Chemical Composition and Health Attributes of Agri-Foods: A Scientific Overview on Black Foods
Abstract
:1. Introduction
2. Methodology of This Review and Its Justification
3. Definition of Black Foods
4. Classification of Black Foods
Groups | Family | Scientific Name | Common Name |
---|---|---|---|
Fruits | Arecaceae | Euterpe edulis Martius L. | Juçara fruit |
Arecaceae | Euterpe oleracea (L.) Mart | Acai berry | |
Burseraceae | Canarium tramdenum Dai Yakoyl L. | Chinese black olive | |
Ericaceae | Vaccinium fuscatum L. | Black highbush blueberry | |
Ebenaceae | Diospyros nigra L. | Black sapote | |
Fabaceae | Dialium guineense L. | Black velvet tamarind | |
Grossulariaceae | Ribes nigrum L. | Black currants | |
Grossulariaceae | Ribes lacustre L. | Black gooseberry | |
Heaths | Vaccinium macrocarpon ’Early black’ L. | Cranberry ’Early black’ | |
Moraceae | Morus nigra L. | Mulberries | |
Moschatel | Sambucus L. | Black elderberry | |
Myrtaceae | Syzygium cumini (L.) Skeels | Black plums/jamelão | |
Oleaceae | Olea europaea L. | Black olives | |
Punicaceae | Punica Granatum L. | Black pomegranate | |
Rosaceae | Aristotelia chilensis L. | Maqui berry | |
Rosaceae | Aronia melanocarpa L. | Black chokeberry | |
Rosaceae | Rubus allegheniensis L. | Blackberries | |
Rosaceae | Rubus occidentalis L. | Black raspberry | |
Rosaceae | Prunus serotina L. | Black cherry | |
Rose | Pyrus communis ’Black Worcester’ L. | Black Worcester pear | |
Solanaceae | Lycium ruthenicum (L.) Murr. | Black Goji berries/wolfberry | |
Vitaceae | Othello L. | Black grape | |
Vitaceae | Vitis vinifera L. | Black grape | |
Cereal grains and legumes | Buckwheats | Fagopyrum esculentum Moench L. | Black buckwheat |
Poaceae | Oryza sativa L. | Black rice | |
Poaceae | Sorghum bicolor L. | Black sorghum | |
Poaceae | Avena strigosa (L.) Schreb. | Black oat | |
Poaceae | Triticum Aestivum L. | Black wheat | |
Poaceae | Zea mays L. | Black maize kernels | |
Leguminosae | Lens culinaris (L.) Medik. | Black lentil | |
Legumes | Glycine max (L.) Merr. | Black soybean | |
Legumes | Cicer arietinum L. | Black chickpeas | |
Legumes | Lathyrus niger L. | Black pea | |
Legumes | Arachis hypogaea L. | Black peanut | |
Fabaceae | Macrotyloma uniflorum L. | Black horse gram | |
Fabaceae | Phaseolus vulgaris L. | Black bean | |
Fabaceae | Phaseolus vulgaris L. | Black turtle bean | |
Vegetables | Apiaceae | Daucus carota L. | Black carrot |
Brassicaceae | Raphanus sativus (L.) var niger | Black radish | |
Lauracea | Persea americana L. | Haas avocado skin | |
Sargassaceae | Sargassum fusiforme L. | Hijiki seaweed | |
Solanaceae | Solanum melongena L. | Black eggplant | |
Solanaceae | Solanum lycopersicum L. | Sun black tomato | |
Solanaceae | Petunia L. | Black Mamba Petunia/Crazytunia | |
Solanaceae | Capsicum Annuum L. | Black Hungarian peppers | |
Brassicaceae | Brassica oleracea L. | Black cabbage | |
Daisy | Lactuca sativa L. | Lettuce ’Black Seeded Simpson’ | |
Nightshade | Solanum tuberosum L. | Shetland black potato | |
Bangiaceae | Pyropia abbottiae L. | Black seaweed | |
Nut and seeds | Malvaceae | Theobroma cacao L. | Black Cocoa powder |
Rubiaceae | Coffea L. | Coffee beans | |
Asteraceae | Helianthus annuus L. | Black sunflower seeds | |
Pedaliaceae | Sesamum indicum L. | Black sesame seeds | |
Poppies | Papaver somniferum L. | Black opium poppy seeds | |
Mints | Ocimum aspberry L. | Hoary basil seed | |
Lamiaceae | Salvia hispanica L. | Black chia seeds | |
Amaranthaceae | Chenopodium quinoa (L.) Willd. | Black quinoa | |
Juglandaceae | Juglans nigra L. | Black walnuts | |
Herb and Spices | Theaceae | Camellia sinensis L. | Black tea |
