High-Resolution Greening Scenarios for Urban Climate Regulation Based on Physical and Socio-Economical Factors
Abstract
:1. Introduction
2. Case Study and Material
3. Method—Planning Criteria for Greening Scenarios
3.1. High-Resolution Climate Simulations
3.2. Physical/Social Feasibility of Greening Scenarios
3.3. Maximization of the Number of Beneficiaries from Greening Scenarios
3.4. Identification of the New Greening Scenarios
4. Results
4.1. Areas with High Outdoor Thermal Stress
4.2. Physical/Social Feasibility of Greening Scenarios
4.3. Areas That Maximize the Number of Beneficiaries
4.4. Greening Scenarios and New Simulations
5. Discussion
5.1. Evaluating the Effectiveness of Greening Scenarios in Decreasing the MRT
5.2. Proposal of General Planning Criteria for New Urban Greening Based on the Performed Simulations
5.3. Economical Viability
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Butera, F.M.; Palme, M. The City as a Complex Thermodynamic System. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban Flood Impact Assessment: A State-of-the-Art Review. Urban Water J. 2013, 12, 14–29. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban Forests and Pollution Mitigation: Analyzing Ecosystem Services and Disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Filho, W.L.; Balogun, A.-L.; Olayide, O.E.; Azeiteiro, U.M.; Ayal, D.Y.; Muñoz, P.D.C.; Nagy, G.J.; Bynoe, P.; Oguge, O.; Yannick Toamukum, N.; et al. Assessing the Impacts of Climate Change in Cities and Their Adaptive Capacity: Towards Transformative Approaches to Climate Change Adaptation and Poverty Reduction in Urban Areas in a Set of Developing Countries. Sci. Total Environ. 2019, 692, 1175–1190. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Bentz, J.; Silva, J.M.N.; Fonseca, A.L.; Swart, R.; Santos, F.D.; Penha-Lopes, G. Adaptation to Climate Change at Local Level in Europe: An Overview. Environ. Sci. Policy 2018, 86, 38–63. [Google Scholar] [CrossRef]
- Tucker, J.; Daoud, M.; Oates, N.; Few, R.; Conway, D.; Mtisi, S.; Matheson, S. Social Vulnerability in Three High-Poverty Climate Change Hot Spots: What Does the Climate Change Literature Tell Us? Reg. Environ. Chang. 2014, 15, 783–800. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The Impact of Projected Increases in Urbanization on Ecosystem Services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- Liberalesso, T.; Oliveira Cruz, C.; Matos Silva, C.; Manso, M. Green Infrastructure and Public Policies: An International Review of Green Roofs and Green Walls Incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities “Just Green Enough”. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The Role of Trees in Urban Stormwater Management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef]
- Donovan, G.H. Including Public-Health Benefits of Trees in Urban-Forestry Decision Making. Urban For. Urban Green. 2017, 22, 120–123. [Google Scholar] [CrossRef]
- Ma, B.; Zhou, T.; Lei, S.; Wen, Y.; Htun, T.T. Effects of Urban Green Spaces on Residents’ Well-Being. Environ. Dev. Sustain. 2018, 21, 2793–2809. [Google Scholar] [CrossRef]
- Privitera, R.; Evola, G.; La Rosa, D.; Costanzo, V. Green Infrastructure to Reduce the Energy Demand of Cities. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 485–503. [Google Scholar] [CrossRef]
- Ministero della Salute. Sistema di Sorveglianza Mortalità Giornaliera. Available online: https://www.salute.gov.it/portale/caldo/dettaglioContenutiCaldo.jsp?id=4547&area=emergenzaCaldo&menu=vuoto (accessed on 2 April 2023).
