Impact of Wood Ash and Sewage Sludge on Elemental Content in Hybrid Alder Clone
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Calibration of LA-ICP-MS
3.2. N and C Isotope Ratio Measurements
3.3. Laser Ablation Measurements of Alder Tree Rings
3.4. Concentrations of Major and Minor Elements in Hybrid Alder Stem Wood
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A New Circular Economy Action Plan for a Cleaner and More Competitive Europe (2020). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN (accessed on 31 March 2023).
- Ruokamo, E.; Savolainen, H.; Seppälä, J.; Sironen, S.; Räisänen, M.; Auvinen, A.-P. Exploring the Potential of Circular Economy to Mitigate Pressures on Biodiversity. Glob. Environ. Chang. 2023, 78, 102625. [Google Scholar] [CrossRef]
- Deniz, T.; Paletto, A. A Forest-Based Circular Bioeconomy for Sustainable Development: A Case Study of Konya Province, Turkey. Int. For. Rev. 2022, 24, 517–533. [Google Scholar] [CrossRef]
- Paletto, A.; Becagli, C.; Bianchetto, E.; Sacchelli, S.; De Meo, I. Measuring and Assessing Forest-Based Circular Bioeconomy to Implement the National Sustainable Development Strategy in Italy. Austrian J. For. Sci. 2022, 138, 251–278. [Google Scholar]
- Forests of Latvia. Oficiālās Statistikas Portāls. Available online: https://stat.gov.lv/en/statistics-themes/environment/nature-resources/15530-forests-latvia?themeCode=DR (accessed on 31 March 2023).
- Celma, S.; Sanz, M.; Ciria, P.; Maliarenko, O.; Prysiazhniuk, O.; Daugaviete, M.; Lazdina, D.; von Cossel, M. Yield Performance of Woody Crops on Marginal Agricultural Land in Latvia, Spain and Ukraine. Agronomy 2022, 12, 908. [Google Scholar] [CrossRef]
- Liepins, K.; Lazdiņš, A.; Lazdina, D.; Daugaviete, M.; Miezīte, O. Naturally Afforested Agricultural Lands in Latvia—Assessment of Available Timber Resources and Potential Productivity. In Proceedings of the 7th International Conference on Environmental Engineering, Vilnius, Lithuania, 22–23 May 2008; pp. 194–200, ISBN 978-995528256-3. [Google Scholar]
- Deptuła, M.; Piernik, A.; Nienartowicz, A.; Hulisz, P.; Kamiński, D. Alnus glutinosa L. Gaertn. as Potential Tree for Brackish and Saline Habitats. Glob. Ecol. Conserv. 2020, 22, e00977. [Google Scholar] [CrossRef]
- Latvijas Valsts Koksnes Ķīmijas Institūts. Lapu Koku Audzēšanas un Racionālas Izmantošanas Pamatojums, Jauni Produkti un Tehnoloģijas; Valsts Pētījumu Programma, 2005–2009; Rakstu krājums; Latvijas Valsts Koksnes Ķīmijas Institūts: Rīga, Latvia, 2009; 196p, ISBN 978-9984-39-935-5. [Google Scholar]
- Gailis, A.; Jansons, A. Results of Black Alder (Alnus glutinosa (L.) Gaertn.) Improvement in Latvia. In Research for Rural Development; International Scientific Conference Proceedings (Latvia); LLU: Jelgava, Latvia, 2010. [Google Scholar]
- Daugavietis, M.; Bisenieks, J. Management of grey alder (Alnus incana Moench.) stands in Latvia. In Proceedings of the 8th International Scientific Conference on Engineering for Rural Development, Jelgava, Latvia, 28–29 May 2009. [Google Scholar]
- Rytter, L.; Rytter, R.-M. Growth and Carbon Capture of Grey Alder (Alnus incana (L.) Moench.) under North European Conditions—Estimates Based on Reported Research. For. Ecol. Manag. 2016, 373, 56–65. [Google Scholar] [CrossRef]