Orchidaceae | Vanilla planifolia L. | Dried vanilla beans | |
Piperaceae | Piper nigrum L. | Black pepper | |
Ranunculaceae | Nigella sativa L. | Black cumin | |
Ginger | Curcuma caesia L. | Black turmeric | |
Ginger | Kaempferia parviflora L. | Black ginger | |
Brassicaceae | Brassica nigra L. | Black mustard seeds | |
- | Himalaya black salt | ||
- | Activated charcoal | ||
Meat and Seafoods | - | - | Bear black meat (Alaska Native foods) |
Anoplopomatidae | Anoplopoma fimbria L. | Black cod | |
Mytilidae | Choromytilus meridionalis L. | Black mussel | |
Nephropidae. | Homarus Gammarus L. | Black lobster | |
Ophichthidae | Callechelys catostoma L. | Black-striped snake eel | |
Sepiidae | Sepia officinalis L. | Sepia ink | |
Sepiolidae | Heteroteuthis dispar L. | Squid ink/cephalopod ink | |
Plotosidae | Siluriformes L. | Catfish | |
Portunidae | Scylla serrata L. | Black crab | |
Amiidae | Amia calva L. | Bowfin black caviar | |
Amphiumidae | Amphiuma means L. | Two-toed amphiuma/conger eel | |
Amphiumidae | Amphiuma pholeter L. | One-toed amphiuma/conger eel | |
Stichopodidae | Apostichopus japonicas L. | Sea cucumber | |
Phasianidae | Ayam cemani L. | Black chicken | |
Fungi | Auriculariaceae | Auricularia heimuer L. | Black wood ear mushroom |
Cantharellaceae | Craterellus cornucopioides Cantharellales L. | Black trumpet mushroom | |
Hymenochaetace | Ienonotus obliquus L. | Chaga mushroom | |
Morchellaceae | Morchella elata L. | Black morel mushroom | |
Pleurotaceae | Pleurotus ostreatus L. | Black oyster mushroom | |
Polyporaceae | Fomes fomentarius L. | Tinder Fungus | |
Psathyrellaceae | Coprinopsis atramentaria L. | Common ink cap mushroom | |
Tuberaceae | Tuber melanosporum L. | Black truffle | |
Xylariaceae | Xylaria polymorpha L. | Dead man’s fingers mushroom |
Name | Description | Production Company/Origin | Ref. |
---|---|---|---|
Fermented Products | |||
Black tea | Black tea is fully fermented green or white tea, which is consumed throughout the world with unique taste and flavor |
| [37] |
Fermented Black garlic | Black garlic is made by fermenting fresh garlic for a certain time at high temperatures and humidity |
| [38] |
Soy sauce | Soy sauce is a Japanese sauce, which is fermented from soybeans |
| [39] |
Changsha stinky tofu | Changsha stinky tofu is made from fermented brine with bean curd |
| [40] |
Black natto | Black natto is Japanese fermented black bean |
| [41] |
Rice black vinegar | Black rice vinegar (kurozu) is traditional Japanese vinegar made from black rice |
| [42] |
Century Eggs | Century Eggs or black eggs originated from China, created through an alkaline fermentation process with salt, ash, and lime |
| [43] |
Black bean sauce (Douchi/Tochi) | Black bean sauce is a sauce made by fermenting salted black soybean, which is most popular in Chinese cuisine |
| - |
Hoisin sauce (Tương Đen) | A Vietnamese traditional sauce made by mixing fermented black soybean with soy sauce, which is often used with Phở (Vietnamese national soup) |
| - |
Beverages | |||
Black Russian | The Black Russian is a cocktail of vodka and coffee liqueur |
| - |
Coke | Coke is the most famous carbonated soft drink with a black color, which is produced by The Coca-Cola company with a secret recipe |
| - |
Confectionery | |||
Salty licorice | Salty licorice is a type of licorice made from the root extract of Glycyrrhiza glabra, adding ammonium chloride |
| - |
Chinese mesona | Chinese mesona can turn into black jelly when cooking, which is the main ingredient of black grass jelly |
| [44] |
Rice cakes with Ramie leaves | Ramie leaves are used to make rice cake, a traditional Vietnamese cake with the black color |
| [45] |
