Deep Learning-Based Algal Bloom Identification Method from Remote Sensing Images—Take China’s Chaohu Lake as an Example
Abstract
:1. Introduction
2. Study Area and Analyses of Remote Sensing Data
2.1. Study Area and Remote Sensing Dataset
2.2. Analyses of the Spectral Reflection Traits of Algal Blooms in Chaohu Lake
3. Method
3.1. Basic Architecture of Deep Learning-Based Algal Bloom Monitoring Model
3.2. PC Attention Mechanism
4. Results and Discussion
4.1. Quantitative Assessment Indices
4.2. Algal Bloom Identification Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Zhao, Z.N.; Zhang, Y.; Li, Y.Y.; Zhang, H.B. Investigation on the evolution trend and cause of main lakes in China. J. Yangtze River Sci. Res. 2022, 806, 1–5. [Google Scholar]
- Guo, Y.H.; Xu, Y.F.; Zhu, C.M.; Li, P.P.; Zhu, Y.L.; Han, J.G. How does adjacent land use influence sediment metals content and potential ecological risk in the Hongze Lake wetland? Int. J. Environ. Res. Public Health 2022, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sellner, K.G.; Doucette, G.J.; Kirkpatrick, G.J. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microbiol. Biot. 2003, 30, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Kudela, R.M.; Palacios, S.L.; Austerberry, D.C.; Accorsi, E.K.; Guild, L.S.; Torres-Perez, J. Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sens. Environ. 2015, 167, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Wang, Y.; Liu, X.; Hu, W.; Zhu, J.; Zhu, L. Spatial distribution and risk assessment of heavy metals and as pollution in the sediments of a shallow lake. Environ. Monit. Assess 2016, 188, 296. [Google Scholar] [CrossRef]
- Oyama, Y.; Fukushima, T.; Matsushita, B.; Matsuzaki, H.; Kamiya, K.; Kobinata, H. Monitoring levels of cyanobacterial blooms using the visual cyanobacteria index (VCI) and floating algae index (FAI). Int. J. Appl. Earth Obs. 2015, 38, 335–348. [Google Scholar] [CrossRef]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W.; Tang, J. Water property monitoring and assessment for China’s inland Lake Taihu from `MODIS-Aqua measurements. Remote Sens. Environ. 2011, 115, 841–854. [Google Scholar] [CrossRef]
- Wu, P.; Shen, H.; Ning, C.; Chao, Z.; Wu, Y.; Wang, B.; Yan, W. Spatiotemporal analysis of water area annual variations using a Landsat time series: A case study of nine plateau lakes in Yunnan province, China. Int. J. Remote Sens. 2016, 37, 5826–5842. [Google Scholar] [CrossRef]
- Ma, X.S.; Xu, J.G.; Wu, P.H.; Kong, P. Oil Spill Detection Based on Deep Convolutional Neural Networks Using Polarimetric Scattering Information from Sentinel-1 SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4204713. [Google Scholar] [CrossRef]
- Ma, X.S.; Wang, C.; Yin, Z.X.; Wu, P.H. SAR Image Despeckling by Noisy Reference-Based Deep Learning Method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8807–8818. [Google Scholar] [CrossRef]
- Kiage, L.M.; Walker, N.D. Using NDVI from MODIS to monitor duckweed bloom in Lake Maracaibo, Venezuela. Water Resour. Manag. 2009, 23, 1125–1135. [Google Scholar] [CrossRef]
- Hu, C.M. A novel ocean color index to detect floating algae in the global oceans. Rem. Sen. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Qi, G.H.; Ma, X.S.; He, S.Y.; Wu, P.H. Long-term spatiotemporal variation analysis and probability prediction of algal blooms in Lake Chaohu (2009-2018) based on multi-source remote sensing data. J. Lake Sci. 2020, 33, 414–427. [Google Scholar]
- Qi, W.W.; Sun, M.W.; Xu, B.B. Method of algal bloom discrimination in remote sensing image based on automatic feature extraction. Comput. Era 2021, 4, 60–64. [Google Scholar]
- Zhang, T.; Hu, H.; Ma, X.; Zhang, Y. Long-Term Spatiotemporal Variation and Environmental Driving Forces Analyses of Algal Blooms in Taihu Lake Based on Multi-Source Satellite and Land Observations. Water 2020, 12, 1035. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, D.; Wu, Y.; Liu, H.; Shen, Q.; Zhang, H. Identification of algae-bloom and aquatic macrophytes in Lake Taihu from in-situ measured spectra data. J. Lake Sci. 2009, 21, 215–222. [Google Scholar]
