based, Upcycled Beverage from Milk Thistle Endosperm. Sustainability, 16(13), 5342. https://doi.org/10.3390/su16135342