A Novel Approach of Voltage Sag Data Analysis Stochastically: Study, Representation, and Detection of Region of Vulnerability
Abstract
:1. Introduction
2. Stochastic Process and Stochastic Probability Distribution
3. VSA by Analytical Method
3.1. Faults at the System Buses [31,32]
3.2. Sag Consequence of a Line Fault [31,32]
3.2.1. LLLF/LLLGF Fault [31,32]
3.2.2. Single-Line-to-Ground Fault (SLGF) [29,30]
3.2.3. Double-Line Fault (LLF) [29]
3.2.4. Double-Line-to-Ground Fault (DLGF) [29,30]
3.3. Flow Chart and Determination of Probable Sag Frequency (PSF)
- Step 1
- Retrieve the final data from the sag assessment flow chart described in Figure 6.
- Step 2
- Select a bus (i = 1 to 30).
- Step 3
- Select a phase (j = 1 to 3).
- Step 4
- Choose the sag duration (k = 60, 80, 150, 300, etc.).
- Step 5
- Read the data from the data set associated with a particular bus, phase, and duration. Set its numbering value m = 1,2, 3...
- Step 6
- Sort the data using a switch case.
- Step 7
- After that, check whether the data set, duration, phase, and bus are finished. If “no,” then repeat the previous steps until completion. If yes, then display the total number of sags in a selected bus considering a given phase and duration in a desired range of magnitude.
3.4. Test System
4. Sag Data Analysis Using Normal Probability Distribution
Mathematical Formulation
5. Sag Data Analysis Using Correlation [34]
5.1. Correlation Analysis between the Sag Duration and Sag Frequencies
5.2. Correlation Analysis between the Fault Type and Sag Frequencies
5.3. Correlation Analysis between the Fault Point Distance from the Bus and Sag Frequencies
5.4. Correlation Analysis between Impedance from the Fault Point to Bus 15 and Sag Frequencies
6. Representation and Detection of Vulnerable Area
6.1. ITIC Curve
6.2. Concept and Procedure of ROV
- Step 1
- Step 2
- Then, select a line, phases, and fault type.
- Step 3
- Then, check the following four cases.
- Step 4
- Store the completely outside (COS) and completely inside data (CIS) portion of the taken line.
- Step 5
- Next, ensure that all faults, phases, and lines are considered. If not, increase the iteration and follow the same process for fault, phase, and line.
- Step 6
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
PQ | Power quality |
STC | Sag tolerance curve |
SVI | sag vulnerability index |
DGs | Distributed Generations |
ROV | region of vulnerability |
VSM | Voltage sag map |
ITIC | Information Technology Industry Council |
CBEMA | Computer business Equipment Manufacturers Association |
PLC | Programmable Logic Controller |
PSF | probable sag frequency |
VSA | Voltage sag assessment |
STI | sequence transfer impedances |
SDPI | sequence driving point impedance |
SLGF | Single line to ground fault |
LLF | Line to line fault |
DLGF | Double line to ground fault |
