A Decision Support Model for Cost-Effective Choice of Temperature-Controlled Transport of Fresh Food
Abstract
:1. Introduction
- (i)
- What are the trade-offs to companies when choosing between investing in trucks with monitoring infrastructure and bearing the cost of food quality loss?
- (ii)
- How do these trade-offs change with respect to the distance over which the food is transported and demand variations?
2. Literature Review
2.1. Technologies Used for Quality Monitoring of Fresh Food Transportation
2.2. Non-Temperature-Controlled Transport Systems
2.3. Temperature-Controlled Transport Systems without Monitoring Capability
2.4. Temperature-Controlled Transport Systems with Monitoring Capability
3. Problem Description and Mathematical Modelling
- The model considers one distinct type of fresh produce.
- All demands and availability of fresh produce at each producer and retailer are deterministic.
- Transportation of fresh produce is by road.
- The transportation takes place within a single time period.
4. Data and Experiments
Sensitivity Analysis for Different Types of Perishables
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Description | Notations | ||
---|---|---|---|
Dry Vans (k1) | |||
Fixed hiring cost per unit quantity | |||
Variable transportation cost per unit quantity per unit distance | |||
Cost for fresh food loss per unit quantity | |||
Distance limit (beyond this distance quality starts deteriorating) | |||
Basic quantity loss factor |
Appendix A.1. Proof of Theorem 1
Appendix A.2. Proof of Theorem 2
Appendix A.3. Proof of Theorem 3
References
- Amitangshu, P.; Kant, K. Provenance and traceability in IoT-integrated food logistics: How blockchain can help? IEEE Comput. 2019, 52, 94–98. [Google Scholar]
- Dib, O.H.; Assaf, A.; Pean, A.; Durand, M.-J.; Jouanneau, S.; Ramanathan, R.; Thouand, G. Raman Spectroscopy Application in Food Waste Analysis: A Step towards a Portable Food Quality-Warning System. Sustainability 2023, 15, 188. [Google Scholar] [CrossRef]
- Amoa-Awua, W.K.; Ngunjiri, P.; Anlobe, J.; Kpodo, K.; Halm, M.; Hayford, A.E.; Jakobsen, M. The effect of applying GMP and HACCP to traditional food processing at a semi-commercial kenkey production plant in Ghana. Food Control 2007, 18, 1449–1457. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Temperature management for the quality assurance of a perishable food supply chain. Food Control 2014, 40, 198–207. [Google Scholar] [CrossRef]
- Baldera Zubeldia, B.; Nieto Jiménez, M.; Valenzuela Claros, M.T.; Mariscal Andrés, J.L.; Martin-Olmedo, P. Effectiveness of the cold chain control procedure in the retail sector in Southern Spain. Food Control 2016, 59, 614–618. [Google Scholar] [CrossRef]
- González-Rodríguez, R.; Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Application of new fungicides under good agricultural practices and their effects on the volatile profile of white wines. Food Res. Int. 2011, 44, 397–403. [Google Scholar] [CrossRef]
- Ramanathan, U.; Ramanathan, R.; Adefisan, A.; Da Costa, T.; Cama-Moncunill, X.; Samriya, G. Adapting Digital Technologies to Reduce Food Waste and Improve Operational Efficiency of a Frozen Food Company—The Case of Yumchop Foods in the UK. Sustainability 2022, 14, 16614. [Google Scholar] [CrossRef]
- Ramanathan, U.; Pelc, K.; da Costa, T.P.; Ramanathan, R.; Shenker, N. A case study of human milk banking with focus on the role of IoT sensor technology. Sustainability 2023, 15, 243. [Google Scholar] [CrossRef]
- Onwude, D.I.; Chen, G.; Eke-Emezie, N.; Kabutey, A.; Khaled, A.Y.; Sturm, B. Recent Advances in Reducing Food Losses in the Supply Chain of Fresh Agricultural Produce. Processes 2020, 8, 1431. [Google Scholar] [CrossRef]
- Badia-Melis, R.; Mc Carthy, U.; Ruiz-Garcia, L.; Garcia-Hierro, J.; Robla Villalba, J.I. New trends in cold chain monitoring applications—A review. Food Control. 2018, 86, 170–182. [Google Scholar] [CrossRef]
- Da Costa, T.P.; Gillespie, J.; Cama-Moncunill, X.; Ward, S.; Condell, J.; Ramanathan, R.; Murphy, F. A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies. Sustainability 2023, 15, 614. [Google Scholar] [CrossRef]
- Alfian, G.; Syafrudin, M.; Rhee, J. Real-Time Monitoring System Using Smartphone-Based Sensors and NoSQL Database for Perishable Supply Chain. Sustainability 2017, 9, 2073. [Google Scholar] [CrossRef]
- Frost and Sullivan Japan, K.K. Business Opportunity Analysis on Temperature-Controlled Rail Logistics Industry in India for Japanese Companies. 2018. Available online: https://dl.ndl.go.jp/pid/11222665/1/1 (accessed on 27 October 2022).