- Hwang, W.H.; Wiseman, P.E.; Thomas, V.A. Enhancing the Energy Conservation Benefits of Shade Trees in Dense Residential Developments Using an Alternative Tree Placement Strategy. Landsc. Urban Plan. 2017, 158, 62–74. [Google Scholar] [CrossRef]
- Palme, M.; Privitera, R.; La Rosa, D. The Shading Effects of Green Infrastructure in Private Residential Areas: Building Performance Simulation to Support Urban Planning. Energy Build. 2020, 229, 110531. [Google Scholar] [CrossRef]
- Konarska, J.; Uddling, J.; Holmer, B.; Lutz, M.; Lindberg, F.; Pleijel, H.; Thorsson, S. Transpiration of Urban Trees and Its Cooling Effect in a High Latitude City. Int. J. Biometeorol. 2015, 60, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Kántor, N.; Chen, L.; Gál, C.V. Human-Biometeorological Significance of Shading in Urban Public Spaces—Summertime Measurements in Pécs, Hungary. Landsc. Urban Plan. 2018, 170, 241–255. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Lachapelle, J.A.; Scott Krayenhoff, E.; Middel, A.; Coseo, P.; Warland, J. Maximizing the Pedestrian Radiative Cooling Benefit per Street Tree. Landsc. Urban Plan. 2023, 230, 104608. [Google Scholar] [CrossRef]
- Turner, V.K.; French, E.M.; Dialesandro, J.; Middel, A.; Hondula, D.M.; Weiss, G.B.; Abdellati, H. How Are Cities Planning for Heat? Analysis of United States Municipal Plans. Environ. Res. Lett. 2022, 17, 064054. [Google Scholar] [CrossRef]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and Human Thermal Comfort Effects of Street Trees across Three Contrasting Street Canyon Environments. Theor. Appl. Climatol. 2015, 124, 55–68. [Google Scholar] [CrossRef]
- Millward, A.A.; Torchia, M.; Laursen, A.E.; Rothman, L.D. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate. Environ. Manag. 2014, 53, 1043–1057. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Ma, X. Spatial Optimization for Urban Green Space (UGS) Planning Support Using a Heuristic Approach. Appl. Geogr. 2022, 138, 102622. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Krayenhoff, E.S.; Heo, H.K.; Hyun, J.H.; Oh, K.; Park, T.Y. Variations in Pedestrian Mean Radiant Temperature Based on the Spacing and Size of Street Trees. Sustain. Cities Soc. 2019, 48, 101521. [Google Scholar] [CrossRef]
- Werbin, Z.R.; Heidari, L.; Buckley, S.; Brochu, P.; Butler, L.J.; Connolly, C.; Houttuijn Bloemendaal, L.; McCabe, T.D.; Miller, T.K.; Hutyra, L.R. A Tree-Planting Decision Support Tool for Urban Heat Mitigation. PLoS ONE 2020, 15, e0224959. [Google Scholar] [CrossRef] [PubMed]
- Morakinyo, T.E.; Ouyang, W.; Lau, K.K.-L.; Ren, C.; Ng, E. Right Tree, Right Place (Urban Canyon): Tree Species Selection Approach for Optimum Urban Heat Mitigation—Development and Evaluation. Sci. Total Environ. 2020, 719, 137461. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Ma, P.; Ho, J.; Wang, W.; Lau, K.K.-L.; Lin, H.; Ng, E. Urban Morphology Detection and Computation for Urban Climate Research. Landsc. Urban Plan. 2017, 167, 212–224. [Google Scholar] [CrossRef]
- Salet, W.; Vermeulen, R.; Savini, F.; Dembski, S.; Thierstein, A.; Nears, P.; Vink, B.; Healey, P.; Stein, U.; Schultz, H.; et al. Planning for the New European Metropolis: Functions, Politics, and Symbols/Metropolitan Regions: Functional Relations between the Core and the Periphery/Business Investment Decisions and Spatial Planning Policy/Metropolitan Challenges, Political Responsibilities/Spatial Imaginaries, Urban Dynamics and Political Community/Capacity-Building in the City Region: Creating Common Spaces/Which Challenges for Today’s European Metropolitan Spaces? Plan. Theory Pract. 2015, 16, 251–275. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-Scale Environmental Predictor (UMEP): An Integrated Tool for City-Based Climate Services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0—Modelling Spatial Variations of 3D Radiant Fluxes and Mean Radiant Temperature in Complex Urban Settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef]
- Chen, L.; Yu, B.; Yang, F.; Mayer, H. Intra-Urban Differences of Mean Radiant Temperature in Different Urban Settings in Shanghai and Implications for Heat Stress under Heat Waves: A GIS-Based Approach. Energy Build. 2016, 130, 829–842. [Google Scholar] [CrossRef]
- Privitera, R.; La Rosa, D. Reducing Seismic Vulnerability and Energy Demand of Cities through Green Infrastructure. Sustainability 2018, 10, 2591. [Google Scholar] [CrossRef]
- Urban Atlas—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/local/urban-atlas (accessed on 2 April 2023).