LLLF | Line to line to line fault |
LLLGF | Line to line to line ground fault |
RV | Random variable |
Probability density function | |
p.u. | Per unit |
CF | correlation coefficients |
IEEE | Institute of Electrical and Electronics Engineers |
SARFI | System Average RMS Variation Frequency Index |
COS | Completely outside |
CIS | Completely inside |
References
- Soomro, A.H.; Larik, A.S.; Mahar, M.A.; Sahito, A.A. Simulation-based comparison of PID with sliding mode controller for matrix-converter-based dynamic voltage restorer under variation of system parameters to alleviate the voltage sag in distribution system. Sustainability 2022, 14, 14661. [Google Scholar] [CrossRef]
- Safdarian, A.; Fotuhi-firuzabad, M.; Lehtonen, M. A General framework for voltage sag performance. Energies 2019, 12, 2824. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.; Reddy, G.H.; Goswami, A.K. Voltage sag assessment of distribution system using Monte Carlo simulation. In Proceedings of the 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India, 12–13 June 2015. [Google Scholar] [CrossRef]
- Küfeoğlu, S.; Lehtonen, M. Macroeconomic assessment of voltage sags. Sustainability 2016, 8, 1304. [Google Scholar] [CrossRef] [Green Version]
- Behera, C.; Member, S. Assessment of equipment trip probability due to voltage sags based on fuzzy possibility distribution function. IEEE Access 2018, 6, 76889–76899. [Google Scholar] [CrossRef]
- Arias-Guzmán, S.; Ruiz-Guzman, O.A.; Garcia-Arias, L.F.; Jaramillo-Gonzales, M.; Cardona-Orozco, P.D.; Ustariz-Farfan, A.J.; Cano-Plata, E.A.; Salazar-Jiménez, A.F. Analysis of voltage sag severity case study in an industrial circuit. IEEE Trans. Ind. Appl. 2017, 53, 15–21. [Google Scholar] [CrossRef]
- Mohtasham, M.B.; Jalilian, A. Classification of multi-stage voltage sags and calculation of phase angle jump based on Clarke components ellipse. Electr. Power Syst. Res. 2022, 205, 107725. [Google Scholar] [CrossRef]
- Bellan, D. Probability density function of three-phase ellipse parameters for the characterization of noisy voltage sags. IEEE Access 2020, 8, 185503–185513. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, C.; Zhang, B.; Dai, S.; Tang, Y.; Wang, Y. A data-driven self-learning evaluation method of voltage sag severity. CPSS Trans. Power Electron. Appl. 2022, 7, 328–334. [Google Scholar] [CrossRef]
- Hu, W.; Ruan, Z.; Xiao, X.; Xiong, X.; Wang, J. A novel voltage sag state estimation method based on complex network analysis. Int. J. Electr. Power Energy Syst. 2022, 140, 108119. [Google Scholar] [CrossRef]
- Synchronization, P. A robust low-voltage-ride-through strategy for grid-forming converters based on reactive. IEEE Trans. Power Electron. 2023, 38, 346–357. [Google Scholar]
