Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany
Abstract
:1. Introduction
- (1)
- What are the key interests in agricultural land, and to what extent do they lead to land use conflicts or land use synergies?
- (2)
- How and where can we identify and map land use conflict areas and land use synergy areas on agricultural land?
- (3)
- What is the extent of land use synergy potentials on agricultural land in Brandenburg?
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
3.1. Stakeholders and Their Interests in Agricultural Land
3.2. Land Use Conflicts—Differentiation and Spatial Distribution
- (a)
- Agricultural use remains on the agricultural parcel,
- (b)
- Agricultural use is displaced by nonagricultural use, so agricultural land is lost.
3.3. Land Use Synergies—Distribution of Potential Areas
4. Discussion
4.1. Summary of Findings
4.2. Limitations and Further Research
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Land Use Classes | Land Use Sub-Classes | Land Use Objectives |
---|---|---|
(A) Primary Production | A1 Agriculture | A10 Food production |
A11 Fodder production | ||
A12 Production of renewable raw materials | ||
A2 Forestry | A21 Timber production | |
A3 Mining and quarrying | A31 Mining of raw materials | |
A4 Aquaculture | A41 Aquaculture | |
A42 Fishing | ||
A5 Other primary productions | A51 Hunting | |
A52 Picking of natural products | ||
(B) Secondary Production | B1 Industrial production | B11 Production of industrial products |
B2 Energy production | B21 Renewable energy production | |
B22 Fossil energy production | ||
B23 Nuclear energy production | ||
(C) Tertiary Production | C1 Services | C10 Services |
(D) Infrastructure | D1 Transport | D10 Road transportation |
D11 Railway transportation | ||
D12 Bicycle lanes | ||
D13 Water transportation | ||
D2 Logistic and storage | D21 Logistic and storage | |
D3 Supply | D31 Supply of population | |
D4 Waste management | D41 Waste utilization | |
D42 Waste storage | ||
(E) Residential use | E1 Residential use | E10 Residential use |
(F) Recreational | F1 Recreational and leisure sites | F10 Recreation |
F11 Leisure | ||
(G) Conservation | G1 Nature conservation | G10 Protection of landscapes |
G11 Conservation of nature | ||
G12 Other protection objectives | ||
G2 Managed resource Protection | G21 Drinking water protection | |
G3 Other mineral uses | G22 Mineral use | |
(H) Natural area | H1 Without use | H10 No land use |
References
- United Nations. World Population Prospects 2019: Highlights; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019; Available online: http://www.europeanmigrationlaw.eu/documents/UN-WorldPopulationProspects2019-Highlights.pdf (accessed on 16 May 2021).
- Begon, M.; Howarth, R.W.; Townsend, C.R. (Eds.) Die Ökologie des Menschen: Bevölkerungswachstum, Krankheiten und Versorgung mit Nahrung. In Ökologie; 3. Aufl. 2017, Nachdruck 2014; Springer: Berlin/Heidelberg, Germany, 2016; pp. 521–566. ISBN 978-3-662-49905-4. [Google Scholar]
- Statistisches Bundesamt. Einwohnerzahlen in Brandenburg von 1961 Bis 2021. Available online: https://de.statista.com/statistik/daten/studie/155142/umfrage/entwicklung-der-bevoelkerung-von-brandenburg-seit-1961/ (accessed on 15 February 2023).