- Sun, S.; Wang, X. Promoting traceability for food supply chain with certification. J. Clean. Prod. 2019, 217, 658–665. [Google Scholar] [CrossRef]
- Van Holsteijn, F.; Kemna, R. Minimizing food waste by improving storage conditions in household refrigeration. Resour. Conserv. Recycl. 2018, 128, 25–31. [Google Scholar] [CrossRef]
- Igl, J.; Kellner, F. Exploring greenhouse gas reduction opportunities for retailers in Fast Moving Con-sumer Goods distribution networks. Transp. Res. Part D Transp. Environ. 2017, 50, 55–69. [Google Scholar] [CrossRef]
- McGregor, B. Protecting Perishable Foods During Transport by Truck and Rail; U.S. Department of Agriculture, Agricultural Marketing Service: Washington, DC, USA, 2019.
- Shin, Y.; Liu, R.H.; Nock, J.F.; Holliday, D.; Watkins, C.B. Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol. Technol. 2007, 45, 349–357. [Google Scholar] [CrossRef]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S.; Lam, H.Y.; Tang, V. An intelligent model for assuring food quality in managing a multi-temperature food distribution centre. Food Control 2018, 90, 81–97. [Google Scholar] [CrossRef]
- Lorite, G.S.; Selkälä, T.; Sipola, T.; Palenzuela, J.; Jubete, E.; Viñuales, A.; Cabañero, G.; Grande, H.J.; Tuominen, J.; Uusitalo, S.; et al. Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. J. Food Eng. 2017, 193, 20–28. [Google Scholar] [CrossRef]
- James, S.; James, C.; Evans, J. Modelling of food transportation systems—A review. Int. J. Refrig. 2006, 29, 947–957. [Google Scholar] [CrossRef]
- Cai, C.; Mo, J.; Lu, Y.; Zhang, N.; Wu, Z.; Wang, S.; Nie, S. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 2021, 83, 105833. [Google Scholar] [CrossRef]
- Bortolini, M.; Faccio, M.; Ferrari, E.; Gamberi, M.; Pilati, F. Fresh food sustainable distribution: Cost, delivery time and carbon footprint three-objective optimization. J. Food Eng. 2016, 174, 56–67. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Bhattacharya, R. Solving a tri-objective supply chain problem with modified NSGA-II algorithm. J. Manuf. Syst. 2014, 33, 41–50. [Google Scholar] [CrossRef]
- Sel, C.; Bilgen, B.; Bloemhof-Ruwaard, J.; van der Vorst, J. Multi-bucket optimization for integrated planning and scheduling in the perishable dairy supply chain. Comput. Chem. Eng. 2015, 77, 59–73. [Google Scholar] [CrossRef]
- Musavi, M.; Bozorgi-Amiri, A. A multi-objective sustainable hub location-scheduling problem for perishable food supply chain. Comput. Ind. Eng. 2017, 113, 766–778. [Google Scholar] [CrossRef]
- Zanoni, S.; Zavanella, L. Chilled or frozen? Decision strategies for sustainable food supply chains. Int. J. Prod. Econ. 2012, 140, 731–736. [Google Scholar] [CrossRef]
- Feasibility Study for the Port of Durres Multi-Modal Container Facility. In Transport Economics; U.S Trade and Development Agency: Arlington, VA, USA, 2000; Volume II.