- Moragues-Saitua, L.; Arias-González, A.; Blanco, F.; Benito-Carnero, G.; Gartzia-Bengoetxea, N. Effects of Biochar and Wood Ash Amendments in the Soil-Water-Plant Environment of Two Temperate Forest Plantations. Front. For. Glob. Chang. 2023, 5, 290. [Google Scholar] [CrossRef]
- Neimane, S.; Celma, S.; Zuševica, A.; Lazdiņa, D.; Ievinsh, G. The Effect of Wood Ash Application on Growth, Leaf Morphological and Physiological Traits of Trees Planted in a Cutaway Peatland. Mires Peat 2021, 27, 1–12. [Google Scholar] [CrossRef]
- Karltun, E.; Saarsalmi, A.; Ingerslev, M.; Mandre, M.; Andersson, S.; Gaitnieks, T.; Ozolinčius, R.; Varnagiryte-Kabasinskiene, I. Wood Ash Recycling—Possibilities and Risks. In Sustainable Use of Forest Biomass for Energy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 79–108. [Google Scholar] [CrossRef]
- Martín-García, J.; Javier, J. Sustainable Forest Management: An Introduction and Overview. In Sustainable Forest Management—Current Research; Diez, J.J., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- .Pugliese, S.; Jones, T.; Preston, M.D.; Hazlett, P.; Tran, H.; Basiliko, N. Wood Ash as a Forest Soil Amendment: The Role of Boiler and Soil Type on Soil Property Response. Can. J. Soil. Sci. 2014, 94, 621–634. [Google Scholar] [CrossRef]
- Latvian State Forest Research Institute ‘Silava’; Karklina, I.; Lazdins, A.; Stola, J.; Butlers, A.; Zvaigzne, Z.A.; Purvina, D. Soil Carbon Stock in Fertilized Forest Stands with Mineral Soils. For. Wood Process. 2021, 36, 51–56. [Google Scholar] [CrossRef]
- Olsson, B.A.; Bergholm, J.; Alavi, G.; Persson, T. Effects of Long-Term N Fertilization on Nitrate Leaching and Vegetation Responses in a Spruce Stand after Severe Wind Damage. For. Ecol. Manag. 2022, 520, 120422. [Google Scholar] [CrossRef]
- Watzka, M.; Buchgraber, K.; Wanek, W. Natural 15N Abundance of Plants and Soils under Different Management Practices in a Montane Grassland. Soil Biol. Biochem. 2006, 38, 1564–1576. [Google Scholar] [CrossRef]
- Bončina, A.; Klopčič, M.; Trifković, V.; Ficko, A.; Simončič, P. Tree and Stand Growth Differ among Soil Classes in Semi-Natural Forests in Central Europe. Catena 2023, 222, 106854. [Google Scholar] [CrossRef]
- Fuertes-Mendizábal, T.; Estavillo, J.M.; Duñabeitia, M.K.; Huérfano, X.; Castellón, A.; González-Murua, C.; Aizpurua, A.; González-Moro, M.B. 15N Natural Abundance Evidences a Better Use of N Sources by Late Nitrogen Application in Bread Wheat. Front. Plant Sci. 2018, 9, 853. [Google Scholar] [CrossRef] [PubMed]
- Bang-Andreasen, T.; Peltre, M.; Ellegaard-Jensen, L.; Hansen, L.H.; Ingerslev, M.; Rønn, R.; Jacobsen, C.S.; Kjøller, R. Application of Wood Ash Leads to Strong Vertical Gradients in Soil PH Changing Prokaryotic Community Structure in Forest Top Soil. Sci. Rep. 2021, 11, 742. [Google Scholar] [CrossRef]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L. Ecological Interpretations of Nitrogen Isotope Ratios of Terrestrial Plants and Soils. Plant Soil 2015, 396, 1–26. [Google Scholar] [CrossRef]
- Arseneau, J.; Bélanger, N.; Ouimet, R.; Royer-Tardif, S.; Bilodeau-Gauthier, S.; Gendreau-Berthiaume, B.; Rivest, D. Wood Ash Application in Sugar Maple Stands Rapidly Improves Nutritional Status and Growth at Various Developmental Stages. For. Ecol. Manag. 2021, 489, 119062. [Google Scholar] [CrossRef]
- Baer, T.; Furrer, G.; Zimmermann, S.; Schleppi, P. Long-Term Additions of Ammonium Nitrate to Montane Forest Ecosystems May Cause Limited Soil Acidification, Even in Presence of Soil Carbonate. Biogeosciences Discuss. 2023, preprint. [Google Scholar] [CrossRef]