Traditional Russian Black Bread | The most traditional Russian Black Bread is made from rye flour, sourdough starter, salt, and water |
| - |
Black Forest cake | Black Forest cake is a German cherry-filled chocolate sponge cake with a rich cherry filling based on the German dessert Schwarzwälder Kirschtorte, literally "Black Forest Cherry-torte" |
| - |
Black jelly eggs | A type of candy having a black color made from artificial colors including (red 40, blue 1, yellow 6, yellow 5) |
| - |
Food ingredients | |||
Black seed oil | Black seed oil is Indian traditional oil, made from Nigella sativa L. (black cumin) |
| [46] |
Black garlic mayo | Black garlic mayo is a new product of the Heinz company, which was released on Halloween |
| - |
Black sugar | Black sugar is unrefined sugar made by caramelizing sugarcane juice |
| [47] |
Black truffle oil | Black truffle oil is mixed from extra virgin olive oil with truffle extracts forming a unique flavor with a black color |
| - |
Black hot sauce | An extremely hot sauce made by mixing black pepper and soy sauce |
| - |
Functional foods | |||
Black currant seed oil | Black currant seed oil extracted from seed of black currant Ribes nigrum L. |
| - |
Others | |||
Black banana | - |
| - |
Black apple | - |
| - |
Aged black garlic | Aged black garlic made by the heat treatment of black garlic for a certain time and at an appropriate humidity |
| [48] |
Black dishes | |||
Black pudding | Black pudding is blood sausage made from pork or beef blood |
| [49] |
Morcela de arroz | Morcela de arroz is a traditional Portuguese and Brazilian blood sausage made with rice |
| [50] |
Jajangmyeon | Jajangmyeon is a type of Korean Chinese noodle made with Jajang sauce (a salty black soybean paste) |
| [51] |
Black squid ink pasta | Black squid ink pasta is a traditional Italian dish, made by adding squid ink into pasta dough |
| - |
Black bean soup | Black bean soup is made by cooking rice with black beans | - | - |
Sweet black sesame soup | Sweet black sesame soup is made by cooking black sesame paste with sugar and rice. It is often served hot |
| - |
4.1. Natural Black Foods
4.2. Black Processed Foods
4.3. Black Dishes (Gastronomy)
5. Chemical Perspectives on Pigments of Black Foods
5.1. Melanins in Black Foods and Their Correlation with Black Pigment
5.1.1. Properties and Classification of Melanins
5.1.2. Animal Melanins in Black Foods
5.1.3. Plant Melanins in Black Foods
5.1.4. Fungal Melanins in Black Foods
5.1.5. Health Benefits of Melanins in Black Foods and Their Application
5.2. Anthocyanins in Black Foods
5.2.1. Chemical Properties of Anthocyanins in Black Foods
5.2.2. Anthocyanins and Their Relation to Black Color in Black Foods
5.2.3. Anthocyanins in Black Foods
Cy | De | Pn | ||||||
---|---|---|---|---|---|---|---|---|
Black Foods | TAC (mg/100 g FW) | 3-Glu | 3-Ru | 3-Ga | 3-Glu | 3,5-diGlu | 3-Glu | Refs. |
Maqui berry | 137.6 | T | - | - | 12.4 | 17.2 | T | [76] |
Acai berry | na | 25 | 67.4 | - | - | - | T | [146] |
Othello grape skin | na | 17.8 | - | - | 40.6 | - | [145] | |
Black currants | 476 | 7.1 | 40.2 | - | 14.0 | - | T | [81,147] |
Juçara fruit | 290 | 42.7 | 53.1 | - | - | - | - | [78] |
Black chokeberry | 195,876 (DW) | 2.2 | - | 65.5 | - | - | - | [148] |
Black cherry | 402 | 53.2 | 44.3 | - | - | - | 1 | [62] |
Black rice | na | 34 | 32.8 | - | - | 34.5 | [97,98] | |
Black soybean | na | 75.8 | - | 1 | 8.8 | - | 1.1 | [104] |
5.2.4. Health Benefits of Anthocyanins and Their Application
5.3. Maillard Reaction, Caramelization and Their Relation to Black Color
5.4. Tanins
5.5. Other Pigments in Black Foods
5.6. Activated Charcoal
6. Health Benefits of Black Foods
