Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges
Abstract
1. Introduction
2. Conceptual Overview
2.1. Climate Smart Agriculture (CSA)
2.2. Climate Smart Pest Management (CSPM)
3. Phytosanitary Issues Related to Climate Changes
4. Role of Climate-Smart Pest Management in Promoting Sustainability
4.1. Risk Assessment and Forecasting
4.2. Early Diagnosis
4.3. Efficient Interventions
4.4. Zero-Tillage Potato IPM for Climate Mitigation as a Successful CSPM Story
5. Challenges of Climate-Smart Pest Management
6. Research Gaps and Future Recommendations
7. Authors’ Perspectives
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- What Is Climate Change? United Nations. Available online: https://www.un.org/en/climatechange/what-is-climate-change (accessed on 2 February 2023).
- Climate Change IPCC 2021: The Physical Science Basis|Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 1 February 2023).
- Porter, J.R.; Challinor, A.J.; Henriksen, C.B.; Howden, S.M.; Martre, P.; Smith, P. Invited Review: Intergovernmental Panel on Climate Change, Agriculture, and Food—A Case of Shifting Cultivation and History. Glob. Chang. Biol. 2019, 25, 2518–2529. [Google Scholar] [CrossRef] [PubMed]
- FAO The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets. 2020. Available online: http://www.fao.org/3/ca9692en/ca9692en.pdf (accessed on 22 March 2021).
- Richard, B.; Qi, A.; Fitt, B.D.L. Control of Crop Diseases through Integrated Crop Management to Deliver Climate-Smart Farming Systems for Low- and High-Input Crop Production. Plant Pathol. 2022, 71, 187–206. [Google Scholar] [CrossRef]
- Fones, H.N.; Bebber, D.P.; Chaloner, T.M.; Kay, W.T.; Steinberg, G.; Gurr, S.J. Threats to Global Food Security from Emerging Fungal and Oomycete Crop Pathogens. Nat. Food 2020, 1, 332–342. [Google Scholar] [CrossRef]
- Skendži´c, S.S.; Zovko, M.; Pajač, I.; Živkovi´c, Ž.; Leši´c, V.L.; Lemi´c, D.L. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Shrestha, S. Acta Scıentıfıc Agrıculture (ISSN: 2581-365X) Effects of Climate Change in Agricultural Insect Pest. Acta Sci. Agric. 2019, 3, 74–80. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture. 2018. Available online: https://www.fao.org/3/CA1553EN/ca1553en.pdf (accessed on 24 November 2022).
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Devlet, A. Modern Agriculture and Challenges. Front. Life Sci. Relat. Technol. 2021, 2, 21–29. [Google Scholar] [CrossRef]
- Newell, P.; Taylor, O.; Naess, L.O.; Thompson, J.; Mahmoud, H.; Ndaki, P.; Rurangwa, R.; Teshome, A. Climate Smart Agriculture? Governing the Sustainable Development Goals in Sub-Saharan Africa. Front. Sustain. Food Syst. 2019, 3. [Google Scholar] [CrossRef]
- Brodt, S.; Six, J.; Feenstra, G.; Ingels, C.; Knowl, D.C. Sustainable Agriculture. Nat. Educ. Knowl. 2011, 3, 1. [Google Scholar]
- Lipper, L.; Building, D.Z. A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates. Climate Smart Agriculture: Building Resilience to Climate Change; Springer: Cham, Switzerland, 2018. [Google Scholar]
- FAO Climate-Smart Agriculture: Policies. Practices and Financing for Food Security, Adaptation and Mitigation. Rome. 2010. Available online: ttps://www.fao.org/agrifood-economics/publications/detail/en/c/122846/ (accessed on 19 December 2022).
- Sekabira, H.; Tepa-Yotto, G.T.; Djouaka, R.; Clottey, V.; Gaitu, C.; Tamò, M.; Kaweesa, Y.; Ddungu, S.P. Determinants for Deployment of Climate-Smart Integrated Pest Management Practices: A Meta-Analysis Approach. Agriculture 2022, 12, 1052. [Google Scholar] [CrossRef]
- Allouche, J.; Middleton, C.; Gyawali, D. The Water–Food–Energy Nexus: Power, Politics, and Justice. Future Food J. Food Agric. Soc. 2019, 7. Available online: https://www.thefutureoffoodjournal.com/index.php/FOFJ/article/view/281 (accessed on 19 December 2022).