- Mohan, A.; Krishnan, R.; Arshinder, K.; Vandore, J.; Ramanathan, U. Management of Postharvest Losses and Wastages in the Indian Tomato Supply Chain—A Temperature-Controlled Storage Perspective. Sustainability 2023, 15, 1331. [Google Scholar] [CrossRef]
- Kuo, J.-C.; Chen, M.-C. Developing an advanced Multi-Temperature Joint Distribution System for the food cold chain. Food Control 2010, 21, 559–566. [Google Scholar] [CrossRef]
- Stellingwerf, H.M.; Kanellopoulos, A.; van der Vorst, J.G.; Bloemhof, J.M. Reducing CO2 emissions in tempera-ture-controlled road transportation using the LDVRP model. Transp. Res. Part D Transp. Environ. 2018, 58, 80–93. [Google Scholar] [CrossRef]
- Accorsi, R.; Bortolini, M.; Baruffaldi, G.; Pilati, F.; Ferrari, E. Internet-of-things Paradigm in Food Supply Chains Control and Management. Procedia Manuf. 2017, 11, 889–895. [Google Scholar] [CrossRef]
- De Keizer, M.; Akkerman, R.; Grunow, M.; Bloemhof, J.M.; Haijema, R.; van der Vorst, J.G. Logistics network design for perishable products with heterogeneous quality decay. Eur. J. Oper. Res. 2017, 262, 535–549. [Google Scholar] [CrossRef]
- Thakur, M.; Forås, E. EPCIS based online temperature monitoring and traceability in a cold meat chain. Comput. Electron. Agric. 2015, 117, 22–30. [Google Scholar] [CrossRef]
- Lang, W.; Jedermann, R.; Mrugala, D.; Jabbari, A.; Krieg-Brückner, B.; Schill, K. The “Intelligent Container”—A Cognitive Sensor Network for Transport Management. IEEE Sens. J. 2011, 11, 688–698. [Google Scholar] [CrossRef]
- Jedermann, R.; Nicometo, M.; Uysal, I.; Lang, W. Reducing food losses by intelligent food logistics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130302. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Aung, M.M.; Chang, Y.S.; Makatsoris, C. Freshness Gauge based cold storage management: A method for adjusting temperature and humidity levels for food quality. Food Control 2015, 47, 510–519. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; He, J.; Li, L.; Shen, M.; Tan, X.; Min, H.; Zheng, L. Wireless sensor network for real-time perishable food supply chain management. Comput. Electron. Agric. 2014, 110, 196–207. [Google Scholar] [CrossRef]
- Pal, A.; Kant, K. Smart Sensing, Communication, and Control in Perishable Food Supply Chain. ACM Trans. Sens. Networks 2020, 16, 1–41. [Google Scholar] [CrossRef]
- Torres-Sánchez, R.; Martínez-Zafra, M.T.; Castillejo, N.; Guillamón-Frutos, A.; Artés-Hernández, F. Real-Time Monitoring System for Shelf Life Estimation of Fruit and Vegetables. Sensors 2020, 20, 1860. [Google Scholar] [CrossRef]
- Li, G. Development of cold chain logistics transportation system based on 5G network and Internet of things system. Microprocess. Microsystems 2020, 80, 103565. [Google Scholar] [CrossRef]
- Gallo, A.; Accorsi, R.; Goh, A.; Hsiao, H.; Manzini, R. A traceability-support system to control safety and sustainability indicators in food distribution. Food Control 2021, 124, 107866. [Google Scholar] [CrossRef]
- Feng, Y.-Z.; Sun, D.-W. Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta 2013, 105, 244–249. [Google Scholar] [CrossRef]
- Europa. EU Actions against Food Waste. 2022. Available online: https://food.ec.europa.eu/safety/food-waste/eu-actions-against-food-waste_en#:~:text=The%20EU%20and%20the%20EU,food%20production%20and%20supply%20chains (accessed on 27 October 2022).