- Azcarate, I.; Acero, J.Á.; Garmendia, L.; Rojí, E. Tree Layout Methodology for Shading Pedestrian Zones: Thermal Comfort Study in Bilbao (Northern Iberian Peninsula). Sustain. Cities Soc. 2021, 72, 102996. [Google Scholar] [CrossRef]
- Agarwala, R.; Vasudevan, V. Relationship between Mobility and Pedestrian Traffic Safety in India. Transp. Dev. Econ. 2020, 6, 15. [Google Scholar] [CrossRef]
- De Gruyter, C.; Zahraee, S.M.; Young, W. Understanding the Allocation and Use of Street Space in Areas of High People Activity. J. Transp. Geogr. 2022, 101, 103339. [Google Scholar] [CrossRef]
- ArcGIS Online Directions and Routing Services. traffic.arcgis.com. Available online: https://traffic.arcgis.com/arcgis (accessed on 2 April 2023).
- Evola, G.; Costanzo, V.; Marletta, L.; Nocera, F.; Detommaso, M.; Urso, A. An Investigation on the Radiant Heat Balance for Different Urban Tissues in Mediterranean Climate: A Case Study. J. Phys. Conf. Ser. 2021, 2042, 012046. [Google Scholar] [CrossRef]
- Guo, F.; Guo, R.; Zhang, H.; Dong, J.; Zhao, J. A Canopy Shading-Based Approach to Heat Exposure Risk Mitigation in Small Squares. Urban Clim. 2023, 49, 101495. [Google Scholar] [CrossRef]
- Nice, K.A.; Coutts, A.M.; Tapper, N.J. Development of the VTUF-3D V1.0 Urban Micro-Climate Model to Support Assessment of Urban Vegetation Influences on Human Thermal Comfort. Urban Clim. 2018, 24, 1052–1076. [Google Scholar] [CrossRef]
- Zhang, R. Cooling Effect and Control Factors of Common Shrubs on the Urban Heat Island Effect in a Southern City in China. Sci. Rep. 2020, 10, 17317. [Google Scholar] [CrossRef]
- Kántor, N.; Gál, C.V.; Gulyás, Á.; Unger, J. The Impact of Façade Orientation and Woody Vegetation on Summertime Heat Stress Patterns in a Central European Square: Comparison of Radiation Measurements and Simulations. Adv. Meteorol. 2018, 2018, 2650642. [Google Scholar] [CrossRef]
- Calcerano, F.; Martinelli, L. Numerical Optimisation through Dynamic Simulation of the Position of Trees around a Stand-Alone Building to Reduce Cooling Energy Consumption. Energy Build. 2016, 112, 234–243. [Google Scholar] [CrossRef]
- Bartoli, F.; Savo, V.; Caneva, G. Biodiversity of Urban Street Trees in Italian Cities: A Comparative Analysis. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2021, 156, 1–14. [Google Scholar] [CrossRef]
- Mell, I.C.; Henneberry, J.; Hehl-Lange, S.; Keskin, B. Promoting Urban Greening: Valuing the Development of Green Infrastructure Investments in the Urban Core of Manchester, UK. Urban For. Urban Green. 2013, 12, 296–306. [Google Scholar] [CrossRef]
- Wild, T.C.; Henneberry, J.; Gill, L. Comprehending the Multiple “Values” of Green Infrastructure—Valuing Nature-Based Solutions for Urban Water Management from Multiple Perspectives. Environ. Res. 2017, 158, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Chazdon, R.L.; Guariguata, M.R. Decision Support Tools for Forest Landscape Restoration: Current Status and Future Outlook; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2018. [Google Scholar] [CrossRef]