Black Foods | Study Model | Pharmacological and Medicinal Activities (Disease) | Ref. |
---|---|---|---|
Fruits | |||
Acai Berry | na | Anti-cholinesterase, antioxidant capabilities (Alzheimer’s Disease) | [162] |
Black chokeberry | In vivo/In vitro on human cells and animals | Reducing the total cholesterol content, preventing diabetes and cardiovascular disease | [89,163] |
Blackberry | na | Anti-inflammatory, antiviral, anti-proliferant, and anticarcinogenic properties | [164] |
Black currant | Clinical trials on humans | Therapeutic potential for hypertension and other cardiovascular diseases, cancer, diabetes, and eye-related disease. | [11] |
Black plum | In vitro | Antibacterial, antifungal, antiviral, anti-genotoxic, anti-inflammatory, anti-ulcerogenic, cardioprotective, anti-allergic, anticancer, chemopreventive, radioprotective, free radical scavenging, antioxidant, hepatoprotective, anti-diarrheal, hypoglycemic, and antidiabetic effects | [172] |
Maqui berry | Clinical trials on humans, animal/In vitro/In vivo | Antioxidant, anti-inflammatory, anti-atherogenic, anti-carcinogenic, cardio-protective effects | [165] |
Black pomegranate | Clinical trials on humans, animal/In vitro/In vivo | Antioxidant, anti-inflammatory, prevent skin photoaging, prevent cardiovascular disease, prevent diabetes | [168] |
Black olive | Clinical trials on humans/In vitro | Antioxidant, anti-inflammatory, reduce risk of stroke, type 2 diabetes alleviation, anticancer, improve digestive system, improve immune response | [63] |
Black elderberry | Clinical trials on humans, animal/In vitro | Antioxidant, reduce oxidative stress, antiviral, antitumor | [166] |
Mulberry | Clinical trials on animals /In vitro/In vivo | Antioxidant, antiatherosclerosis, immunomodulatory, antitumor, antihyperglycemic, hypolipidemic, neuroprotective activity | [167] |
Black velvet tamarind | In vitro | Antioxidant | [173] |
Black sapote | na | Antioxidant, anti-inflammatory, anticancer activity, reduce hypertension, improve antiallergenic effect, prevent Alzheimer’s | [106] |
Jucara fruit | In vivo, animal | Antioxidant capacity, anti-inflammatory, prebiotic effect, reduction of cardiovascular risk | [174] |
Vegetables | |||
Black eggplants | na | Anti-angiogenic activities | [30] |
Cereals | |||
Black quinoa seeds | In vitro | Antioxidant, anti-inflammatory, and antitumor activities | [63] |
Black bean | In vitro | Technological functionality and antidiabetic potential by inhibiting α-glucosidase, α-amylase, DPP-IV, and glucose uptake. | [175] |
Black walnut | Clinical trial on humans | Antioxidant, anti-inflammatory, reduce cardiovascular disease | [102] |
Black chia seed | Animal Lab | Antioxidant | |
Fungus | |||
Black truffle | na | Antioxidant, anti-inflammation, immunomodulatory, antitumor, anti-depressant | [176] |
Black trumpet mushroom | na | Anti-inflammatory, antimugagenic, cytotoxic, hypoglycemic, antioxidant | [177] |
Black oyster mushroom | na | Hepatoprotective, antiviral, anti-lipidemic, anti-aging, anti-neoplastic, anti-inflammatory, antitumor, immuno-modulatory, anti-mutagenic, hypotensive, antioxidant, anti-diabetic, anti-arthritic, hypocholesterolemic | [177] |
Black processed foods | |||
Black tea | Humans/In vitro/In vivo | Antioxidant, anticancer, anti-obesity | [170] |
Fermented black garlic | Animals/In vitro | Antioxidant, anticancer, antiobesity, hepatoprotective, anti-inflammatory, antiallergic, alleviating dyslipidemia, a cardioprotective effect | [38,48] |
Soy sauce | na | Antioxidant, anti-diabetic, anticancer, anti-inflammatory, anti-hyperlipidemic, blood pressure maintenance, immunostimulatory activity, neurostimulatory effect, bone health maintenance, prevents osteoporosis | [171] |