- Piergiovanni, L.; Limbo, S. Food shelf-life models. In Sustainable Food Supply Chains; Elsevier: Amsterdam, The Netherlands, 2019; Volume 230, pp. 49–60. [Google Scholar] [CrossRef]
- Boyhan, G.E.; Hurst, W.C.; Kelley, W.T.; Krewer, G.W.; Taylor, K.C. Postharvest Handling and Transportation of Fruits and Vegetables; Cooperative Extension Fact Sheet 100; The University of Georgia: Athens, GA, USA, 2009. [Google Scholar]
- Gillespie, J.; da Costa, T.P.; Cama-Moncunill, X.; Cadden, T.; Condell, J.; Cowderoy, T.; Ramsey, E.; Murphy, F.; Kull, M.; Gallagher, R.; et al. Real-Time Anomaly Detection in Cold Chain Transportation Using IoT Technology. Sustainability 2023, 15, 2255. [Google Scholar] [CrossRef]
- Ramanathan, R.; Duan, Y.; Ajmal, T.; Pelc, K.; Gillespie, J.; Ahmadzadeh, S.; Condell, J.; Hermens, I.; Ramanathan, U. Motivations and Challenges for Food Companies in Using IoT Sensors for Reducing Food Waste: Some Insights and a Road Map for the Future. Sustainability 2023, 15, 1665. [Google Scholar] [CrossRef]
- Da Costa, T.P.; Gillespie, J.; Pelc, K.; Adefisan, A.; Adefisan, M.; Ramanathan, R.; Murphy, F. Life Cycle Assessment Tool for Food Supply Chain Environmental Evaluation. Sustainability 2022, 15, 718. [Google Scholar] [CrossRef]
Sets | |
Set of van types
| |
Decision Variable | |
Quantity of fresh produce transported between producers to retailers using type of van (kg.) | |
Parameters | |
Fixed cost per unit quantity for hiring type of van (EUR/kg) | |
Variable cost per unit quantity per unit distance from to using type of van (EUR/kg-km) | |
Cost of fresh food loss associated with quality loss per unit quantity for type of van (EUR/kg) | |
Distance between producers and retailers (km) | |
Maximum distance type of van can travel from the producers to retailers without any loss in quality of fresh produce (km) | |
Availability of fresh of fresh produce at the producers (kg) | |
Demand at the retailers (kg) | |
Shelf life (h) | |
Improved shelf life using type of van in hours (h) Where α represents the shelf life improvement factor associated with type of van | |
and 0 otherwise | |
Quality loss factor associated with type of van |
Parameter | Description | Value |
---|---|---|
Fixed cost per unit quantity for hiring type of van | EUR/kg EUR/kg EUR/kg | |
Variable cost per unit quantity per unit distance from to using type of van | EUR/kgkm EUR/kgkm EUR/kgkm | |
Cost associated with quality loss per unit quantity for van type | EUR/kg (low) EUR/kg (high) | |
Distance between producer and retailer | 280–1520km | |
The maximum distance a type of van can travel from producers to retailers without any loss in quality of fresh produce | ||
Availability of fresh produce at the producers | ||
Quality loss factor associated with type of van | ||
Demand at supermarket | ||
Shelf life |
Objective function value | EUR 82,631.0 | |||
Number of variables | 481 | |||
Number of constraints | 249 | |||
Fresh produce transported from th producer to th retailer using van type | Route (i,j) | Choice of van (k) | Quantity of fresh produce transported xijk (kg) | Distance between (i,j) dij (km) |
(P1,R4) | 750 | 920 | ||
(P2, R6) | 1000 | 670 | ||
(P2, R8) | 500 | 701 | ||
(P3, R7) | 500 | 650 | ||
(P3, R9) | 1000 | 510 | ||
(P4, R7) | 625 | 850 | ||