- Ni, Z.; Abuelnaga, A.H.; Badawi, S.; Yuan, S.; Narimani, M.; Sayed-Ahmed, A.; Cheng, Z.; Zargari, N.R. A new low switching frequency control of regenerative CHB drive with low-voltage ride-through capability. IEEE Trans. Power Electron. 2023, 38, 1973–1983. [Google Scholar] [CrossRef]
- Dos Santos, A.; Rosa, T.; Correia De Barros, M.T. Stochastic characterization of voltage sag occurrence based on field data. IEEE Trans. Power Deliv. 2019, 34, 496–504. [Google Scholar] [CrossRef]
- Heydt, G.T.; Fellow, L. Thevenin’s theorem applied to the analysis of polyphase transmission circuits. IEEE Trans. Power Deliv. 2017, 32, 72–77. [Google Scholar] [CrossRef]
- Martinez, J.A.; Martin-Arnedo, J. Voltage sag studies in distribution networks—Part I: System modeling. IEEE Trans. Power Deliv. 2006, 21, 1670–1678. [Google Scholar] [CrossRef]
- Martinez, J.A.; Martin-Arnedo, J. Voltage sag studies in distribution networks—Part II: Voltage sag assessment. IEEE Trans. Power Deliv. 2006, 21, 1679–1688. [Google Scholar] [CrossRef]
- Martinez, J.A.; Martin-Arnedo, J. Voltage sag studies in distribution networks—Part III: Voltage sag index calculation. IEEE Trans. Power Deliv. 2006, 21, 1689–1697. [Google Scholar] [CrossRef]
- Khatri, N.; Kumar, V. Stochastic evaluation of voltage sag in power system network considering effect of photovoltaic generation. Trans. Electr. Energy Syst. 2008, 29, e2773. [Google Scholar] [CrossRef]
- Liao, H.; Abdelrahman, S.; Guo, Y.; Jovica, V. Identification of weak areas of network based on exposure to voltage sags—Part II: Assessment of network performance using sag severity index. IEEE Trans. Power Deliv. 2015, 30, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Franzese, M.; Iuliano, A.; Mathematics, A.; Picone, M. Hidden Markov models. Encycl. Bioinform. Comput. Biol. 2019, 1, 753–762. [Google Scholar] [CrossRef]
- Mitra, R.; Goswami, A.K.; Tiwari, P.K. Voltage sag assessment using type-2 fuzzy system considering uncertainties in distribution system. IET Gener. Transm. Distrib. 2017, 11, 1409–1419. [Google Scholar] [CrossRef]
- Di Stasio, L.; Verde, P.; Varilone, P.; De Santis, M.; Noce, C. Stochastic model to forecast the voltage sags in real power systems. In Proceedings of the 2021 AEIT International Annual Conference (AEIT), Virtual Conference, 27–28 May 2021. [Google Scholar] [CrossRef]
- Altintas, E. Correlation between multiple electric arc furnace operations and unscheduled power flows in the interconnection lines at the eastern cross border of ENTSO-E. IEEE Trans. Ind. Appl. 2016, 52, 3508–3517. [Google Scholar] [CrossRef]
- Mbuli, N.; Member, S.; Xezile, R.; Pretorius, J.H.C. Stochastic assessment of the impact of distributed synchronous generators on voltage sags due to system-wide faults. SAIEE Afr. Res. J. 2020, 111, 65–72. [Google Scholar] [CrossRef]