- Nawaz, M.; Nazir, T.; Baili, J.; Khan, M.A.; Kim, Y.J.; Cha, J.H. CXray-EffDet: Chest Disease Detection and Classification from X-ray Images Using the EfficientDet Model. Diagnostics 2023, 13, 248. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Benjamin, A.; Greeling Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Shen, C.P. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Yuan, Q.Q.; Shen, H.F.; Li, T.W.; Li, Z.W.; Li, S.W.; Jiang, Y.; Xu, H.Z.; Tan, W.W.; Yang, Q.Q.; Wang, J.W.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Jiao, L.B.; Huo, L.Z.; Hu, C.M.; Tang, P. Refined UNet: UNet-based refinement network for cloud and shadow precise segmentation. Remote Sens. 2020, 12, 2001. [Google Scholar] [CrossRef]
- Ma, X.; Huang, Z.; Zhu, S.; Fang, W.; Wu, Y. Rice Planting Area Identification Based on Multi-Temporal Sentinel-1 SAR Images and an Attention U-Net Model. Remote Sens. 2022, 14, 4573. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.Y.; Cao, M.J.; Sun, X.X.; Du, Z.H.; Liu, R.Y.; Ye, X.Y. Deep-Learning-Based Approach for Prediction of Algal Blooms. Sustainability 2016, 8, 1060. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.X.; Jiang, X.W.; Liu, Y. Spatial management zoning based on the water eco-health: A case study of the areas around Chaohu Lake. Acta Entomol. Fenn. 2018, 38, 866–875. [Google Scholar]
- Kong, X.Z.; He, Q.S.; Yang, B.; He, W.; Xu, F.L.; Janssen, A.B.G.; Kuiper, J.J.; Gerven, L.P.A.; Qin, N.; Jiang, Y.J.; et al. Hydrological regulation drives regime shifts: Evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Glob. Chang. Biol. 2017, 23, 737–754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, J.; Gao, Y. The influences of land use changes on the value of ecosystem services in Chaohu Lake Basin, China. Environ. Earth Sci. 2015, 74, 385–395. [Google Scholar] [CrossRef]
- Chang, F.Y.; Pan, X.J.; Kang, L.J.; Shen, Y.W.; Li, D.H.; Liu, Y.D. A Study on the growth and some physiological characteristics of anabaena spiroides isolated from lake erhal. Acta Hydrobiol. Sin. 2009, 33, 385–390. [Google Scholar] [CrossRef]
- Jiang, Y.J.; He, W.; Liu, W.X.; Qin, N.; Ouyang, H.L.; Wang, Q.M.; Kong, X.Z.; He, Q.S.; Yang, C.; Yang, B.; et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, Y.C.; Zhou, W.; Zhang, M.; Ma, R.H. Inherent optical properties of typical cyanobacteria in eutrophic lakes. J. Lake Sci. 2018, 30, 1681–1692. [Google Scholar]
- Guan, Y.; Zhang, M.; Yang, Z.; Shi, X.L.; Zhao, X.Q. Intra-annual variation and correlations of functional traits in Microcystis and Dolichospermum in Lake Chaohu. Ecol. Indic. 2020, 111, 106052. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. 2015, 39, 640–651. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L. Attention guided U-Net for accurate iris segmentation. J. Vis. Commun. Image Represent. 2018, 56, 296–304. [Google Scholar]
- Ma, X.S.; Xu, J.G.; Pan, J.; Yang, J.; Wu, P.H.; Meng, X.C. Detection of marine oil spills from radar satellite images for the coastal risk assessment. J. Environ. Manag. 2023, 325, 116637. [Google Scholar] [CrossRef]
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
2016 | No cloud-free images | 2 images | 1 image | No cloud-free images |
2017 | No cloud-free images | 1 image | 3 images | 3 images |
2018 | 4 images | 5 images | 6 images | 2 images |
2019 | 5 images | 2 images | 8 images | 5 images |
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
NDVI | 0.3026 | 0.4162 | 0.4507 | 0.2678 |
FAI | 0.0765 | 0.1323 | 0.1376 | 0.0560 |
Method | Spring and Winter | Summer and Autumn | Interpretation Time |
---|---|---|---|
SVM | 77.82% | 79.47% | 41.4 s |
BPNN | 79.09% | 89.88% | 62.1 s |
SPCU_Net | 80.54% | 91.78% | 6.5 s |
DPCU-Net | 91.89% | 97.31% | 7.2 s |
Method | Spring and Winter | Summer and Autumn |
---|---|---|
SVM | 75.77% | 78.42% |
BPNN | 76.91% | 86.33% |
SPCU_Net | 80.03% | 89.28% |
DPCU-Net | 89.66% | 93.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Wu, Y.; Ma, X. Deep Learning-Based Algal Bloom Identification Method from Remote Sensing Images—Take China’s Chaohu Lake as an Example. Sustainability 2023, 15, 4545. https://doi.org/10.3390/su15054545
Zhu S, Wu Y, Ma X. Deep Learning-Based Algal Bloom Identification Method from Remote Sensing Images—Take China’s Chaohu Lake as an Example. Sustainability. 2023; 15(5):4545. https://doi.org/10.3390/su15054545
Chicago/Turabian StyleZhu, Shengyuan, Yinglei Wu, and Xiaoshuang Ma. 2023. "Deep Learning-Based Algal Bloom Identification Method from Remote Sensing Images—Take China’s Chaohu Lake as an Example" Sustainability 15, no. 5: 4545. https://doi.org/10.3390/su15054545