(P5, R2) | 500 | 620 | ||
(P5, R3) | 1000 | 600 | ||
(P6, R10) | 1000 | 700 | ||
(P6, R8) | 500 | 701 | ||
(P7, R4) | 500 | 770 | ||
(P7, R5) | 1000 | 700 | ||
(P8, R1) | 1000 | 430 | ||
(P8,R2) | 500 | 720 |
Objective function value | EUR 826,310.0 | |||
Number of variables | 481 | |||
Number of constraints | 249 | |||
Fresh produce transported from th producer to th retailer using van type | Route (i,j) | Choice of van (k) | Quantity of fresh produce transported xijk (kg) | Distance between (i,j) dij (km) |
(P1,R4) | 7500 | 920 | ||
(P2, R6) | 10,000 | 670 | ||
(P2, R8) | 5000 | 701 | ||
(P3, R7) | 5000 | 650 | ||
(P3, R9) | 10,000 | 510 | ||
(P4, R7) | 6250 | 850 | ||
(P5, R2) | 5000 | 620 | ||
(P5, R3) | 10,000 | 600 | ||
(P6, R10) | 10,000 | 700 | ||
(P6, R8) | 5000 | 701 | ||
(P7, R4) | 5000 | 770 | ||
(P7, R5) | 10,000 | 700 | ||
(P8, R1) | 10,000 | 430 | ||
(P8,R2) | 5000 | 720 |
Objective function value | EUR 841,074.70 | |||
Number of variables | 481 | |||
Number of constraints | 249 | |||
Fresh produce transported from th producer to th retailer using van type | Route (i,j) | Choice of van (k) | Quantity of fresh produce transported xijk (kg) | Distance between (i,j) dij (km) |
(P1,R4) | 6764.705 | 920 | ||
(P1,R7) | 5882.35 | 850 | ||
(P2, R6) | 10,000 | 670 | ||
(P2, R8) | 5000 | 701 | ||
(P3, R7) | 5000 | 650 | ||
(P3, R9) | 10,000 | 510 | ||
(P4, R2) | 5000 | 720 | ||
(P5, R2) | 5000 | 620 | ||
(P5, R3) | 10,000 | 600 | ||
(P6, R10) | 10,000 | 700 | ||
(P6, R8) | 5000 | 701 | ||
(P7, R4) | 5000 | 770 | ||
(P7, R5) | 10,000 | 700 | ||
(P8, R1) | 10,000 | 430 |
Objective function value | EUR 3,224,150.0 | |||
Number of variables | 481 | |||
Number of constraints | 249 | |||
Fresh produce transported from th producer to th retailer using van type | Route (i,j) | Choice of van (k) | Quantity of fresh produce transported xijk (kg) | Distance between (i,j) dij (km) |
(P1, R1) | 10,000 | 210 | ||
(P1, R3) | 5000 | 130 | ||
(P2, R4) | 5000 | 180 | ||
(P2, R7) | 10,000 | 150 | ||
(P3, R4) | 5000 | 210 | ||
(P4, R3) | 5000 | 300 | ||
(P4, R8) | 10,000 | 101 | ||
(P5,R10) | 10,000 | 250 | ||
(P5,R6) | 5000 | 270 | ||
(P6,R2) | 10,000 | 320 | ||
(P6,R5) | 5000 | 300 | ||
(P7,R6) | 5000 | 107 | ||
(P7,R9) | 10,000 | 210 | ||
(P8,R5) | 5000 | 300 |
Objective function value | EUR 738,320.0 | |||
Number of variables | 481 | |||
Number of constraints | 249 | |||
Fresh produce transported from th producer to th retailer using van type | Route (i,j) | Choice of van (k) | Quantity of fresh produce transported xijk (kg) | Distance between (i,j) dij (km) |
(P1, R5) | 5000 | 580 | ||
(P1, R9) | 10,000 | 610 | ||
(P2, R6) | 5000 | 670 | ||
(P2, R7) | 10,000 | 550 | ||
(P3, R3) | 10,000 | 570 | ||
(P3, R5) | 5000 | 550 | ||
(P4, R1) | 10,000 | 630 | ||
(P4,R2) | 5000 | 620 | ||
(P5,R2) | 5000 | 620 | ||
(P5,R8) | 10,000 | 601 | ||
(P7,R4) | 10,000 | 670 | ||
(P8,R10) | 10,000 | 550 | ||
(P8,R6) | 5000 | 670 |
Objective function value | EUR 1,201,650.0 | |||
Number of variables | 481 | |||
Number of constraints | 249 | |||
Fresh produce transported from th producer to th retailer using van type | Route (i,j) | Choice of van (k) | Quantity of fresh produce transported xijk (kg) | Distance between (i,j) dij (km) |
(P3, R3) | 12,500 | 930 | ||