- Goswami, A.K.; Gupta, C.P.; Singh, G.K. An analytical approach for assessment of voltage sags. Int. J. Electr. Power Energy Syst. 2009, 31, 418–426. [Google Scholar] [CrossRef]
- Bollen, M.H.J. Understanding Power Quality Problems, Voltage Sags and Interruptions; IEEE Press: Piscataway, NJ, USA, 2000; pp. 139–248. [Google Scholar]
- Dugan, R.C.; McGranaghan, M.F.; Beaty, H.W. Electrical Power System Quality; McGraw Hill: New York, NY, USA, 1996. [Google Scholar]
- Lennerhag, O.; Bollen, M.H.J. A stochastic aggregate harmonic load model. IEEE Trans. Power Deliv. 2020, 35, 2127–2135. [Google Scholar] [CrossRef]
- Qader, M.R.; Bollen, M.H.J.; Allan, R.N. Stochastic prediction of voltage sags in a large transmission system. In Proceedings of the 1998 IEEE Industrial and Commercial Power Systems Technical Conference. Conference Record. Papers Presented at the 1998 Annual Meeting (Cat. No.98CH36202), Edmonton, AB, Canada, 3–8 May 1998; Volume 35, pp. 8–18. [Google Scholar] [CrossRef]
- Olguin, G. Voltage Dip (Sag) Estimation in Power Systems Based on Stochastic Assessment and Optimal Monitoring; Chalmers Tekniska Hogskola: Göteborg, Sweden, 2005. [Google Scholar]
- Patra, J.; Pal, N. A mathematical approach of voltage sag analysis incorporating bivariate probability distribution in a meshed system. Energies 2022, 15, 7592. [Google Scholar] [CrossRef]
- Behera, C.; Banik, A.; Goswami, A.K. A novel approach for voltage sag representation in a chemical industry: A case study. Eng. Rep. 2020, 2, e12198. [Google Scholar] [CrossRef]
- Goswami, A.K.; Gupta, C.P.; Singh, G.K. Voltage sag mitigation strategies for an Indian power systems: A case study. J. Inst. Eng. Ser. B 2015, 96, 165–178. [Google Scholar] [CrossRef]
- Devore, J.L. Probability and Statistics for Engineering and the Science, 8th ed.; Prentice-Hall Inc.: Hoboke, NJ, USA, 2012. [Google Scholar]
- Ghatak, U.; Mukherjee, V. Electrical power and energy systems A fast and efficient load flow technique for unbalanced distribution system. Int. J. Electr. Power Energy Syst. 2017, 84, 99–110. [Google Scholar] [CrossRef]
Types of Fault | Fault Rate of Lines (Event/Year/100 km) | Fault Rate of Bus (Event/Year) |
---|---|---|
LLLF/LLLGF | 0.100 | 0.003 |
LLF | 0.125 | 0.004 |
DLGF | 0.300 | 0.008 |
SLGF | 2.000 | 0.064 |
Voltage Levels | Associated Duration |
---|---|
33 kV | 200 ms |
132 kV | 100 ms |
Fault Position Variation | Duration of SLGF in Sec | Variation of Magnitude of Sag | Projected Data for Normal Distribution | PDF = f(r;µ,σ) |
---|---|---|---|---|
0.1 | 0.008 | 0.07 | 4.332938987 | 3.23782E-63 |
0.2 | 0.008 | 0.32 | 4.116614845 | 4.74364E-56 |
0.3 | 0.008 | 0.5 | 3.900290703 | 2.55668E-49 |
0.4 | 0.008 | 0.62 | 3.683966561 | 5.06927E-43 |
0.5 | 0.008 | 0.69 | 3.467642419 | 3.69761E-37 |
0.6 | 0.008 | 0.74 | 3.251318277 | 9.92207E-32 |
0.7 | 0.008 | 0.78 | 3.034994134 | 9.79465E-27 |