- Demeyer, A.; Voundi Nkana, J.C.; Verloo, M.G. Characteristics of Wood Ash and Influence on Soil Properties and Nutrient Uptake: An Overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Tkaczyk, P.; Mocek-Płóciniak, A.; Skowrońska, M.; Bednarek, W.; Kuśmierz, S.; Zawierucha, E. The Mineral Fertilizer-Dependent Chemical Parameters of Soil Acidification under Field Conditions. Sustainability 2020, 12, 7165. [Google Scholar] [CrossRef]
- Khan, I.U.; Qi, S.-S.; Gul, F.; Manan, S.; Rono, J.K.; Naz, M.; Shi, X.-N.; Zhang, H.; Dai, Z.-C.; Du, D.-L. A Green Approach Used for Heavy Metals ‘Phytoremediation’ Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. Plants 2023, 12, 725. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.M.A.; Ruhui, W.; Sinkkonen, A.; Pappinen, A.; Pulkkinen, P. Effects of Contaminated Soil on the Survival and Growth Performance of European (Populus tremula L.) and Hybrid Aspen (Populus tremula L. × Populus tremuloides Michx.) Clones Based on Stand Density. Plants 2022, 11, 1970. [Google Scholar] [CrossRef]
- Bardule, A.; Bertins, M.; Busa, L.; Lazdina, D.; Viksna, A.; Tvrdonova, M.; Kanicky, V.; Vaculovic, T. Variation of Major Elements and Heavy Metals Occurrence in Hybrid Aspen (Populus tremuloides Michx. × P. tremula L.) Tree Rings in Marginal Land. iForest-Biogeosci. For. 2020, 13, 24. [Google Scholar] [CrossRef]
- Dos Santos Moreau, P.; Arruda, M.A.Z. Direct Analysis of Tree Rings Using Laser Ablation-ICP-MS and Quantitative Evaluation of Zn and Cu Using Filter Paper as a Solid Support for Calibration. J. Anal. At. Spectrom. 2022, 37, 795–804. [Google Scholar] [CrossRef]
- Kelly, S. Using Stable Isotope Ratio Mass Spectrometry (IRMS) in Food Authentication and Traceability. In Food Authenticity and Traceability; Woodhead Publishing Ltd.: Cambridge, UK, 2003; pp. 156–183. [Google Scholar] [CrossRef]
- Rutar, J.M.; Strojnik, L.; Nečemer, M.; Bontempo, L.; Ogrinc, N. Determining the Authenticity of Spirulina Dietary Supplements Based on Stable Isotope and Elemental Composition. Foods 2023, 12, 562. [Google Scholar] [CrossRef]
- Guelke, M.; Blanckenburg, F. Fractionation of Stable Iron Isotopes in Higher Plants. Environ. Sci. Technol. 2007, 41, 1896–1901. [Google Scholar] [CrossRef]
- Noteikumi par Augsnes un Grunts Kvalitātes Normatīviem. LIKUMI.LV. Available online: https://likumi.lv/doc.php?id=120072 (accessed on 31 March 2023).
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 31 March 2023).
- Messerschmid, T.F.E.; Wehling, J.; Bobon, N.; Kahmen, A.; Klak, C.; Los, J.A.; Nelson, D.B.; dos Santos, P.; de Vos, J.M.; Kadereit, G. Carbon Isotope Composition of Plant Photosynthetic Tissues Reflects a Crassulacean Acid Metabolism (CAM) Continuum in the Majority of CAM Lineages. Perspect. Plant Ecol. Evol. Syst. 2021, 51, 125619. [Google Scholar] [CrossRef]
- Liao, K.; Lai, X.; Zhu, Q. Soil δ15N Is a Better Indicator of Ecosystem Nitrogen Cycling than Plant δ15N: A Global Meta-Analysis. Soil 2021, 7, 733–742. [Google Scholar] [CrossRef]
- Bertins, M.; Bardule, A.; Busa, L.; Viksna, A.; Lazdina, D.; Ansone-Bertina, L. Impact of Different Fertilisers on Elemental Content in Young Hybrid Aspen Stem Wood. Agron. Res. 2020, 18, 1154–1162. [Google Scholar] [CrossRef]