- Torre, A.; Romain, M.; Habibullah, M.; Luc, B.; Anne, C.; Armelle, C.; Ségolène, D.; Philippe, J.; Thierry, K.; Haï, P.V.; et al. Identifying and measuring land-use and proximity conflicts: Methods and identification. SpringerPlus 2014, 3, 85. [Google Scholar] [CrossRef] [PubMed]
- Hersperger, A.M.; Ioja, C.; Steiner, F.; Tudor, C.A. Comprehensive consideration of conflicts in the land-use planning process: A conceptual contribution. Carpathian J. Earth Environ. Sci. 2015, 10, 5–13. [Google Scholar]
- Arnold, S.; Lucas, C.; Pauly, R. Der neue Nutzungsartenkatalog zur erweiterten tatsächlichen Nutzung in der amtlichen Flächenstatistik. Wiss. Stat. 2020, 72, 44–56. [Google Scholar]
- Von der Dunk, A.; Grêt-Regamey, A.; Dalang, T.; Hersperger, A.M. Defining a typology of peri-urban land-use conflicts—A case study from Switzerland. Landsc. Urban Plan. 2011, 101, 149–156. [Google Scholar] [CrossRef]
- Wehrmann, B. Land Conflicts: A Practical Guide to Dealing with Land Disputes; GTZ: Eschborn, Germany, 2008; ISBN 9783000239403. [Google Scholar]
- Adam, Y.O.; Pretzsch, J.; Darr, D. Land use conflicts in central Sudan: Perception and local coping mechanisms. Land Use Policy 2015, 42, 1–6. [Google Scholar] [CrossRef]
- Steinhäußer, R.; Siebert, R.; Steinführer, A.; Hellmich, M. National and regional land-use conflicts in Germany from the perspective of stakeholders. Land Use Policy 2015, 49, 183–194. [Google Scholar] [CrossRef]
- Yang, S.; Dou, S.; Li, C. Land-use conflict identification in urban fringe areas using the theory of leading functional space partition. Soc. Sci. J. 2020, 1–16. [Google Scholar] [CrossRef]
- Brown, G.; Raymond, C.M. Methods for identifying land use conflict potential using participatory mapping. Landsc. Urban Plan. 2014, 122, 196–208. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Hite, J.C. Land Use Conflicts on the Urban Fringe: Causes and Potential Resolution, Clemson. 1998. Available online: https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1318&context=sti_pubs (accessed on 3 March 2022).
- Magsi, H.; Torre, A. Approaches to understand land use conflicts in the developing countries. Macrotheme Rev. 2013, 2, 119–136. [Google Scholar]
- Mirady, S.; Gonzales, S.E.; Castillo, M.M.; Alvizu, P.; Oliviera, M.A.; Perez, J.; Quilici, A.; Rada, M.; Yaber, M.C. Large-scale shrimp farming in coastal wetlands of Venezuela, South America: Causes and consequences of land-use conflicts. Environ. Manag. 1994, 18, 647–661. [Google Scholar]
- Valle Junior, R.F.; Varandas, S.G.; Pacheco, F.A.; Pereira, V.R.; Santos, C.F.; Cortes, R.M.; Sanches Fernandes, L.F. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 2015, 43, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Adisa, R.S. (Ed.) Land Use Conflict between Farmers and Herdsmen—Implications for Agricultural and Rural Development in Nigeria: Rural Development—Contemporary Issues and Practices; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0461-2. Available online: http://www.intechopen.com/books/rural-development-contemporary-issues-and-practices/land-use-conflictbetween-famers-and-herdsmen-implications-for-agricultural-and-rural-development-in (accessed on 14 May 2022).
- Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.; Kull, T.; McCracken, D.; Moritz, R.F.; Niemelä, J.; Rebane, M.; et al. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—A review. Agric. Ecosyst. Environ. 2008, 124, 60–71. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, A.J.; Fung, T. Using GIS and Multi-criteria Decision Analysis for Conflict Resolution in Land Use Planning. Procedia Environ. Sci. 2012, 13, 2264–2273. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Kong, X.; Jing, Y.; Cai, E.; Zhang, L.; Liu, Y.; Wang, Z.; Liu, Y. Spatial Patterns and Driving Forces of Conflicts among the Three Land Management Red Lines in China: A Case Study of the Wuhan Urban Development Area. Sustainability 2019, 11, 2025. [Google Scholar] [CrossRef] [Green Version]
- Grass, I.; Batáry, P.; Tscharntke, T. Combining land-sparing and land-sharing in European landscapes. Adv. Ecol. Res. 2021, 64, 251–303. [Google Scholar] [CrossRef]
- Stave, K. Participatory System Dynamics Modeling for Sustainable Environmental Management: Observations from Four Cases. Sustainability 2010, 2, 2762–2784. [Google Scholar] [CrossRef] [Green Version]
- Gorripati, R.; Kolagani, N.; Thakur, M. Promoting Climate Resilient Sustainable Agriculture through Participatory System Dynamics with Crop-Water-Income Dynamics. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Amini, S.; Rohani, A.; Aghkhani, M.H.; Abbaspour-Fard, M.H.; Asgharipour, M.R. Assessment of land suitability and agricultural production sustainability using a combined approach (Fuzzy-AHP-GIS): A case study of Mazandaran province, Iran. Inf. Process. Agric. 2020, 7, 384–402. [Google Scholar] [CrossRef]
- Charabi, Y.; Gastli, A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renew. Energy 2011, 36, 2554–2561. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Xu, T.; Wang, L.; Zuo, Q.; Liu, J.; Su, X.; He, N.; Wu, Z. Trade-offs/Synergies in Land-use Function Changes in Central China from 2000 to 2015. Chin. Geogr. Sci. 2021, 31, 711–726. [Google Scholar] [CrossRef]
- Kangas, K.; Brown, G.; Kivinen, M.; Tolvanen, A.; Tuulentie, S.; Karhu, J.; Markovaara-Koivisto, M.; Eilu, P.; Tarvainen, O.; Similä, J.; et al. Land use synergies and conflicts identification in the framework of compatibility analyses and spatial assessment of ecological, socio-cultural and economic values. J. Environ. Manag. 2022, 316, 115174. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Zhang, H.; Yan, W.; Zhao, C. Trade-offs and synergies in ecosystem service values of inland lake wetlands in Central Asia under land use/cover change: A case study on Ebinur Lake, China. Glob. Ecol. Conserv. 2020, 24, e01253. [Google Scholar] [CrossRef]
- Deutscher Fachverband für Agroforstwirtschaft. Agroforstwirtschaft: Die Kunst, Bäume und Landwirtschaft zu Verbinden. 2020. Available online: https://agroforst-info.de/wp-content/uploads/2020/12/2020_DeFAF_Brosch%C3%BCre_final_Web.pdf (accessed on 28 January 2022).
- Mosquera-Losada, M.R.; Santiago-Freijanes, J.J.; Rois-Díaz, M.; Moreno, G.; den Herder, M.; Aldrey-Vázquez, J.A.; Ferreiro-Domínguez, N.; Pantera, A.; Pisanelli, A.; Rigueiro-Rodríguez, A. Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy 2018, 78, 603–613. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Rankoth, L.; Jose, S. Agroforestry and Biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Fraunhofer-Institut für Solare Energiesysteme ISE. Agri-Photovoltaik: Chance für Landwirtschaft und Energiewende, Freiburg. 2020. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/APV-Leitfaden.pdf (accessed on 3 May 2022).
- Schindele, S. Nachhaltige Landnutzung mit Agri-Photovoltaik: Photovoltaikausbau im Einklang mit der Lebensmittelproduktion: Szenarioanalyse zur Inanspruchnahme landwirtschaftlicher Nutzflächen durch Photovoltaik in Deutschland bis 2050. GAIA Ecol. Perspect. Sci. Soc. 2021, 30, 96–105. [Google Scholar] [CrossRef]
- Baudry, J.; Alomar, O.; Begg, G.; Büren, C.; Chenaux, B.; Elmquist, H.; Flamm, C.W.; Gosme, M.; Guerin, O.; Jeanneret, P. EIP-AGRI Focus Grpup: Benefits of Landscape Features for Arable Crop Production. 2016. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_ecological-focus-areas_final-report_en.pdf (accessed on 27 August 2022).