0.8 | 0.008 | 0.8 | 2.818669992 | 3.55698E-22 |
0.9 | 0.008 | 0.81 | 2.60234585 | 4.75202E-18 |
1.0 | 0.008 | 0.82 | 2.386021708 | 2.33551E-14 |
1.1 | 0.008 | 0.82 | 2.169697566 | 4.2227E-11 |
1.2 | 0.008 | 0.82 | 1.953373424 | 2.80869E-08 |
1.3 | 0.008 | 0.81 | 1.737049282 | 6.87265E-06 |
1.4 | 0.008 | 0.79 | 1.52072514 | 0.000618656 |
1.5 | 0.008 | 0.77 | 1.304400998 | 0.020487073 |
1.6 | 0.008 | 0.73 | 1.088076856 | 0.249583639 |
1.7 | 0.008 | 0.67 | 0.871752714 | 1.118556265 |
1.8 | 0.008 | 0.58 | 0.655428571 | 1.844187507 |
1.9 | 0.008 | 0.44 | 0.439104429 | 1.118556265 |
2.0 | 0.008 | 0.24 | 0.222780287 | 0.249583639 |
2.1 | 0.008 | 0.07 | 0.006456145 | 0.020487073 |
2.2 | 0.008 | 0.32 | −0.209867997 | 0.000618656 |
2.3 | 0.008 | 0.5 | −0.426192139 | 6.87265E−06 |
2.4 | 0.008 | 0.62 | −0.642516281 | 2.80869E-08 |
2.5 | 0.008 | 0.69 | −0.858840423 | 4.2227E-11 |
2.6 | 0.008 | 0.74 | −1.075164565 | 2.33551E-14 |
2.7 | 0.008 | 0.77 | −1.291488707 | 4.75202E-18 |
2.8 | 0.008 | 0.8 | −1.50781285 | 3.55698E-22 |
2.9 | 0.008 | 0.81 | −1.724136992 | 9.79465E-27 |
3.0 | 0.008 | 0.82 | −1.940461134 | 9.92207E-32 |
3.1 | 0.008 | 0.82 | −2.156785276 | 3.69761E-37 |
3.2 | 0.008 | 0.81 | −2.373109418 | 5.06927E-43 |
3.3 | 0.008 | 0.8 | −2.58943356 | 2.55668E-49 |
3.4 | 0.008 | 0.79 | −2.805757702 | 4.74364E-56 |
3.5 | 0.008 | 0.76 | −3.022081844 | 3.23782E-63 |
3.6 | 0.008 | 0.72 | 4.332938987 | 2.33551E-14 |
Magnitude Range in per Unit (p.u.) | Probability (Magnitude Range) | Probability | Number of Sags in This Range = (Total Number of Sags in That Bus) × [Prob(Magnitude Range)] |
---|---|---|---|
0.8–0.9 | P(0.8 ≤ R ≤ 0.9) | P(0.668 ≤ Z ≤ 1.130) | 8 |
0.7–0.8 | P(0.7 ≤ R ≤ 0.8) | P(0.206 ≤ Z ≤ 0.668) | 6 |
0.6–0.7 | P(0.6 ≤ R ≤ 0.7) | P(−0.256 ≤ Z ≤ 0.206) | 5 |
0.5–0.6 | P(0.5 ≤ R ≤ 0.6) | P(−0.719 ≤ Z ≤ −0.256) | 5 |
0.4–0.5 | P(0.4 ≤ R ≤ 0.5) | P(−1.18 ≤ Z ≤ −0.719) | 4 |
0.3–0.4 | P(0.3 ≤ R≤ 0.4) | P(−1.64 ≤ Z ≤ −1.18) | 3 |
0.2–0.3 | P(0.2 ≤ R ≤ 0.3) | P(−2.10 ≤ Z ≤ −1.64) | 2 |
0.1–0.2 | P(0.1 ≤ R ≤ 0.2) | P(−2.56 ≤ Z ≤ −2.10) | 2 |
0.0–0.1 | P(0.0 ≤ R ≤ 0.1) | P(−3.03 ≤ Z ≤ −2.56) | 1 |
Sag Duration (G) | Sag Frequencies (H) | Correlation Coefficient (r) | |||
---|---|---|---|---|---|
60 | 35 | −804.167 | 94.174 | 7.395 | −1.154 |
80 | 25 | ||||
150 | 20 | ||||
300 | 15 |
Fault Type (G) | Sag Frequencies (H) | Correlation Coefficient (r) | |||
---|---|---|---|---|---|
Symmetrical-1 | 1 | 9.625 | 1.118 | 10.059 | 0.8558 |
DLGF-2 | 3 | ||||
LLF-3 | 5 | ||||
SLGF-4 | 26 |
Percentage Change of Fault Point Distance from the Bus (G) | Sag Frequencies (H) | Correlation Coefficient (r) | |||
---|---|---|---|---|---|
0 or 0% | 35 | −300 | 34.1565 | 8.831761 | −0.994490316 |
0.2 or 20% | 31 | ||||
0.4 or 40% | 26 | ||||
0.6 or 60% | 22 | ||||
0.8 or 80% | 14 | ||||
1.0 or 100% | 10 |