- FAO. Available online: https://www.fao.org/pest-and-pesticide-management/ipm/integrated-pest-management/en/ (accessed on 19 December 2022).
- Egan, P.; Chikoye, D.; Green, K.; Tamò, M.; Feit, B. Harnessing Nature-Based Solutions for Smallholder Plant Health in a Changing Climate. 2021. Available online: https://cgspace.cgiar.org/handle/10568/11424 (accessed on 19 December 2022).
- Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-Smart Pest Management: Building Resilience of Farms and Landscapes to Changing Pest Threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Du, X.; Elbakidze, L.; Lu, L.; Taylor, R.G. Climate Smart Pest Management. Sustainability 2022, 14, 9832. [Google Scholar] [CrossRef]
- Philip, W. Integrated Crop Management as a Sustainable Future for Global Agriculture. 2022. Available online: https://www.nuffieldscholar.org/sites/default/files/2022-02/Nuffield%20Report_Phil%20Weller_FINAL2.pdf (accessed on 19 December 2022).
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed]
- Lopian, R. Climate Change, Sanitary and Phytosanitary Measures and Agricultural Trade. In The State of Agricultural Commodity Markets (SOCO); FAO: Rome, Italy, 2018; p. 48. [Google Scholar]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The Persistent Threat of Emerging Plant Disease Pandemics to Global Food Security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef]
- Newbery, F.; Qi, A.; Fitt, B.D. Modelling Impacts of Climate Change on Arable Crop Diseases: Progress, Challenges and Applications. Curr. Opin. Plant Biol. 2016, 32, 101–109. [Google Scholar] [CrossRef]
- Lange, H.; Økland, B.; Systems, P.K. Thresholds in the Life Cycle of the Spruce Bark Beetle under Climate Change. Int. J. Complex Syst. 2006. Available online: https://www.semanticscholar.org/paper/Thresholds-in-the-life-cycle-of-the-spruce-bark-Lange-%C3%98kland/42782508f3e7a909391dcad591fe84006c3fbf1e (accessed on 19 December 2022).
- FAO. Climate-related Transboundary Pests and Diseases. Rome. 2008. Available online: http://www.fao.org/3/a-ai785e.pdf (accessed on 24 November 2022).
- Vanhanen, H. Invasive Insects in Europe—The Role of Climate Change and Global Trade. Diss. For. 2008, 2008. [Google Scholar] [CrossRef]
- Prashar, M.; Bhardwaj, S.C.; Jain, S.K.; Datta, D.; Prashar, M.; Bhardwaj, S.C.; Jain, S.K.; Datta, D. Pathotypic Evolution in Puccinia Striiformis in India during 1995–2004. Aust. J. Agric. Res. 2007, 58, 602–604. [Google Scholar] [CrossRef]
- Mariette, N.; Androdias, A.; Mabon, R.; Corbiere, R.; Marquer, B.; Montarry, J.; Andrivon, D. Local adaptation to temperature in populations and clonal lineages of the Irish potato famine pathogen Phytophthora infestans. Ecol. Evol. 2016, 6, 6320–6331. [Google Scholar] [CrossRef]
- Priyadi, M.; Upadhyay, P. Emerging Plant Diseases Under Changing Climate Scenario. In Emerging Trends in Plant Pathology; Springer: Singapore, 2021; pp. 19–31. [Google Scholar]
- Mamiya, Y. History of Pine Wilt Disease in Japan. J. Nematol. 1988, 20, 219. [Google Scholar] [PubMed]
- Wingfield, M.J.; Blanchette, R.A.; Nicholls, T.H. Is the Pine Wood Nematode an Important Pathogen in the United States? J. For. 1984, 82, 232–235. [Google Scholar] [CrossRef]
- Pernek, M.; Lacković, N.; Lukić, I.; Zorić, N.; Matošević, D. Outbreak of Orthotomicus Erosus (Coleoptera, Curculionidae) on Aleppo Pine in the Mediterranean Region in Croatia. South-East Eur. For. SEEFOR 2019, 10, 19–27. [Google Scholar] [CrossRef]
- Godefroid, M.; Cruaud, A.; Streito, J.C.; Rasplus, J.Y.; Rossi, J.P. Xylella Fastidiosa: Climate Suitability of European Continent. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA Sequences Related to Xylella Fastidiosa in Oleander, Almond and Olive Trees Exhibiting Leaf Scorch Symptoms in Apulia (Southern Italy). J. Plant Pathol. 2013, 95, 668. [Google Scholar]
