# Disaster Risk Assessment Scheme—A Road System Survey for Budapest

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- Disaster: a set of undesirable events that occur due to some natural cause (e.g., flood, earthquake) or deliberate sabotage (explosion) and entail evacuating the population from a given area;
- Disaster management: post-disaster activities to minimize losses, including evacuating the affected population and prevention;
- Disaster risk reduction: measures to make transport infrastructure more resilient to the consequences of disaster events.

## 2. Boundaries and Structure of the Examined Network, Description of Scenarios

#### 2.1. Scenario A—Separation of the Public Road Network of Csepel

#### 2.2. Scenario B—Separation of the South Buda Agglomeration Zone

#### 2.3. Scenario C—Damage of the Lower Quays

## 3. Methods

#### 3.1. Analysis of Travel Distance Changes

#### 3.2. Analysis of Capacity Change

#### 3.3. Comparison of Scenarios

^{2}-distribution with an m − 1 degree of freedom.

- ${\mu}_{+}=\frac{n\left(n+1\right)}{4}$;
- ${\sigma}_{+}=\sqrt{\frac{n\left(n+1\right)\left(2n+1\right)}{24}}$;
- $n$: number of sample elements.

## 4. Results

#### 4.1. Analysis of the Scenarios

#### 4.1.1. Analysis of Scenario A

#### 4.1.2. Analysis of Scenario B

#### 4.1.3. Analysis of Scenario C

#### 4.2. The Effects of the Scenarios on the Whole Network

#### 4.2.1. Scenario A

#### 4.2.2. Scenario B

#### 4.2.3. Scenario C

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Szászi, G. Long-Span Railway Bridges in the Transport System of Hungary. Hadmérnök
**2013**, 8, 98–107. [Google Scholar] - Tóth, B.G.; Horváth, I. How the Planned V0 Railway Line Would Increase the Resilience of the Railway Network of Hungary Against Attacks. AARMS
**2019**, 18, 109–129. [Google Scholar] [CrossRef] - Tóth, B.; Lévai, Z. The strategic role of the former railway bridge at Dunaföldvár. Hadtudomány
**2021**, 31, 67–83. [Google Scholar] [CrossRef] - Sufyan, N.; Saqib, N.A.; Zia, M. Detection of jamming attacks in 802.11 b wireless networks. EURASIP J. Wirel. Commun. Netw.
**2013**, 1, 208–225. [Google Scholar] [CrossRef] - De Oliveira, E.L.; da Silva Portugal, L.; Junior, W.P. Determining Critical Links in a Road Network: Vulnerability and Congestion Indicators. Procedia-Soc. Behav. Sci.
**2014**, 162, 158–167. [Google Scholar] [CrossRef] - Luathep, P.; Suwanno, P.; Taneerananon, P. Identification of Critical Locations in Road Networks due to Disasters. Proc. East. Asia Soc. Transp. Stud.
**2013**, 9, 206. [Google Scholar] - Ferretti, M.; Barlacchi, G.; Pappalardo, L.; Lucchini, L.; Lepri, B. Weak nodes detection in urban transport systems: Planning for resilience in Singapore. In Proceedings of the 2018 IEEE 5th international conference on data science and advanced analytics (DSAA), Turin, Italy, 1–4 October 2018. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, R.; Xu, M.; Yu, Y.; Xu, Y.; De Dieu, G.J. Risk state changes analysis of railway dangerous goods transportation system: Based on the cusp catastrophe model. Reliab. Eng. Syst. Saf.
**2020**, 202, 107059. [Google Scholar] [CrossRef] - Hosseini, S.D.; Verma, M. Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments. Transp. Res. B Methodol.
**2018**, 110, 79–103. [Google Scholar] [CrossRef] - Li, R.; Gao, Y. On the component resilience importance measures for infrastructure systems. Int. J. Crit. Infrastruct. Prot.
**2022**, 36, 100481. [Google Scholar] [CrossRef] - Lin, C.; Yu, Y.; Wu, D.; Gong, B. Traffic flow catastrophe border identification for urban high-density area based on cusp catastrophe theory: A case study under sudden fire disaster. Appl. Sci.
**2020**, 10, 3197. [Google Scholar] [CrossRef] - Hu, S.; Han, C.; Dong, Z.S.; Meng, L. A multi-stage stochastic programming model for relief distribution considering the state of road network. Transp. Res. B Methodol.
**2019**, 123, 64–87. [Google Scholar] [CrossRef] - Gonçalves, L.A.P.J.; Ribeiro, P.J.G. Resilience of urban transportation systems. Concept, characteristics, and methods. J. Transp. Geogr.
**2020**, 85, 102727. [Google Scholar] [CrossRef] - Rehak, D.; Senovsky, P.; Hreomada, M.; Lovecek, T. Complex approach to assessing resilience of critical infrastructure elements. Int. J. Crit. Infrastruct. Prot.
**2019**, 25, 125–138. [Google Scholar] [CrossRef] - Ortega, E.; Martín, B.; Aparicio, Á. Identification of critical sections of the Spanish transport system due to climate scenarios. J. Transp. Geogr.