Percentage Change of Impedance (G) | Sag Frequencies (H) | Correlation Coefficient (r) | |||
---|---|---|---|---|---|
10% | 33 | ||||
20% | 30 | ||||
30% | 26 | ||||
40% | 25 | −226.5 | 28.72281 | 7.915175 | −0.99628 |
50% | 23 | ||||
60% | 19 | ||||
70% | 17 | ||||
80% | 14 | ||||
90% | 10 | ||||
100% | 8 |
Lines between the Buses | LLLF/LLLGF | LLF | DLGF | SLGF | ||
---|---|---|---|---|---|---|
Phase-B | Phase-C | Phase-B | Phase-C | Phase-A | ||
1 to 3 | COS | COS | COS | COS | COS | COS |
1 to 2 | COS | COS | COS | COS | COS | COS |
2 to 4 | ß ≥ 0.87 | COS | COS | ß ≥ 0.93 | ß ≥ 0.94 | ß ≥ 0.87 |
2 to 5 | COS | COS | COS | COS | COS | COS |
2 to 6 | ß ≥ 0.78 | COS | COS | ß ≥ 0.85 | ß ≥ 0.86 | ß ≥ 0.87 |
3 to 4 | ß ≥ 0.43 | COS | COS | ß ≥ 0.68 | ß ≥ 0.74 | ß ≥ 0.90 |
4 to 6 | CIS | COS | COS | CIS | CIS | CIS |
5 to 7 | COS | COS | COS | COS | COS | COS |
6 to 8 | CIS | COS | COS | ß ≥ 0.918 | ß ≥ 0.81 | ß ≥ 0.63 |
6 to 7 | ß ≥ 0.42 | COS | COS | ß ≥ 0.31 | ß ≥ 0.28 | ß ≥ 0.21 |
9 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
9 to 11 | CIS | CIS | CIS | CIS | CIS | CIS |
12 to 14 | CIS | ß ≥ 0.725 | CIS | CIS | CIS | CIS |
12 to 13 | CIS | CIS | CIS | CIS | CIS | CIS |
12 to 16 | CIS | CIS | CIS | CIS | CIS | CIS |
12 to 15 | CIS | CIS | CIS | CIS | CIS | CIS |
14 to 15 | CIS | ß ≥ 0.39 | CIS | CIS | CIS | CIS |
15 to 18 | CIS | CIS | CIS | CIS | CIS | CIS |
16 to 17 | CIS | CIS | CIS | CIS | CIS | CIS |
18 to 19 | CIS | CIS | CIS | CIS | CIS | CIS |
19 to 20 | CIS | CIS | CIS | CIS | CIS | CIS |
20 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
22 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
17 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
22 to 21 | CIS | CIS | CIS | CIS | CIS | CIS |
23 to 15 | CIS | CIS | CIS | CIS | CIS | CIS |
24 to 22 | CIS | CIS | CIS | CIS | CIS | CIS |
24 to 23 | CIS | CIS | CIS | CIS | CIS | CIS |
25 to 24 | CIS | ß ≥ 0.18 | ß ≥ 0.64 | ß ≥ 0.89 | ß ≥ 0.93 | ß ≥ 0.56 |
25 to 26 | ß ≥ 0.08 | COS | COS | COS | COS | COS |
25 to 27 | CIS | COS | COS | COS | COS | COS |
27 to 29 | ß ≥ 0.01 | COS | COS | COS | COS | COS |
30 to 27 | ß ≥ 0.004 | COS | COS | COS | COS | COS |
29 to 30 | COS | COS | COS | COS | COS | COS |
28 to 8 | ß ≥ 0.01 | COS | COS | COS | COS | COS |
28 to 6 | ß ≥ 0.67 | COS | COS | ß ≥ 0.48 | ß ≥ 0.42 | ß ≥ 0.31 |
Lines between the Buses | LLLF/LLLGF | LLF | DLGF | SLGF | ||
---|---|---|---|---|---|---|
Phase-B | Phase-C | Phase-B | Phase-C | Phase-A | ||
1 to 3 | CIS | COS | ß ≥ 0.901 | ß ≥ 0.729 | ß ≤ 0.072 ß ≥ 0.661 | ß ≥ 0.890 |
1 to 2 | CIS | COS | ß ≥ 0.537 | ß ≥ 0.504 | CIS | ß ≥ 0.812 |
2 to 4 | CIS | ß ≥ 0.854 | ß ≤ 0.129 ß ≥ 0.653 | CIS | CIS | ß ≤ 0.075 ß ≥ 0.642 |
2 to 5 | ß ≤ 0.248 | COS | ß ≤ 0.0.064 | ß ≤ 0.089 | ß ≤ 0.130 | ß ≤ 0.039 |