- Qing, W.; Hualin, X. A Review and Implication of Land Fallow System Research. J. Resour. Ecol. 2017, 8, 223–231. [Google Scholar] [CrossRef]
- Knickel, K.; Douwe van der Ploeg, J.; Renting, H. Multifunktionalität der Landwirtschaft und des ländlichen Raums. In Perspektiven in der Landnutzung: Regionen, Landschaften, Betriebe. Entscheidungsträger und Instrumente; Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V., Band 39; Landwirtschaftsverlag GmbH: Münster, Germany, 2004; pp. 75–83. [Google Scholar]
- Amt für Statistik Berlin-Brandenburg. Statistisches Jahrbuch 2020—Brandenburg; Amt für Statistik Berlin-Brandenburg: Potsdam, Germany, 2020; pp. 1–645. [Google Scholar]
- Ministerium des Inneren und für Kommunales des Landes Brandenburg. Anzahl der Landkreise, kreisfreien Städte, Gemeinden und Ämter in Brandenburg. 2020. Available online: https://service.brandenburg.de/de/kommunale-verwaltungsstruktur/20108 (accessed on 27 May 2021).
- Deutscher Wetterdienst. Temperatur: Vieljährige Mittelwerte 1991–2020. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/temp_9120_akt_html.html?view=nasPublication&nn=16102 (accessed on 24 April 2021).
- Deutscher Wetterdienst. Niederschlag: Vieljährige Mittelwerte 1991–2020. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/nieder_9120_akt_html.html?view=nasPublication&nn=16102 (accessed on 24 April 2021).
- Amt für Statistik Berlin-Brandenburg. Erste Ergebnisse der Landwirtschaftszählung 2020 für Brandenburg. 2021. Available online: https://www.statistik-berlin-brandenburg.de/pms/2021/21-01-21.pdf (accessed on 21 January 2021).
- Statistisches Bundesamt. Strukturwandel in der Landwirtschaft Hält An. Available online: https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/01/PD21_028_412.html (accessed on 21 January 2021).
- Wolff, S.; Hüttel, S.; Nendel, C.; Lakes, T. Agricultural Landscapes in Brandenburg, Germany: An Analysis of Characteristics and Spatial Patterns. Int. J. Environ. Res. 2021, 15, 487–507. [Google Scholar] [CrossRef]
- Ministerium für Wirtschaft, Arbeit und Energie. Erneuerbare Energien. 2021. Available online: https://mwae.brandenburg.de/de/bb1.c.478388.de (accessed on 19 October 2021).
- Hartmann, A. Wie Viel Fläche Wird für Biogas Benötigt? Available online: https://www.statistik-bw.de/Service/Veroeff/Monatshefte/PDF/Beitrag08_07_08.pdf (accessed on 4 September 2021).
- Machl, T.; Ewald, W.; Donaubauer, A.; Kolbe, T.H. Entwicklung eines Werkzeugs zur landesweit flächendeckenden Analyse landwirtschaftlicher Transportbeziehungen in Bayern. Z. Geodäsie Geoinf. Landmanag. 2016, 3, 197–205. [Google Scholar]
- Reckleben, Y.; Schäfer, N.; Weißbach, M. Steigerung der Effizienz bei Straßentransporten mit unterschiedlichen Reifentypen für Traktoren. Landtechnik 2013, 68, 196–201. [Google Scholar]
- Aid Infodienst e.V. 3614 2015 Gute Fachliche Praxis—Bodenbewirtschaftung und Bodenschutz. 2013. Available online: https://www.ig-gesunder-boden.de/Portals/0/doc/Literatur/BLE_GfP_3614_508_web.pdf (accessed on 20 December 2022).
- Deutscher Verband für Landschaftspflege e.V. DVL-Publikation-Schriftenreihe-9_Landschaftselemente_in_der_Agrarstruktur. Available online: https://www.dvl.org/uploads/tx_ttproducts/datasheet/DVL-Publikation-Schriftenreihe-9_Landschaftselemente_in_der_Agrarstruktur.pdf (accessed on 20 December 2022).
- Böhm, C.; Hübner, R. Bäume als Bereicherung Für Landwirtschaftliche Flächen: Ein Innovationskonzept für die Verstärkte Umsetzung der Agroforstwirtschaft in Deutschland, Cottbus. 2020. Available online: https://agroforst-info.de/wp-content/uploads/2020/03/Innovationskonzept-Agroforstwirtschaft.pdf (accessed on 28 January 2022).