- Martelli, G.P.; Boscia, D.; Porcelli, F.; Saponari, M. The Olive Quick Decline Syndrome in South-East Italy: A Threatening Phytosanitary Emergency. Eur. J. Plant Pathol. 2016, 144, 235–243. [Google Scholar] [CrossRef]
- Morelli, M.; García-Madero, J.M.; Jos, Á.; Saldarelli, P.; Dongiovanni, C.; Kovacova, M.; Saponari, M.; Arjona, A.B.; Hackl, E.; Webb, S.; et al. Xylella Fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021, 9, 1771. [Google Scholar] [CrossRef]
- Cardone, G.; Digiaro, M.; Djelouah, K.; el Bilali, H.; Frem, M.; Fucilli, V.; Ladisa, G.; Rota, C.; Yaseen, T. Potential Socio-Economic Impact of Xylella Fastidiosa in the near East and North Africa (Nena): Risk of Introduction and Spread, Risk Perception and Socio-Economic Effects. New Medit. 2021, 20, 27–52. [Google Scholar] [CrossRef]
- Velasco-Amo, M.; Vicent, A.; Zarco-Tejada, P.; Navas-Cortés, J.; Landa, B.; Velasco-amo, M.P.; Vicent, A.; Zarco-tejada, P.J.; Navas-cortés, J.A.; Landa, B.B. Recent Research Accomplishments on Early Detection of Xylella Fastidiosa Outbreaks in the Mediterranean Basin. Phytopathol. Mediterr. 2022, 61, 549–561. [Google Scholar] [CrossRef]
- Al-Dobai, S.; Nasr, N. Xylella Fastidiosa & the Olive Quick Decline Syndrome (OQDS). 2017. Available online: https://om.ciheam.org/om/pdf/a121/a121.pdf (accessed on 19 December 2022).
- Krimi, Z.; Petit, A.; Mougel, C.; Dessaux, Y.; Nesme, X. Seasonal Fluctuations and Long-Term Persistence of Pathogenic Populations of Agrobacterium spp. in Soils. Appl. Environ. Microbiol. 2002, 68, 3358–3365. [Google Scholar] [CrossRef]
- Dotson, B.R.; Soltan, D.; Schmidt, J.; Areskoug, M.; Rabe, K.; Swart, C.; Widell, S.; Rasmusson, A.G. The Antibiotic Peptaibol Alamethicin from Trichoderma Permeabilises Arabidopsis Root Apical Meristem and Epidermis but Is Antagonised by Cellulase-Induced Resistance to Alamethicin. BMC Plant Biol. 2018, 18, 165. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef]
- Karlsson Green, K.; Stenberg, J.A.; Lankinen, Å. Making Sense of Integrated Pest Management (IPM) in the Light of Evolution. Evol. Appl. 2020, 13, 1791–1805. [Google Scholar] [CrossRef]
- Hunjan, M.S.; Lore, J.S. Climate Change: Impact on Plant Pathogens, Diseases, and Their Management. In Crop Protection under Changing Climate; Springer: Cham, Switzerland, 2020; pp. 85–100. [Google Scholar]
- Bate, A.M.; Jones, G.; Kleczkowski, A.; MacLeod, A.; Naylor, R.; Timmis, J.; Touza, J.; White, P.C.L. Modelling the Impact and Control of an Infectious Disease in a Plant Nursery with Infected Plant Material Inputs. Ecol. Model. 2016, 334, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, M.F.; Kleczkowski, A.; Healey, J.R.; Quine, C.P.; Hanley, N. The Effects of Invasive Pests and Pathogens on Strategies for Forest Diversification. Ecol. Model. 2017, 350, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Gleason, M.L.; Duttweiler, K.B.; Batzer, J.C.; Taylor, S.E.; Sentelhas, P.C.; Monteiro, J.E.B.A.; Gillespie, T.J. Obtaining Weather Data for Input to Crop Disease-Warning Systems: Leaf Wetness Duration as a Case Study. Sci. Agric. 2008, 65, 76–87. [Google Scholar] [CrossRef]
- Cendoya, M.; Martínez-Minaya, J.; Dalmau, V.; Ferrer, A.; Saponari, M.; Conesa, D.; López-Quílez, A.; Vicent, A. Spatial Bayesian modeling applied to the surveys of Xylella fastidiosa in Alicante (Spain) and Apulia (Italy). Front. Plant Sci. 2020, 11, 1204. [Google Scholar] [CrossRef]
- Pitblado, R.E. TOM-CAST a Weather Timed Fungicide Spray Program for Field Tomatoes—The Second Year. 1990. Available online: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/7356 (accessed on 19 December 2022).