7. Challenges with Black Food Production
8. General Discussion
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clydesdale, F.M. Color as a factor in food choice. Crit. Rev. Food Sci. Nutr. 1993, 33, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, R.A.; Piattelli, M.; Fattorusso, E. The structure of melanins and melanogenesis—IV. Tetrahedron 1964, 20, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Glagoleva, A.Y.; Shoeva, O.Y.; Khlestkina, E.K. Melanin Pigment in Plants: Current Knowledge and Future Perspectives. Front. Plant Sci. 2020, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-F.; Rhim, J.-W. Isolation and characterization of melanin from black garlic and sepia ink. LWT Food Sci. Technol. 2019, 99, 17–23. [Google Scholar] [CrossRef]
- Nganvongpanit, K.; Kaewkumpai, P.; Kochagul, V.; Pringproa, K.; Punyapornwithaya, V.; Mekchay, S. Distribution of Melanin Pigmentation in 33 Organs of Thai Black-Bone Chickens (Gallus gallus domesticus). Animals 2020, 10, 777. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Huang, X.; Wang, X.; Yang, R.; Mao, J.; Wang, X.; Wang, X.; Wang, X.; Zhang, Q.; et al. Identification of Nutritional Components in Black Sesame Determined by Widely Targeted Metabolomics and Traditional Chinese Medicines. Molecules 2018, 23, 1180. [Google Scholar] [CrossRef] [Green Version]
- Varga, M.; Berkesi, O.; Bányai, I.; Darula, Z.; May, N.V.; Palágyi, A. Structural characterization of allomelanin from black oat. Phytochemistry 2016, 130, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Sava, V.M.; Yang, S.-M.; Hong, M.-Y.; Yang, P.-C.; Huang, G.S. Isolation and characterization of melanic pigments derived from tea and tea polyphenols. Food Chem. 2001, 73, 177–184. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Ahmad, S.; Chen, J.; Chen, G.; Huang, J.; Zhou, Y.; Zhao, K.; Lan, S.; Liu, Z.; Peng, D. Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795. [Google Scholar] [CrossRef]
- De Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. LC–MS analysis of anthocyanins from purple corn cob. J. Sci. Food Agric. 2002, 82, 1003–1006. [Google Scholar] [CrossRef]
- Di Paola-Naranjo, R.D.; Sánchez-Sánchez, J.; González-Paramás, A.M.a.; Rivas-Gonzalo, J.C. Liquid chromatographic–mass spectrometric analysis of anthocyanin composition of dark blue bee pollen from Echium plantagineum. J. Chromatogr. A 2004, 1054, 205–210. [Google Scholar] [CrossRef]
- Deguchi, A.; Ohno, S.; Hosokawa, M.; Tatsuzawa, F.; Doi, M. Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars. Planta 2013, 237, 1325–1335. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin Composition in Black, Blue, Pink, Purple, and Red Cereal Grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Wu, X.; Prior, R.L. Identification and Characterization of Anthocyanins by High-Performance Liquid Chromatography−Electrospray Ionization−Tandem Mass Spectrometry in Common Foods in the United States: Vegetables, Nuts, and Grains. J. Agric. Food Chem. 2005, 53, 3101–3113. [Google Scholar] [CrossRef]
- Fan-Chiang, H.-J.; Wrolstad, R.E.; Wrolstad, R.E. Anthocyanin Pigment Composition of Blackberries. J. Food Sci. 2006, 70, 22. [Google Scholar] [CrossRef]
- Akhtar, S.; Rauf, A.; Imran, M.; Qamar, M.; Riaz, M.; Mubarak, M.S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Technol. 2017, 66, 36–47. [Google Scholar] [CrossRef]
- Algarra, M.; Fernandes, A.; Mateus, N.; de Freitas, V.; Esteves da Silva, J.C.G.; Casado, J. Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J. Food Compos. Anal. 2014, 33, 71–76. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, L.; Chen, M.; Wang, J. An analysis of the changes on intermediate products during the thermal processing of black garlic. Food Chem. 2018, 239, 56–61. [Google Scholar] [CrossRef]