- Grant, G. Incentive-based approaches. In Nature Based Strategies for Urban and Building Sustainability; Perez, G., Perini, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 29–41. [Google Scholar] [CrossRef]
- Bryan, B.A. Incentives, Land Use, and Ecosystem Services: Synthesizing Complex Linkages. Environ. Sci. Policy 2013, 27, 124–134. [Google Scholar] [CrossRef]
- Gonzalez-Sosa, E.; Braud, I.; Becerril Piña, R.; Mastachi Loza, C.A.; Ramos Salinas, N.M.; Chavez, C.V. A Methodology to Quantify Ecohydrological Services of Street Trees. Ecohydrol. Hydrobiol. 2017, 17, 190–206. [Google Scholar] [CrossRef]
Criterion | Scenario 1 (Public Areas) | Scenario 2 (Public + Private Areas) |
---|---|---|
Identification of areas with high outdoor thermal stress | Areas with median radiant temperature > 70° | Areas with median radiant temperature > 70° |
Physical/social feasibility of greening scenarios | Land-cover categories
| Land-cover categories
|
Maximization of the number of beneficiaries of the greening scenario | Highly used street Public areas:
| Highly used street Public areas:
|
Area 1 (South) | Area 2 (Central) | Area 3 (North) | |||
---|---|---|---|---|---|
Min: 40; Max: 85 Mean: 55 Std. Dev: 14 | Min: 39; Max: 87 Mean: 63 Std. Dev: 14 | Min: 38; Max: 86 Mean: 63 Std. Dev: 13 | |||
40–50 | 52% | 39–50 | 35% | 38–50 | 27% |
50–60 | 3% | 50–60 | 11% | 50–60 | 6% |
60–70 | 10% | 60–70 | 1% | 60–70 | 16% |
70–85 | 33% | 70–87 | 53% | 70–86 | 51% |
Area 1 (South) | Area 2 (Central) | Area 3 (North) | ||||
---|---|---|---|---|---|---|
Extent of New Greening (m2) | % Total Area | Extent of New Greening (m2) | % Total Area | Extent of New Greening (m2) | % Total Area | |
Scenario 1 (Public areas) | 22,646 | 9, 2 | 6992 | 2, 9 | 5534 | 2, 3 |
Scenario 2 (Private + Public areas) | 39,627 | 16, 2 | 9906 | 4 | 13,109 | 5, 4 |
Area 1 (South) | Area 2 (Central) | Area 3 (North) | ||||||
---|---|---|---|---|---|---|---|---|
Min: 40; Max: 84 | Min: 39; Max: 87 | Min: 38; Max: 86 | ||||||
Mean: 55 | Mean: 63 | Mean: 63 | ||||||
Std. Dev: 14 | Std. Dev: 14 | Std. Dev: 13 | ||||||
Tmrt Values | Scenario 1 | Scenario 2 | Tmrt Values | Scenario 1 | Scenario 2 | Tmrt Values | Scenario 1 | Scenario 2 |
40–50 | 54% | 55% | 39–50 | 36% | 39% | 38–50 | 28% | 29% |
50–60 | 4% | 3% | 50–60 | 6% | 6% | 50–60 | 8% | 6% |
60–70 | 10% | 11% | 60–70 | 12% | 10% | 60–70 | 17% | 20% |
70–85 | 32% | 30% | 70–87 | 45% | 45% | 70–86 | 47% | 45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Rosa, D.; Li, J. High-Resolution Greening Scenarios for Urban Climate Regulation Based on Physical and Socio-Economical Factors. Sustainability 2023, 15, 7678. https://doi.org/10.3390/su15097678
La Rosa D, Li J. High-Resolution Greening Scenarios for Urban Climate Regulation Based on Physical and Socio-Economical Factors. Sustainability. 2023; 15(9):7678. https://doi.org/10.3390/su15097678
Chicago/Turabian StyleLa Rosa, Daniele, and Junxiang Li. 2023. "High-Resolution Greening Scenarios for Urban Climate Regulation Based on Physical and Socio-Economical Factors" Sustainability 15, no. 9: 7678. https://doi.org/10.3390/su15097678