- Russo, J.M. Weather Forecasting for IPM. In Emerging Technologies for Integrated Pest Management: Concepts, Research, and Implementation, Proceedings of an IPM Conference, Raleigh, NC, USA, 8–10 March 1999; Springer: Berlin, Germany, 2000; pp. 453–473. [Google Scholar]
- Thomas, C.S.; Skinner, P.W.; Fox, A.D.; Greer, C.A.; Gubler, W.D. Utilization of GIS/GPS-Based Information Technology in Commercial Crop Decision Making in California, Washington, Oregon, Idaho, and Arizona. J. Nematol. 2002, 34, 200. [Google Scholar]
- Brown, N.; Pérez-Sierra, A.; Crow, P.; Parnell, S. The Role of Passive Surveillance and Citizen Science in Plant Health. CABI Agric. Biosci. 2020, 1, 1–16. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.; Thompson, A.L.; Treakle, T. Public Contributions to Early Detection of New Invasive Pests. Conserv. Sci. Pract. 2021, 3, e422. [Google Scholar] [CrossRef]
- Dyussembayev, K.; Sambasivam, P.; Bar, I.; Brownlie, J.C.; Shiddiky, M.J.A.; Ford, R. Biosensor Technologies for Early Detection and Quantification of Plant Pathogens. Front. Chem. 2021, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Bouri, M.; Chattaoui, M.; Gharsa, H.B.; McClean, A.; Kluepfel, D.; Nesme, X.; Rhouma, A. Analysıs Of Agrobacterıum Populatıons Isolated From Tunısıan Soıls: Genetıc Structure, Avırulent-Vırulent Ratıos And Characterızatıon Of Tumorıgenıc Straıns. J. Plant Pathol. 2016, 98, 265–274. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ostendorf, B.; Gautam, D.; Habili, N.; Pagay, V. Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review. Remote Sens. 2022, 14, 1542. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–254. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Pan, Y.; Yang, X.; Chen, L.; Zhao, C. A Review of Advanced Technologies and Development for Hyperspectral-Based Plant Disease Detection in the Past Three Decades. Remote Sens. 2020, 12, 3188. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, H.; Ciechanowska, I.; Spaner, D. Application of Infrared Thermal Imaging for the Rapid Diagnosis of Crop Disease. IFAC-Pap. Online 2018, 51, 424–430. [Google Scholar] [CrossRef]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Chauhan, A.; Soni, S.K. Implementation of Drone Technology for Farm Monitoring & Pesticide Spraying: A Review. Inf. Process. Agric. 2022, 10. [Google Scholar] [CrossRef]
- Balaško, M.K.; Bažok, R.; Mikac, K.M.; Lemic, D.; Pajač Živković, I. Pest Management Challenges and Control Practices in Codling Moth: A Review. Insects 2020, 11, 38. [Google Scholar] [CrossRef]
- Strand, J.F. Some Agrometeorological Aspects of Pest and Disease Management for the 21st Century. Agric. Meteorol. 2000, 103, 73–82. [Google Scholar] [CrossRef]
- González Vázquez, A.E.; Hockemeyer, K.R.; McConville, M.; Remucal, C.K.; Koch, P.L. Assessment of Temperature and Time Following Application as Predictors of Propiconazole Translocation in Agrostis Stolonifera. ACS Agric. Sci. Technol. 2022, 2, 592–602. [Google Scholar] [CrossRef]
- West, J.S.; Bravo, C.; Oberti, R.; Moshou, D.; Ramon, H.; McCartney, H.A. Detection of Fungal Diseases Optically and Pathogen İnoculum by Air Sampling. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Springer: Berlin, Germany, 2010; pp. 135–149. [Google Scholar]