- Latvian State Forest Research Institute ‘Silava’; Petaja, G.; Karklina, I.; Neimane, S. Short-Term Effects of Fertilization on Photosynthetic Activity in a Deciduous Tree Plantation. For. Wood Process. 2021, 36, 57–62. [Google Scholar] [CrossRef]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front. Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef]
- Rathgeber, C.B.K.; Cuny, H.E.; Fonti, P. Biological Basis of Tree-Ring Formation: A Crash Course. Front. Plant Sci. 2016, 7, 734. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.P.; Rathgeber, C.B.K.; Fournier, M.; Moulia, B. Modelling Wood Formation and Structure: Power and Limits of a Morphogenetic Gradient in Controlling Xylem Cell Proliferation and Growth. Ann. For. Sci. 2017, 74, 14. [Google Scholar] [CrossRef]
- Amais, R.; Moreau, P.; Francischini, D.; Magnusson, R.; Maselli Locosselli, G.; Veiga, M.; Ceccantini, G.; Ortega Rodriguez, D.; Filho, M.; Arruda, M. Trace Elements Distribution in Tropical Tree Rings through High-Resolution Imaging Using LA-ICP-MS Analysis. J. Trace Elem. Med. Biol. 2021, 68, 126872. [Google Scholar] [CrossRef]
- Scanlon, T.; Riscassi, A.; Demers, J.; Camper, T.D.; Lee, T.; Druckenbrod, D. Mercury Accumulation in Tree Rings: Observed Trends in Quantity and Isotopic Composition in Shenandoah National Park, Virginia. J. Geophys. Res. Biogeosci. 2020, 125. [Google Scholar] [CrossRef]
- Dobrzańska, J.; Lochyński, P.; Kalbarczyk, R.; Ziemiańska, M. Challenges in the Application of Dendrochemistry in Research on Historical Environmental Pollution in an Old Copper Mining Area. Forests 2021, 12, 1505. [Google Scholar] [CrossRef]
- Wilschefski, S.C.; Baxter, M.R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Mao, X.; Russo, R. Advancing the Analytical Capabilities of Laser Ablation Molecular Isotopic Spectrometry for Boron Isotopic Analysis. Spectrochim. Acta Part B At. Spectrosc. 2013, 92, 42–50. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Plant Cell Wall. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Abelenda, A.M.; Aiouache, F. Wood Ash Based Treatment of Anaerobic Digestate: State-of-the-Art and Possibilities. Processes 2022, 10, 147. [Google Scholar] [CrossRef]
- Nechita, C.; Iordache, A.M.; Lemr, K.; Levanič, T.; Pluhacek, T. Evidence of Declining Trees Resilience under Long Term Heavy Metal Stress Combined with Climate Change Heating. J. Clean. Prod. 2021, 317, 128428. [Google Scholar] [CrossRef]
- Mccarroll, D.; Loader, N. Stable Isotopes in Tree Rings. Quat. Sci. Rev. 2004, 23, 771–801. [Google Scholar] [CrossRef]
- Amoakwah, E.; Lucas, S.T.; Didenko, N.A.; Rahman, M.A.; Islam, K.R. Impact of Deforestation and Temporal Land-Use Change on Soil Organic Carbon Storage, Quality, and Lability. PLoS ONE 2022, 17, e0263205. [Google Scholar] [CrossRef] [PubMed]
- Peplau, T.; Poeplau, C.; Gregorich, E.; Schroeder, J. Deforestation for Agriculture Leads to Soil Warming and Enhanced Litter Decomposition in Subarctic Soils. Biogeosciences 2023, 20, 1063–1074. [Google Scholar] [CrossRef]
Fertilizer | Origin | Dose | Application Form | The Input of Major Nutrients through Fertilization, kg ha−1 | ||
---|---|---|---|---|---|---|
Ntot | Ptot | Ktot | ||||
Wood ash | Boiler house, Sigulda | 6 tDM ha−1 | Mechanically | 2.6 | 65 | 190 |
Sewage sludge | Municipal wastewater treatment plant, “Aizkraukles ūdens” | 10 tDM ha−1 | Mechanically | 259 | 163 | 22 |