- Ministerium für Landwirtschaft, Umwelt und Klimaschutz. Im Vergleich—Brandenburg Braucht Landwirtschaft. 2021. Available online: https://agrarbericht.brandenburg.de/abo/de/start/agrarstruktur/im-vergleich/# (accessed on 12 February 2022).
- Europäische Kommission. Grüner Deal: EU Investiert Mehr Als 110 Millionen Euro in LIFE-Projekte für Umwelt und Klima in elf EU-Ländern; Europäische Kommission: Brüssel, Belgium, 2022. [Google Scholar]
- Leggett, J.A. The United Nations Framework Convention on Climate Change, the Kyoto Protocol, and the Paris Agreement: A Summary. 2020. Available online: https://sgp.fas.org/crs/misc/R46204.pdf (accessed on 3 June 2022).
- Ehlerding, S. Klimaschutz Ist Keine Ideologie: Debatte um Klimawandel und Weldernährung. Der Tagesspiegel [Online], 30 July 2019. Available online: https://www.tagesspiegel.de/politik/debatte-um-klimawandel-und-erderwaermung-klimaschutz-ist-keine-ideologie/24849784.html (accessed on 7 March 2022).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 3 March 2022).
- Böhm, C.; Tsonkova, P.; Mohr, T.; Schröder, C.; Lorenz, C.; Ludewig, M.; Bösel, B.; Dommel, J.; Wagner, N.; Domin, T. Konzept zur Förderung von Agroforstflächen als Agrarumwelt- und Klimamaßnahme (AUKM) im Rahmen des Kulturlandschaftsprogramms (KULAP) des Landes Brandenburg. 2020. Available online: https://agroforst-info.de/wp-content/uploads/2020/06/Konzept_Agroforst_AUKM__Druck.pdf (accessed on 13 March 2022).
- Sozialdemokratische Partei Deutschlands; Christlich Demokratische Union Deutschlands; Bündnis 90/Die Grünen. Ein neues Kapitel für Brandenburg—Zusammenhalt, Nachhaltigkeit, Sicherheit: Ein Kapitel für Brandenburg. Gemeinsamer Koalitionsvertrag von SPD Brandenburg, CDU Brandenburg und Bundnis 90/Die Grünen Brandenburg. 2019. Available online: https://www.brandenburg.de/media/bb1.a.3833.de/Koalitionsvertrag_Endfassung.pdf (accessed on 3 June 2022).
- Bai, Q.; Labi, S.; Li, Z. Trade-Off Analysis Methodology for Asset Management, West Lafayette, Indiana. 2008. Available online: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2653&context=jtrp (accessed on 4 June 2021).
- Hinz, R.; Sulser, T.B.; Huefner, R.; Mason-D’Croz, D.; Dunston, S.; Nautiyal, S.; Ringler, C.; Schuengel, J.; Tikhile, P.; Wimmer, F.; et al. Agricultural Development and Land Use Change in India: A Scenario Analysis of Trade-Offs Between UN Sustainable Development Goals (SDGs). Earth’s Future 2020, 8, e2019EF001287. [Google Scholar] [CrossRef] [Green Version]
- Klapwijk, C.J.; van Wijk, M.T.; Rosenstock, T.S.; van Asten, P.J.; Thornton, P.K.; Giller, K.E. Analysis of trade-offs in agricultural systems: Current status and way forward. Curr. Opin. Environ. Sustain. 2014, 6, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Spangler, K.; Burchfield, E.K.; Schumacher, B. Past and Current Dynamics of U.S. Agricultural Land Use and Policy. Front. Sustain. Food Syst. 2020, 4, 98. [Google Scholar] [CrossRef]
Data | Time/ Update Status | Spatial Resolution | Data Source | Availability (WMS = Web Map Service, WFS = Web Feature Service) |
---|---|---|---|---|
Area based on EU directive 92/43/EEC | 02-06-2017 | Polygon layer | State Office for Environment | Free download (shp) |
Area based on EU directive 2009/147/EG | 05-02-2010 | Polygon layer | State Office for Environment | Free download (shp) |
Nature reserves | 12-31-2020 | Polygon layer | State Office for Environment | Free download (shp) WFS |
Protected landscape areas | 12-31-2020 | Polygon layer | State Office for Environment | Free download (shp) WFS |