2 to 6 | CIS | ß ≥ 0.863 | ß ≤ 0.116 ß ≥ 0.693 | ß ≤ 0.1826 ß ≥ 0.538 | CIS | ß ≥ 0.0745 |
3 to 4 | CIS | ß ≥ 0.400 | CIS | CIS | CIS | CIS |
4 to 6 | CIS | CIS | CIS | CIS | CIS | CIS |
5 to 7 | ß ≥ 0.864 | COS | COS | COS | COS | COS |
6 to 8 | CIS | COS | CIS | CIS | CIS | CIS |
6 to 7 | CIS | ß ≤ 0.288 | ß ≤ 0.0.493 | ß ≤ 0.772 | ß ≤ 0.787 | ß ≤ 0.486 |
9 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
9 to 11 | CIS | ß ≤ 0.466 | ß ≤ 0.0.414 | ß ≤ 0.843 | ß ≤ 0.785 | ß ≤ 0.509 |
12 to 14 | CIS | CIS | CIS | CIS | CIS | CIS |
12 to 13 | CIS | CIS | CIS | CIS | CIS | CIS |
12 to 16 | CIS | CIS | CIS | CIS | CIS | CIS |
12 to 15 | CIS | CIS | CIS | CIS | CIS | CIS |
14 to 15 | CIS | CIS | CIS | CIS | CIS | CIS |
15 to 18 | CIS | CIS | CIS | CIS | CIS | CIS |
16 to 17 | CIS | CIS | CIS | CIS | CIS | CIS |
18 to 19 | CIS | CIS | CIS | CIS | CIS | CIS |
19 to 20 | CIS | CIS | CIS | CIS | CIS | CIS |
20 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
22 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
17 to 10 | CIS | CIS | CIS | CIS | CIS | CIS |
22 to 21 | CIS | CIS | CIS | CIS | CIS | CIS |
23 to 15 | CIS | CIS | CIS | CIS | CIS | CIS |
24 to 22 | CIS | ß ≤ 0.369 | CIS | CIS | CIS | CIS |
24 to 23 | CIS | ß ≤ 0.428 | CIS | CIS | CIS | CIS |
25 to 24 | ß ≤ 0.704 | COS | ß ≤ 0.325 | ß ≤ 0.412 | ß ≤ 0.483 | ß ≤ 0.204 |
25 to 26 | COS | COS | COS | COS | COS | COS |
25 to 27 | COS | COS | COS | COS | COS | COS |
27 to 29 | COS | COS | COS | COS | COS | COS |
30 to 27 | COS | COS | COS | COS | COS | COS |
29 to 30 | COS | COS | COS | COS | COS | COS |
28 to 8 | CIS | ß ≤ 0.039 | ß ≤ 0.039 | ß ≤ 0.172 ß ≥ 0.894 | ß ≤ 0.174 ß ≥ 0.892 | ß ≤ 0.076 |
28 to 6 | CIS | ß ≤ 0.419 | COS | CIS | CIS | ß ≥ 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patra, J.; Pal, N.; Mohanta, H.C.; Akwafo, R.; Mohamed, H.G. A Novel Approach of Voltage Sag Data Analysis Stochastically: Study, Representation, and Detection of Region of Vulnerability. Sustainability 2023, 15, 4345. https://doi.org/10.3390/su15054345
Patra J, Pal N, Mohanta HC, Akwafo R, Mohamed HG. A Novel Approach of Voltage Sag Data Analysis Stochastically: Study, Representation, and Detection of Region of Vulnerability. Sustainability. 2023; 15(5):4345. https://doi.org/10.3390/su15054345
Chicago/Turabian StylePatra, Jagannath, Nitai Pal, Harish Chandra Mohanta, Reynah Akwafo, and Heba G. Mohamed. 2023. "A Novel Approach of Voltage Sag Data Analysis Stochastically: Study, Representation, and Detection of Region of Vulnerability" Sustainability 15, no. 5: 4345. https://doi.org/10.3390/su15054345
APA StylePatra, J., Pal, N., Mohanta, H. C., Akwafo, R., & Mohamed, H. G. (2023). A Novel Approach of Voltage Sag Data Analysis Stochastically: Study, Representation, and Detection of Region of Vulnerability. Sustainability, 15(5), 4345. https://doi.org/10.3390/su15054345