Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Raw Material
2.2.1. Activation of Lithium-Slag
2.2.2. Activation of Lead–Zinc Tailings
2.3. Methods
2.3.1. Experimental Design
2.3.2. Experimental Process
- (1)
- Synthesis of Specimens
- (2)
- Testing and Characterization
3. Results and Discussion
3.1. UCS
3.2. Leaching Test
- (1)
- We weighed 50 g of the solid sample and placed it in a 500 mL extraction ampoule, added an appropriate amount of H2SO4/HNO3 mixed liquid extractant (with a mass ratio of 3:1 and a pH value of 4.5 ± 0.05) according to a solid–liquid ratio of 1:14, sealed it, and fixed it in an overturned oscillatory device;
- (2)
- We set the rotation speed to 30 r/min, the test temperature to 25 °C ± 1 °C, and the oscillation time to 16 h;
- (3)
- After the vibration was completed, we removed the extraction bottle and let it stand for about 40 min. We installed a filter membrane soaked in dilute nitric acid in the suction filtration device, filtered the sample in the extraction bottle, and collected the filtrate;
- (4)
- The heavy metal elements in the collected filtrate were detected via ICP-MS according to GB 5085.1-2007.
3.3. Mechanism Analysis
3.3.1. SEM Analysis
3.3.2. XRD Analysis
3.3.3. Porosity Test
4. Conclusions
- (1)
- After activation, lithium-slag and fine-grained tailings can be used to prepare geopolymers as cementitious materials, which represents a new concept for the reuse of industrial waste such as lithium-slag and tailings.
- (2)
- The lithium-slag- and tailings-based polymer not only has a reasonable strength index but also has low porosity and few harmful pores. In addition, the obtained results regarding the leaching of heavy metals meet the requirements of the Chinese national specifications, indicating that this material can be further studied as a replacement for cement for the solidification of tailings.
- (3)
- Future research should further study the influence of the proportion of lithium-slag and tailings on the solidified body, the influence of the activation process on the solidified body, the influence of the activator modulus on the solidified body, and the influence of the curing process on the solidified body to provide references for industrial applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, J.; Zhang, R.; Zhou, F.; Zhang, X. Hazardous area reconstruction and law analysis of coal spontaneous combustion and gas coupling disasters in goaf based on DEM-CFD. ACS Omega 2023, 8, 2685–2697. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Luo, Y.; Zang, Y. Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification. Int. J. Miner. Metall. 2022, 29, 177–184. [Google Scholar] [CrossRef]
- Adjei, S.; Elkatatny, S.; Ayranci, K. Effect of elevated temperature on the microstructure of metakaolin-based geopolymer. ACS Omega 2022, 7, 10268–10276. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.S.; Ganesan, N.; Indira, P.V.; Murali, G.; Vatin, N.I. Flexural Behaviour of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beams. Sustainability 2022, 14, 5954. [Google Scholar] [CrossRef]
- Nestovito, G.; Messina, F. Fly Ash/Blast Furnace Slag Geopolymer Repair System as a Sustainable Solution for the Maintenance of an Existing Bridge: Materials Design and Influence on Shear Capacity under Seismic Conditions. Adv. Mat. Res. 2015, 1105, 346–354. [Google Scholar] [CrossRef]