- MacDougall, D. Colour in Food: Improving Quality; Woodhead Publishing: Sawston, UK, 2002. [Google Scholar]
- Samaras, T.S.; Camburn, P.A.; Chandra, S.X.; Gordon, M.H.; Ames, J.M. Antioxidant Properties of Kilned and Roasted Malts. J. Agric. Food Chem. 2005, 53, 8068–8074. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A. Carotenoids and other pigments as natural colorants. Pure Appl. Chem. 2006, 78, 1477–1491. [Google Scholar] [CrossRef]
- Todaro, A.; Cimino, F.; Rapisarda, P.; Catalano, A.E.; Barbagallo, R.N.; Spagna, G. Recovery of anthocyanins from eggplant peel. Food Chem. 2009, 114, 434–439. [Google Scholar] [CrossRef]
- Leitzmann, C. Characteristics and Health Benefits of Phytochemicals. Complement. Med. Res. 2016, 23, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Cacace, J.; Mazza, G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Mazza, G.; Miniati, E. Anthocyanins in Fruits, Vegetables, and Grains; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Wang, S.Y.; Lin, H.-S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Colak, N.; Kurt-Celebi, A.; Gruz, J.; Strnad, M.; Hayirlioglu-Ayaz, S.; Choung, M.-G.; Esatbeyoglu, T.; Ayaz, F.A. The Phenolics and Antioxidant Properties of Black and Purple versus White Eggplant Cultivars. Molecules 2022, 27, 2410. [Google Scholar] [CrossRef]
- Muñoz-Falcón, J.E.; Prohens, J.; Vilanova, S.; Nuez, F. Diversity in commercial varieties and landraces of black eggplants and implications for broadening the breeders’ gene pool. Ann. Appl. Biol. 2009, 154, 453–465. [Google Scholar] [CrossRef]
- Arai, S. Global view on functional foods: Asian perspectives. Br. J. Nutr. 2002, 88, S139–S143. [Google Scholar] [CrossRef] [Green Version]
- Loypimai, P.; Moongngarm, A.; Naksawat, S. Application of natural colorant from black rice bran for fermented Thai pork sausage-Sai Krok Isan. Int. Food Res. J. 2017, 24, 1529. [Google Scholar]
- Nassau, K. The Physics and Chemistry of Color: The Fifteen Causes of Color; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Chu, J. MIT Engineers Develop ‘Blackest Black’Material to Date. MIT News. 2019. Available online: https://news.mit.edu/2019/blackest-black-material-cnt-0913#:~:text=The%20material%20is%20made%20from,the%20blackest%20material%20on%20record (accessed on 12 September 2019).
- European Commission. EU Register of nutrition and health claims made on foods. Off. J. Eur. Union 2012, 432, 40. [Google Scholar]
- Martin, C.L.; Montville, J.B.; Steinfeldt, L.C.; Omolewa-Tomobi, G.; Heendeniya, K.Y.; Adler, M.E.; Moshfegh, A.J. USDA Food and Nutrient Database for Dietary Studies 2011–2012; US Department of Agriculture, Agricultural Research Service, Food Surveys Research Group: Washington, DC, USA, 2014. [Google Scholar]
- Muthumani, T.; Kumar, R.S.S. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 2007, 101, 98–102. [Google Scholar] [CrossRef]
- Kimura, S.; Tung, Y.-C.; Pan, M.-H.; Su, N.-W.; Lai, Y.-J.; Cheng, K.-C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Yokotsuka, T. Soy sauce biochemistry. Adv. Food Res. 1986, 30, 195–329. [Google Scholar]
- Tang, H.; Li, P.; Chen, L.; Ma, J.-K.; Guo, H.-H.; Huang, X.-C.; Zhong, R.-M.; Jing, S.-Q.; Jiang, L.-W. The formation mechanisms of key flavor substances in stinky tofu brine based on metabolism of aromatic amino acids. Food Chem. 2022, 392, 133253. [Google Scholar] [CrossRef]
- Hu, Y.; Ge, C.; Yuan, W.; Zhu, R.; Zhang, W.; Du, L.; Xue, J. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agric. 2010, 90, 1194–1202. [Google Scholar] [CrossRef]