- Nabaei, A.; Hamian, M.; Parsaei, M.R.; Safdari, R.; Samad-Soltani, T.; Zarrabi, H.; Ghassemi, A. Topologies and Performance of Intelligent Algorithms: A Comprehensive Review. Artif. Intell. Rev. 2018, 49, 79–103. [Google Scholar] [CrossRef]
- Petzoldt, C.; Seaman, A. Climate change effects on insects and pathogens. Clim. Change Agric. Promot. Pract. Profitab. Responses 2006, 3, 6–16. [Google Scholar]
- Hannukkala, A.O.; Kaukoranta, T.; Lehtinen, A.; Rahkonen, A. Late-Blight Epidemics on Potato in Finland, 1933–2002; Increased and Earlier Occurrence of Epidemics Associated with Climate Change and Lack of Rotation. Plant Pathol. 2007, 56, 167–176. [Google Scholar] [CrossRef]
- Augusto, J.; Brenneman, T.B.; Culbreath, A.K.; Sumner, P. Night Spraying Peanut Fungicides II. Application Timings and Spray Deposition in the Lower Canopy. Plant Dis. 2010, 94, 683–689. [Google Scholar] [CrossRef]
- Faical, B.S.; Pessin, G.; Filho, G.P.R.; Carvalho, A.C.P.L.F.; Furquim, G.; Ueyama, J. Fine-Tuning of UAV Control Rules for Spraying Pesticides on Crop Fields. In Proceedings of the 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, Cyprus, 10–12 November 2014; pp. 527–533. [Google Scholar] [CrossRef]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability Issues on Rice–Wheat Cropping System. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef]
- FAO 2017 Case Study C1.5 Zero-Tillage Potato Integrated Pest Management (IPM) for Climate Mitigation in Viet Nam | Climate Smart Agriculture Sourcebook|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/climate-smart-agriculture-sourcebook/enabling-frameworks/module-c1-capacity-development/c1-case-studies/case-study-c15-zero-tillage-potato-integrated-pest-management-ipm-for-climate-mitigation-in-viet-nam/en/ (accessed on 2 February 2023).
- Ramírez, D.A.; Silva-Díaz, C.; Ninanya, J.; Carbajal, M.; Rinza, J.; Kakraliya, S.K.; Gatto, M.; Kreuze, J. Potato Zero-Tillage and Mulching Is Promising in Achieving Agronomic Gain in Asia. Agronomy 2022, 12, 1494. [Google Scholar] [CrossRef]
- Ali, M.A.; Shahadat, M.K.; Rashid, M.H. Performance of Zero Tillage Potato Cultivation with Different Mulch Materials in the South-Western Saline Area of Bangladesh. Proceedings 2019, 36, 29. [Google Scholar] [CrossRef]
- CIP Annual Report 2020. Build, Innovate, Transform: Collaborative Solutions for Global Challenges; International Potato Center: Lima, Peru, 2021; p. 40.
- Du, C.; Li, L.; Effah, Z. Effects of Straw Mulching and Reduced Tillage on Crop Production and Environment: A Review. Water 2022, 14, 2471. [Google Scholar] [CrossRef]
- MacLaren, C.; Labuschagne, J.; Swanepoel, P.A. Tillage Practices Affect Weeds Differently in Monoculture vs. Crop Rotation. Soil Tillage Res. 2021, 205, 104795. [Google Scholar] [CrossRef]
- Gatto, M. Potato Production through Zero-Tillage with Straw Mulch (PZTM); International Potato Center, 2022; p. 2. Available online: https://cgspace.cgiar.org/handle/10568/121078 (accessed on 19 December 2022).