Subplot | The Average Height of Trees, m | The Average Mass of Stem (Fresh Biomass), kg | The Average Mass of Branches (Fresh Biomass), kg | Average Diameter at 1.3 m Height, mm |
---|---|---|---|---|
Control | 9.0 ± 0.2 | 28.2 ± 4.7 | 4.1 ± 0.6 | 100 ± 5.6 |
Sewage sludge | 10.0 ± 0.4 | 40.5 ± 5.5 | 5.6 ± 1.3 | 116 ± 15 |
Wood ash | 9.3 ± 0.4 | 33.8 ± 5.7 | 4.9 ± 2.0 | 106 ± 7.6 |
δ15N, ‰ | wN, % | δ13C, ‰ | wC, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | −13.0 | ± | 0.6 | 0.20 | ± | 0.02 | −26.7 | ± | 0.3 | 48.7 | ± | 0.3 |
2013 | −13.0 | ± | 0.4 | 0.19 | ± | 0.01 | −27.8 | ± | 0.8 | 47.8 | ± | 0.1 |
2014 | −13.0 | ± | 0.3 | 0.16 | ± | 0.03 | −28.6 | ± | 0.2 | 47.3 | ± | 0.1 |
2015 | −18.3 | ± | 0.7 | 0.12 | ± | 0.01 | −28.4 | ± | 0.2 | 48.3 | ± | 0.9 |
2016 | −11.0 | ± | 0.7 | 0.19 | ± | 0.07 | −26.9 | ± | 0.6 | 48.5 | ± | 0.7 |
2017 | −15.3 | ± | 1.1 | 0.11 | ± | 0.01 | −26.4 | ± | 0.9 | 46.5 | ± | 0.7 |
2018 | −17.0 | ± | 0.5 | 0.14 | ± | 0.03 | −27.6 | ± | 0.6 | 47.7 | ± | 0.7 |
2019 | −15.9 | ± | 1.4 | 0.13 | ± | 0.02 | −27.2 | ± | 0.2 | 46.4 | ± | 0.2 |
2020 | −15.0 | ± | 0.7 | 0.13 | ± | 0.04 | −27.7 | ± | 0.7 | 47.5 | ± | 0.6 |
Element | Control | Wood Ash | Sewage Sludge | F |
---|---|---|---|---|
Li | 0.008 a ± 0.004 | 0.014 b ± 0.007 | 0.007 a ± 0.004 | 3.81 |
B | 4.7 a ± 0.3 | 4.5 a ± 0.3 | 3.6 b ± 0.3 | 26.8 |
Na | 3.1 a ± 1.2 | 3.3 a ± 1.1 | 8.0 b ± 1.4 | 33.9 |
Mg | 132 ± 24 | 160 ± 22 | 135 ± 31 | 2.53 |
Al | 2.2 a ± 1.7 | 1.6 a ± 1.1 | 0.4 b ± 0.2 | 7.94 |
P | 158 ± 31 | 187 ± 41 | 133 ± 58 | 3.16 |
K | 1006 a ± 231 | 874 b ± 100 | 724 c ± 85 | 7.62 |
Ca | 666 ± 127 | 743 ± 201 | 530 ± 74 | 2.29 |
V | 0.09 a ± 0.01 | 0.08 a ± 0.01 | 0.06 b ± 0.01 | 10.69 |
Cr | 0.04 ± 0.04 | 0.03 ± 0.01 | 0.02 ± 0.01 | 2.84 |
Mn | 1.7 a ± 0.15 | 16.1 b ± 3.5 | 9.9 c ± 2.8 | 69.9 |
Fe | 7.3 ± 3.1 | 6.5 ± 1.2 | 6.4 ± 1.1 | 0.56 |
Co | 0.006 a ± 0.04 | 0.017 b ± 0.007 | 0.018 b ± 0.005 | 15.1 |
Ni | 0.04 a ± 0.01 | 0.08 b ± 0.02 | 0.05 a ± 0.03 | 12.5 |
Cu | 2.65 a ± 0.59 | 2.73 a ± 0.67 | 1.63 b ± 0.19 | 12.1 |
Zn | 4.97 ± 1.58 | 7.12 ± 4.06 | 4.35 ± 0.95 | 2.87 |
As | 0.023 a ± 0.004 | 0.019 a ± 0.003 | 0.015 b ± 0.004 | 12.4 |
Rb | 0.32 a ± 0.07 | 0.56 b ± 0.06 | 0.42 c ± 0.05 | 33.2 |
Sr | 2.18 a ± 0.43 | 7.46 b ± 2.24 | 3.59 a ± 0.45 | 37.4 |
Cd | 0.02 a ± 0.01 | 0.04 b ± 0.01 | 0.02 a ± 0.01 | 15.8 |
Ba | 1.44 a ± 0.36 | 2.64 b ± 0.7 | 1.53 a ± 0.16 | 18.6 |
Pb | 0.13 a ± 0.04 | 0.37 b ± 0.15 | 0.17 a ± 0.02 | 16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertins, M.; Paiste, P.; Makovskis, K.; Ansone-Bertina, L.; Busa, L.; Lazdina, D.; Lazdins, A.; Kirsimäe, K.; Klavins, M.; Viksna, A. Impact of Wood Ash and Sewage Sludge on Elemental Content in Hybrid Alder Clone. Sustainability 2023, 15, 7242. https://doi.org/10.3390/su15097242
Bertins M, Paiste P, Makovskis K, Ansone-Bertina L, Busa L, Lazdina D, Lazdins A, Kirsimäe K, Klavins M, Viksna A. Impact of Wood Ash and Sewage Sludge on Elemental Content in Hybrid Alder Clone. Sustainability. 2023; 15(9):7242. https://doi.org/10.3390/su15097242
Chicago/Turabian StyleBertins, Maris, Paarn Paiste, Kristaps Makovskis, Linda Ansone-Bertina, Lauma Busa, Dagnija Lazdina, Andis Lazdins, Kalle Kirsimäe, Maris Klavins, and Arturs Viksna. 2023. "Impact of Wood Ash and Sewage Sludge on Elemental Content in Hybrid Alder Clone" Sustainability 15, no. 9: 7242. https://doi.org/10.3390/su15097242