- Provis, J.L.; Lukey, G.C.; Van Deventer, J.S.J. Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Frederickx, L.; Nguyen, T.N.; Phung, Q.T. Strength and Microstructure Characteristics of Metakaolin-Based Geopolymer Mortars with High Water-to-Binder Ratios. Sustainability 2022, 14, 3141. [Google Scholar] [CrossRef]
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V. On the Development of Fly Ash-Based Geopolymer Concrete. ACI Mater. J. 2004, 101, 467–472. [Google Scholar]
- He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 2013, 37, 108–118. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Yao, J.; Gong, F.; Li, X.; Du, K.; Tao, M.; Huang, L.; Du, S. Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock. Int. J. Rock Mech. Min. 2019, 122, 104063. [Google Scholar] [CrossRef]
- Han, F.; Song, S.; Liu, J.; Huang, S. Properties of steam-cured precast concrete containing iron tailing powder. Powder Technol. 2019, 345, 292–299. [Google Scholar] [CrossRef]
- Behera, S.K.; Mishra, D.P.; Ghosh, C.N.; Mandal, P.K.; Singh, K.M.P.; Buragohain, J.; Singh, P.K. Characterization of lead-zinc mill tailings, fly ash and their mixtures for paste backfilling in underground metalliferous mines. Environ. Earth Sci. 2019, 78, 394–407. [Google Scholar] [CrossRef]
- Ahmari, S.; Zhang, L. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr. Build. Mater. 2012, 29, 323–331. [Google Scholar] [CrossRef]
- Wang, S.; Sun, L.; Tang, Y.; Jing, Y.; Li, X.; Yao, J. Field application of non-blasting mechanized mining using high-frequency impact hammer in deep hard rock mine. Trans. Nonferrous Met. Soc. 2022, 32, 3051–3064. [Google Scholar] [CrossRef]
- He, Y.; Kang, Q.; Lan, M.; Peng, H. Mechanism and assessment of the pozzolanic activity of melting-quenching lithium slag modified with MgO. Constr. Build. Mater. 2023, 363, 129692. [Google Scholar] [CrossRef]
- Jiao, X.; Luo, X.; Li, J. Preparation of alumino-silicious tailings-based Geopolymer cement Powder and strength performance of the cement mortar. J. Chin. Ceram. Soc. 2015, 34, 3641–3669. [Google Scholar]
- He, Y.; Chen, Q.; Qi, C.; Zhang, Q.; Xiao, C. Lithium-slag and fly ash-based binder for cemented fine-tailings backfilling. J. Environ. Manag. 2019, 248, 109282. [Google Scholar] [CrossRef]
- Shinozaki, K.; Tsuchiya, H.; Honma, T.; Ohara, K.; Masai, H.; Ina, T.; Komatsu, T. Structural origin of high-density Gd2O3-MoO3-B2O3 glass and low-density β′-Gd2(MoO4)3 crystal: A study conducted using high-energy X-ray diffraction and EXAFS at high temperatures. J. Phys. Condens. Matter. 2020, 2020, 055705. [Google Scholar] [CrossRef]
- Li, J.; Huang, S. Recycling of lithium-slag as a green admixture for white reactive powder concrete. J. Mater. Cycles Waste Manag. 2020, 22, 1818–1827. [Google Scholar] [CrossRef]
- Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 2012, 29, 89–104. [Google Scholar] [CrossRef]
- Wang, W.C. Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens. Constr. Build. Mater. 2014, 50, 727–735. [Google Scholar] [CrossRef]
- Karrech, A.; Dong, D.; Elchalakani, M.; Shahin, M.A. Sustainable geopolymer using lithium concentrate residues. Constr. Build. Mater. 2019, 228, 116740. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Yliniemi, J.; Ismailov, A.; Levanen, E.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Recycling lithium mine tailings in the production of low temperature (700–900 °C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties. Constr. Build. Mater. 2019, 221, 332–344. [Google Scholar] [CrossRef]
- He, Y.; Kang, Q.; Lan, M.; Zhang, S. Research on mechanical characteristics of the activated lithium slag-based cemented material for fine tailings backfill. J. Univ. South China Sci. Technol. 2022, 36, 32–38. [Google Scholar]