**2020**, 84, 102691. [Google Scholar] [CrossRef] - Ghadi, M.Q.; Török, Á. Evaluation of the Impact of Spatial and Environmental Accident Factors on Severity Patterns of Road Segments. Period. Polytech. Transp. Eng.
**2021**, 49, 146–155. [Google Scholar] [CrossRef] - Ortega, J.; Tóth, J.; Péter, T. Applying geographic information system methodologies to estimate the catchment area accessibility of park-and-ride facilities. Period. Polytech. Transp. Eng.
**2022**, 50, 69–78. [Google Scholar] [CrossRef] - Torok, A.; Pauer, G. Safety aspects of critical scenario identification for autonomous transport. CogSust
**2022**, 1. [Google Scholar] [CrossRef] - Pratelli, A.; Leandri, P.; Aiello, R.; Souleyrette, R.R. Intersection redesign for network resilience and safety. PROMET-ZAGREB
**2021**, 33, 297–308. [Google Scholar] [CrossRef] - Sipos, T.; Afework Mekonnen, A.; Szabó, Z. Spatial econometric analysis of road traffic crashes. Sustainability
**2021**, 13, 2492. [Google Scholar] [CrossRef] - Soós, Z. Forgalmi vizsgálatok Budapesten a Duna alsó rakpartjain. Lehetséges megoldások nemzetközi tapasztalatok alapján. In Proceedings of the Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar 2013 TDK, Budapest, Hungary, 12 November 2013. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math.
**1959**, 1, 269–271. [Google Scholar] [CrossRef] - Sawitzki, D. Experimental studies of symbolic shortest-path algorithms. Exp. Effic. Algorithms
**2004**, 3059, 482–497. [Google Scholar] [CrossRef] - MATLAB, Version 9.7.0.1296695 (R2019b); The MathWorks Inc.: Natick, MA, USA, 2019.
- Chib, R.; Sandhu, A.S. A Design and Analysis of EOM for Energy Saving and Effective Routing Protocol: AODV and AOMDV. Indian J. Sci. Technol.
**2016**, 9, 1–9. [Google Scholar] [CrossRef] - Ford, L.R.; Fulkerson, D.R. Maximal flow through a network. Can. J. Math.
**1956**, 8, 399–404. [Google Scholar] [CrossRef] - Boykov, Y.; Kolmogorov, V. An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans Pattern Anal Mach. Intell.
**2004**, 26, 1124–1137. [Google Scholar] [CrossRef] - Mwangi, A.; Jianhua, Z.; Gang, H.; Kasomo, R.; Matidza, I. Ultimate Pit Limit Optimization using Boykov-Kolmogorov Maximum Flow Algorithm. J. Min. Environ.
**2021**, 12, 1–13. [Google Scholar] [CrossRef] - Maxflow, Version R2015b; The MathWorks Inc.: Natick, MA, USA, 2019.
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika
**1965**, 52, 591–611. [Google Scholar] [CrossRef] - Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc.
**1937**, 32, 675–701. [Google Scholar] [CrossRef] - Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilità. Pubbl. Del R Ist. Super. Di Sci. Econ. E Commer. Di Firenze
**1936**, 8, 3–62. [Google Scholar] - Dunn, O.J. Multiple Comparisons Among Means. J. Am. Stat. Assoc.
**1961**, 56, 52–64. [Google Scholar] [CrossRef] - Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bulletin.
**1945**, 1, 80–83. [Google Scholar] [CrossRef] - Gumz, F.; Török, Á. Investigation of Cordon Pricing in Budakeszi. Period. Polytech. Transp. Eng.
**2015**, 43, 92–97. [Google Scholar] [CrossRef] - Miskolczi, M.; Földes, D.; Munkácsy, A.; Jászberényi, M. Urban mobility scenarios until the 2030s. Sustain. Cities Soc.
**2021**, 72, 103029. [Google Scholar] [CrossRef] - Turoń, K.; Kubik, A.; Ševčovič, M.; Tóth, J.; Lakatos, A. Visual Communication in Shared Mobility Systems as an Opportunity for Recognition and Competitiveness in Smart Cities. Smart Cities
**2022**, 5, 802–818. [Google Scholar] [CrossRef]

**Figure 5.**Flowchart of Dijkstra’s algorithm (source: own edition, based upon [25]).

**Figure 6.**Flowchart of Boykov–Kolmogorov algorithm (source: own edition, based upon [28]).

**Figure 9.**Effect of Scenario A, the result of the Wilcoxon test with Bonferroni correction (source: own work).

**Figure 10.**Effect of Scenario B, the result of the Wilcoxon test with Bonferroni correction (source: own work).

**Figure 11.**Effect of Scenario C, the result of the Wilcoxon test with Bonferroni correction (source: own work).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sipos, T.; Szabó, Z.; Obaid, M.; Török, Á.
Disaster Risk Assessment Scheme—A Road System Survey for Budapest. *Sustainability* **2023**, *15*, 6777.
https://doi.org/10.3390/su15086777

**AMA Style**

Sipos T, Szabó Z, Obaid M, Török Á.
Disaster Risk Assessment Scheme—A Road System Survey for Budapest. *Sustainability*. 2023; 15(8):6777.
https://doi.org/10.3390/su15086777

**Chicago/Turabian Style**

Sipos, Tibor, Zsombor Szabó, Mohammed Obaid, and Árpád Török.
2023. "Disaster Risk Assessment Scheme—A Road System Survey for Budapest" *Sustainability* 15, no. 8: 6777.
https://doi.org/10.3390/su15086777