(P5, R5) | 12,500 | 800 | ||
(P5, R8) | 12,500 | 901 | ||
(P6, R10) | 12,500 | 800 | ||
(P6, R6) | 12,500 | 770 | ||
(P6, R7) | 12,500 | 760 | ||
(P6, R9) | 12,500 | 790 | ||
(P7,R1) | 12,500 | 780 | ||
(P7,R2) | 12,500 | 770 | ||
(P7,R4) | 12,500 | 770 |
Objective function value | EUR 1,201,650.0 | |||
Number of variables | 481 | |||
Number of constraints | 249 | |||
Fresh produce transported from th producer to th retailer using van type | Route (i,j) | Choice of van (k) | Quantity of fresh produce transported xijk (kg) | Distance between (i,j) dij (km) |
(P3, R3) | 11,764.705 | 770 | ||
(P5, R5) | 11,764.705 | 800 | ||
(P5, R8) | 11,764.705 | 801 | ||
(P6, R10) | 11,764.705 | 800 | ||
(P6, R6) | 11,764.705 | 770 | ||
(P6, R7) | 11,764.705 | 770 | ||
(P6, R9) | 11,764.705 | 760 | ||
(P7,R1) | 11,764.705 | 790 | ||
(P7,R2) | 11,764.705 | 780 | ||
(P6,R4) | 11,764.705 | 770 |
Perishable Type 1 | Perishable Type 2 | Perishable Type 3 | Perishable Type 4 | Perishable Type 5 | Perishable Type 6 | |
---|---|---|---|---|---|---|
Fresh food | Apples, apricots, berries, cherries, grapes, pears | Lettuce, bok choy, celery, strawberry, spinach, parsley | Garlic, onion, shallots | Cranberries, lemons, oranges, lychees, tangerines | Potatoes, beans, okra, eggplant | Guavas, papayas, bananas, pineapple, pumpkins |
Temperature requirements | 0–2.23 °C | 0–2.23 °C | 0–2.23 °C | 4.50 °C | 10 °C | 12.7–15.5 °C |
Relative humidity requirements | 90–95% | 90–95% | 65–75% | 90–95% | 90–95% | 85–90% |
Selected Perishable for analysis | Apples | Strawberries | Onions | Cranberries | Eggplants | Bananas |
Number of variables | 8215 | 8215 | 8215 | 8215 | 8215 | 8215 |
Number of constraints | 4145 | 4145 | 4145 | 4145 | 4145 | 4145 |
Objective function value (EUR) | EUR 1,048,940 | EUR 1,367,101.76 | EUR 1,048,940. | EUR 1,087,040 | EUR 1,208,005 | EUR 1,157,745 |
Prominent choice of vehicle | for and for | for and for | for and for |
Distance | Low/High Demand |
---|---|
Dry vans (non-temperature-controlled system without monitoring capability) | |
Temperature-controlled vans without monitoring capability | |
Temperature-controlled vans with monitoring capability | |
Temperature-controlled vans without monitoring capability | |
Either of the non-dry vans |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiyar, L.M.; Ramanathan, R.; Roy, I.; Ramanathan, U. A Decision Support Model for Cost-Effective Choice of Temperature-Controlled Transport of Fresh Food. Sustainability 2023, 15, 6821. https://doi.org/10.3390/su15086821
Maiyar LM, Ramanathan R, Roy I, Ramanathan U. A Decision Support Model for Cost-Effective Choice of Temperature-Controlled Transport of Fresh Food. Sustainability. 2023; 15(8):6821. https://doi.org/10.3390/su15086821
Chicago/Turabian StyleMaiyar, Lohithaksha M., Ramakrishnan Ramanathan, Indira Roy, and Usha Ramanathan. 2023. "A Decision Support Model for Cost-Effective Choice of Temperature-Controlled Transport of Fresh Food" Sustainability 15, no. 8: 6821. https://doi.org/10.3390/su15086821
APA StyleMaiyar, L. M., Ramanathan, R., Roy, I., & Ramanathan, U. (2023). A Decision Support Model for Cost-Effective Choice of Temperature-Controlled Transport of Fresh Food. Sustainability, 15(8), 6821. https://doi.org/10.3390/su15086821