Biogas plants | 11-24-2020 | Point layer | Ministry of Economy, Labor, and Energy of Brandenburg | WMS |
Combined heat and power plants | 03-26-2020 | Point layer | State Office for Environment | Free download (shp) |
Digital map land value figures | 09-03-2020 | Plot-level data | BonaRes Data Center | Free download (shp) |
Digital orthophotos | 2018–2020 | 0.2 m grid | State Survey and Basic Geodata Brandenburg | WMS |
Digital orthophotos | 2009–2012 | 0.2 m grid | WMS | |
Digital orthophotos | 2001–2009 | 0.4 m grid | WMS | |
Forestry map | 10-26-2021 | Plot-level data | Brandenburg State Forestry Office | Free download (gml), WMS |
Ground-mounted photovoltaic systems | 11-24-2020 | Plot-level data | Ministry of Economy, Labor, and Energy of Brandenburg | WMS |
Integrated Administration and Control System data | 02-16-2021 | Plot-level data | Ministry of Agriculture, Environment, and Climate Protection | Free download (shp) |
Legally effective development plans | 11-19-2020 | Plot-level data | State Office for Construction and Transport | WFS |
Municipality boundaries | 07-05-2020 | Plot-level data | State Survey and Basic Geodata Brandenburg | Free download |
Soil types (VDLUFA) | 07-29-2021 | Plot-level data | Brandenburg State Office for Mining, Geology, and Raw Materials | WFS |
Wind turbines | 04-01-2021 | Point layer | State Office for Environment | WMS |
Objectives | Criteria | Parameters | ||
---|---|---|---|---|
AFS (a) | APS (b) | N-PA (c) | ||
Reduction of wind erosion Reduction of water erosion Reduction of pesticide inputs Reduction of fertilizer inputs Reduction of greenhouse gas emissions Reduction of water transpiration Storage of carbon dioxide in biomass Maintenance/increase in biodiversity Increase in yield stability | Type of agricultural area | Arable land | Arable land | Arable land |
Size of agricultural parcel | Top 10% | ≥10 ha | ≥1 ha | |
Soil type | Sandy soil | Sandy soil | Sandy soil | |
Standard soil values | 30–40 pt | 20–30 pt | <25 pt | |
Located in protected area | No | No | yes |
1995 | 2010 | 2020 | Sum of Loss/Gain | |||
---|---|---|---|---|---|---|
Agricultural area | 1,474,348 ha | 1,455,972 ha | −18,376 ha | 1,437,113 ha | −18,859 ha | −37,235 ha |
Settlement area | 158,962 ha | 194,894 ha | +35,932 ha | 206,578 ha | +11,684 ha | +47,616 ha |
Transport | 98,174 ha | 106,956 ha | +8782 ha | 109,666 ha | +2710 ha | +11,492 ha |
Forest area | 1,030,018 ha | 1,045,122 ha | +15,104 ha | 1,033,640 ha | −11,482 ha | +3622 ha |
Water area | 99,981 ha | 100,775 ha | +794 ha | 99,676 ha | −1099 ha | −305 ha |
Further areas | 86,385 ha | 44,593 ha | −25,894 ha | 78,762 ha | +21,588 ha | −4306 ha |
Total | 2,947,868 ha | 2,948,312 ha | +444 ha | 2,965,435 ha | +17,123 ha | +16,679 ha |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unger, M.; Lakes, T. Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany. Sustainability 2023, 15, 4546. https://doi.org/10.3390/su15054546
Unger M, Lakes T. Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany. Sustainability. 2023; 15(5):4546. https://doi.org/10.3390/su15054546
Chicago/Turabian StyleUnger, Martin, and Tobia Lakes. 2023. "Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany" Sustainability 15, no. 5: 4546. https://doi.org/10.3390/su15054546
APA StyleUnger, M., & Lakes, T. (2023). Land Use Conflicts and Synergies on Agricultural Land in Brandenburg, Germany. Sustainability, 15(5), 4546. https://doi.org/10.3390/su15054546