- Jiao, X.; Zhang, Y.; Chen, T. Thermal stability of a silica-rich vanadium tailing based geopolymer. Constr. Build. Mater. 2013, 38, 43–47. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; Zhang, Y. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization. J. Mater. Res. Technol. 2019, 8, 5728–5735. [Google Scholar] [CrossRef]
- Sisol, M.; Kudelas, D.; Marcin, M.; Holub, T.; Varga, P. Statistical Evaluation of Mechanical Properties of Slag Based Alkali-Activated Material. Sustainability 2019, 11, 5935. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Xu, W.; Song, S.; Rao, F.; Xia, L. Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers. Chemosphere 2020, 253, 126754. [Google Scholar] [CrossRef]
- Li, T. Investigation on Preparation and Performance of Modified Tungsten Tailings Based Geopolymer. Master Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 1 May 2017. [Google Scholar]
Proportions (%) | pH Value | Physical Properties | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | CaSO4 | MnO | Others | Specific Surface Area (m2/kg) | Density (g/cm3) | ||
Sample | Fine-tailings | 49.36 | 16.25 | 9.11 | 3.32 | 3.30 | 3.24 | / | 15.42 | 7.8 | 267 | 2.71 |
Lithium-slag | 53.26 | 23.21 | 2.42 | 4.46 | 0.73 | 4.96 | 0.27 | 10.96 | 5.6 | 670 | 2.46 |
Unit/(μm) | ‾d (bar) | d10 | d30 | d50 | d60 | d80 | Cu | Cc | |
---|---|---|---|---|---|---|---|---|---|
Sample | Fine-tailings | 54.69 | 7.57 | 24.87 | 53.91 | 71.96 | 121.89 | 9.51 | 0.67 |
Lithium-slag | 41.52 | 1.62 | 13.16 | 29.84 | 41.47 | 72.38 | 25.60 | 2.58 |
particle size/μm | +250 | −250–+150 | −150–+75 | −75–+45 | −45–+37 | −37 |
content/% | 1.10 | 2.76 | 10.49 | 10.24 | 8.87 | 66.54 |
Specimen Number | Lithium-Slag: Fine-Tailings | Curing Temperature/°C | Solid Proportions/% |
---|---|---|---|
A1 | 3:7 | 25 | 64 |
A2 | 3:7 | 50 | 64 |
A3 | 3:7 | 75 | 64 |
A4 | 3:7 | 100 | 64 |
B1 | 5:5 | 25 | 64 |
B2 | 5:5 | 50 | 64 |
B3 | 5:5 | 75 | 64 |
B4 | 5:5 | 100 | 64 |
C1 | 7:3 | 25 | 64 |
C2 | 7:3 | 50 | 64 |
C3 | 7:3 | 75 | 64 |
C4 | 7:3 | 100 | 64 |
Specimen Number | UCS Test Results | ||
---|---|---|---|
3 d | 7 d | 28 d | |
A1 | 3.6 | 5.1 | 7.3 |
A2 | 6.4 | 8.5 | 11.3 |
A3 | 9.9 | 12.3 | 15.3 |
A4 | 7.6 | 10.2 | 12.4 |
B1 | 11.5 | 16.4 | 25.1 |
B2 | 16.7 | 22.8 | 33.7 |
B3 | 22.3 | 36.8 | 45.6 |
B4 | 17.6 | 20.5 | 31.8 |
C1 | 11.6 | 17.6 | 31.4 |
C2 | 17.1 | 23.3 | 38.8 |
C3 | 24.2 | 40.2 | 52.4 |
C4 | 18.2 | 21.8 | 33.2 |
Specimen | As | Cr | Cd | Pb | Zn | Cu | Mn | Ba |
---|---|---|---|---|---|---|---|---|
C3 | 0.706 | 0.002 | 0.001 | 0.088 | 0.154 | 0.104 | 0.001 | 0.094 |
Specification limit | 0.500 | 0.200 | 0.040 | 1.000 | 5.000 | 2.000 | 0.100 | 25.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, B.-B.; Zou, Y.; He, Y.; Lan, M.; Kang, Q. Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers. Sustainability 2023, 15, 4523. https://doi.org/10.3390/su15054523
Dai B-B, Zou Y, He Y, Lan M, Kang Q. Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers. Sustainability. 2023; 15(5):4523. https://doi.org/10.3390/su15054523
Chicago/Turabian StyleDai, Bi-Bo, Yi Zou, Yan He, Ming Lan, and Qian Kang. 2023. "Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers" Sustainability 15, no. 5: 4523. https://doi.org/10.3390/su15054523
APA StyleDai, B.-B., Zou, Y., He, Y., Lan, M., & Kang, Q. (2023). Solidification Experiment of Lithium-Slag and Fine-Tailings Based Geopolymers. Sustainability, 15(5), 4523. https://doi.org/10.3390/su15054523