- Jeger, M.J. The impact of climate change on disease in wild plant populations and communities. Plant Pathol. 2022, 71, 111–130. [Google Scholar] [CrossRef]
- Yousaf, A.; Kayvanfar, V.; Mazzoni, A.; Elomri, A. Artificial Intelligence-Based Decision Support Systems in Smart Agriculture: Bibliometric Analysis for Operational Insights and Future Directions. Front. Sustain. Food Syst. 2023, 6, 634. [Google Scholar] [CrossRef]
- Rossı, V.; Caffı, T.; Salınarı, F. Helping Farmers Face the Increasing Complexity of Decision-Making for Crop Protection. Phytopathol. Mediterr. 2012, 51, 457–479. [Google Scholar] [CrossRef]
- Ascough, J.C.A., II; McMaster, G.S.; Dunn, G.H.; Andales, A.A. The GPFARM DSS for Agroecosystem Sustainability: Past, Future, and Lessons Learned. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 5–8 July 2010. [Google Scholar]
- Jones, V.P.; Brunner, J.F.; Grove, G.G.; Petit, B.; Tangren, G.V.; Jones, W.E. A Web-Based Decision Support System to Enhance IPM Programs in Washington Tree Fruit. Pest. Manag. Sci. 2010, 66, 587–595. [Google Scholar] [CrossRef]
- Trebicki, P. Climate change and plant virus epidemiology. Virus Res. 2020, 286, 198059. [Google Scholar] [CrossRef]
- Véle, A.; Frouz, J. Bark Beetle Attacks Reduce Survival of Wood Ant Nests. Forests 2023, 14, 199. [Google Scholar] [CrossRef]
- Véle, A.; Dobrosavljević, J. Formica rufa ants have a limited effect on the abundance of the parasitic fly Ernestia rudis in Scots pine plantations. Sociobiology 2021, 68, e7286. [Google Scholar] [CrossRef]
- Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2020. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2021, 26, 627. [Google Scholar] [CrossRef]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Smiley, R.W.; Machado, S. Fusarium Crown Rot of Winter Wheat Influenced by Resource Competition near a Tree Windbreak. Plant Dis. 2020, 104, 348–357. [Google Scholar] [CrossRef]
- Papaïx, J.; Rimbaud, L.; Burdon, J.J.; Zhan, J.; Thrall, P.H. Differential Impact of Landscape-Scale Strategies for Crop Cultivar Deployment on Disease Dynamics, Resistance Durability and Long-Term Evolutionary Control. Evol. Appl. 2018, 11, 705–717. [Google Scholar] [CrossRef]
- Rimbaud, L.; Fabre, F.; Papaïx, J.; Moury, B.; Lannou, C.; Barrett, L.G.; Thrall, P.H. Models of Plant Resistance Deployment. Annu. Rev. Phytopathol. 2021, 59, 125–152. [Google Scholar] [CrossRef] [PubMed]
- Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [Google Scholar] [CrossRef]
- Oerke, E.C. Remote Sensing of Diseases. Annu. Rev. Phytopathol. 2020, 58, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Azadi, H.; Movahhed Moghaddam, S.; Burkart, S.; Mahmoudi, H.; van Passel, S.; Kurban, A.; Lopez-Carr, D. Rethinking Resilient Agriculture: From Climate-Smart Agriculture to Vulnerable-Smart Agriculture. J. Clean Prod. 2021, 319, 128602. [Google Scholar] [CrossRef]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and Privacy in Smart Farming: Challenges and Opportunities. IEEE Access 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- Jeger, M.; Beresford, R.; Bock, C.; Brown, N.; Fox, A.; Newton, A.; Vicent, A.; Xu, X.; Yuen, J. Global Challenges Facing Plant Pathology: Multidisciplinary Approaches to Meet the Food Security and Environmental Challenges in the Mid-Twenty-First Century. CABI Agric. Biosci. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Barrios, E.; Gemmill-Herren, B.; Bicksler, A.; Siliprandi, E.; Brathwaite, R.; Moller, S.; Batello, C.; Tittonell, P. The 10 Elements of Agroecology: Enabling Transitions towards Sustainable Agriculture and Food Systems through Visual Narratives. Ecosyst. People 2020, 16, 230–247. [Google Scholar] [CrossRef]
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological Principles and Elements and Their Implications for Transitioning to Sustainable Food Systems. A Review. Agron. Sustain. Dev. 2020, 40, 1–13. [Google Scholar] [CrossRef]
Pest Species | Region | Changes | References |
---|---|---|---|
European spruce bark beetle (Ips typographus Linnaeus) | Norway | Two generations are recorded in forests instead of one generation per year due to warming | [27] |
Old World bollworm (Helicoverpa armigera Hübner) | United Kingdom and the northern edge of its range in Europe | Extension of geographical distribution from 1969 to 2004 | [28] |
Oak processionary moth (Thaumetopoea processionea Linnaeus) | Central and Southern Europe, Belgium, Netherlands, and Denmark | Geographical region extension: from Central and Southern Europe to Belgium, Netherlands, and Denmark | [28] |
Nun moth (Lymantria monacha Linnaeus) and the Gypsy moth (Lymantria dispar Linnaeus) | Europe | Extension of the northward shift distribution range (approximately 500–700 km) and retraction of the southern edge ranges by 100–900 km | [29] |
Wheat yellow rust (Puccinia striiformis Westend) | Northern Indian state of Punjab | Emergence of a new pathotype which can cause infection in late December due to higher temperatures | [30] |
Phytophthora infestans | Western Europe | Local thermal adaptation with invasive behavior linked to increased aggressiveness | [31] |
Crop Disease Warning System | Aim | Reference |
---|---|---|
TOM-CAST | Providing data for processing-tomato growers once per week during the first month of the growing season and three times per week after fungicide sprays began | [52] |
SkyBit Inc. | Site-specific estimation of weather conditions and pest risks in near-real time, and forecasting up to 3 days in advance at a spatial resolution of about 1 km2 | [53] |
A network of more than 2000 automated weather stations of private farm management companies | Providing color-coded regional risk maps across the western United States for targeted agricultural risks, pests, and diseases (12 diseases and six insect pests) | [54] |
Diseases/Pests | Decision According to Weather Changes | References |
---|---|---|
Wheat blotch (Septoria tritici) | The decision system for the timing of fungicide application has been made based on different climate variables in the United Kingdom. | [69] |
Potato late blight (Phytopthora infestans) | In the northeast United States, the susceptibility period of the disease would be raised by 10–20 days due to temperature increasing. A need for an addition of 1–4 fungicide foliar applications was predicted. | [70] |
Stem rot of peanut (Sclerotium rolfsii) | Fungicide application early in the morning to improve spray deposition in the lower canopy of the plant | [71] |
Lepidopteran insect pests |
| [69] |
DSS Limitations | Examples | References |
---|---|---|
DSSs do not adequately consider all aspects of production | Several DSSs focus on saving an individual spray, but growers are usually more concerned with maintaining quality standards or meeting regulations. | [83] |
Low quality of the products | Poor communication between the DSS developers and users, so that in commercial DSSs the refinement phase of the DSS products is lacking. | [83] |
Lack of user-friendly interfaces | Many DSSs have presented their outputs in quantitative terms, while growers find difficulty in their interpretation. | [83] |
Tedious input requirements | Much information requested as input, while farmers did not have the time to fill in the system. | [84] |
Delays in data processing and/or update | Difficulties in rapidly updating the default DSS databases (e.g., climate data and PPPs) can reduce the usefulness of the system to the growers. | [84] |
Maintenance costs | Difficulties in rapidly updating the default DSS databases (e.g., climate data and PPPs) can reduce the usefulness of the system to the growers. | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouri, M.; Arslan, K.S.; Şahin, F. Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability 2023, 15, 4592. https://doi.org/10.3390/su15054592
Bouri M, Arslan KS, Şahin F. Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability. 2023; 15(5):4592. https://doi.org/10.3390/su15054592
Chicago/Turabian StyleBouri, Meriam, Kadir Sinan Arslan, and Fikrettin Şahin. 2023. "Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges" Sustainability 15, no. 5: 4592. https://doi.org/10.3390/su15054592
APA StyleBouri, M., Arslan, K. S., & Şahin, F. (2023). Climate-Smart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability, 15(5), 4592. https://doi.org/10.3390/su15054592