- Hashimoto, M.; Obara, K.; Ozono, M.; Furuyashiki, M.; Ikeda, T.; Suda, Y.; Fukase, K.; Fujimoto, Y.; Shigehisa, H. Separation and characterization of the immunostimulatory components in unpolished rice black vinegar (kurozu). J. Biosci. Bioeng. 2013, 116, 688–696. [Google Scholar] [CrossRef]
- Teng, F.; Bito, T.; Takenaka, S.; Yabuta, Y.; Watanabe, F. Yolk of the century egg (pidan) contains a readily digestible form of free vitamin B12. J. Nutr. Sci. Vitaminol. 2016, 62, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Shi, Y.; Huang, N.; Fu, C.; Tang, F.; Jiang, Q. The research advances on Mesona chinensis Benth in China. J. South. Agric. 2011, 42, 657–660. [Google Scholar]
- Nguyen, D.H.D.; Tran, P.L.; Ha, H.S.; Lee, J.S.; Hong, W.S.; Le, Q.T.; Oh, B.C.; Park, S.H. Presence of β-amylase in ramie leaf and its anti-staling effect on rice cake. Food Sci. Biotechnol. 2015, 24, 37–40. [Google Scholar] [CrossRef]
- Michelitsch, A.; Rittmannsberger, A.; Hüfner, A.; Rückert, U.; Likussar, W. Determination of isopropylmethylphenols in black seed oil by differential pulse voltammetry. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2004, 15, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Jaffé, W.R. Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. J. Food Compos. Anal. 2015, 43, 194–202. [Google Scholar] [CrossRef]
- Czompa, A.; Szoke, K.; Prokisch, J.; Gyongyosi, A.; Bak, I.; Balla, G.; Tosaki, A.; Lekli, I. Aged (Black) versus Raw Garlic against Ischemia/Reperfusion-Induced Cardiac Complications. Int. J. Mol. Sci. 2018, 19, 1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, J.Y.; Lee, M.H.; Yong, H.I.; Kim, T.-K.; Choi, H.-J.; Kim, M.-R.; Choi, Y.-S. Effects of added cereal fibers on the quality characteristics of black pudding prepared with duck blood. Poult. Sci. 2022, 101, 101694. [Google Scholar] [CrossRef]
- Pereira, J.A.; Dionísio, L.; Patarata, L.; Matos, T.J.S. Effect of packaging technology on microbiological and sensory quality of a cooked blood sausage, Morcela de Arroz, from Monchique region of Portugal. Meat Sci. 2015, 101, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Imm, B.-Y.; Lee, J.-H.; Yeo, I.-H. Capability analysis of sensory quality of Jajang sauce. Food Sci. Biotechnol. 2009, 18, 745–748. [Google Scholar]
- Nath, P.; Bouzayen, M.; Mattoo, A.K.; Pech, J.C. Fruit Ripening: Physiology, Signalling and Genomics; Bouzayen, M., Ed.; CABI: Wallingford, UK, 2014. [Google Scholar]
- Seymour, G.B.; Taylor, J.E.; Tucker, G.A. Biochemistry of Fruit Ripening; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Zhu, B.-F.; Si, L.; Wang, Z.; Zhou, Y.; Zhu, J.; Shangguan, Y.; Lu, D.; Fan, D.; Li, C.; Lin, H.; et al. Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol. 2011, 155, 1301–1311. [Google Scholar] [CrossRef] [Green Version]
- Dhua, S.; Kumar, K.; Kumar, K.; Kumar, Y.; Kumar, Y.; Singh, L.; Sharanagat, V.S. Composition, characteristics and health promising prospects of black wheat: A review. Trends Food Sci. Technol. 2021, 112, 780–794. [Google Scholar] [CrossRef]
- Chander, V.; Tewari, D.; Negi, V.; Singh, R.; Upadhyaya, K.; Aleya, L. Structural characterization of Himalayan black rock salt by SEM, XRD and in-vitro antioxidant activity. Sci. Total Environ. 2020, 748, 141269. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Skóra, B.; Pomianek, T.; Gmiński, J. Inonotus obliquus—From folk medicine to clinical use. J. Tradit. Complement. Med. 2021, 11, 293–302. [Google Scholar] [CrossRef]
- De Angelis, F.; Arcadi, A.; Marinelli, F.; Paci, M.; Botti, D.; Pacioni, G.; Miranda, M. Partial structures of truffle melanins. Phytochemistry 1996, 43, 1103–1106. [Google Scholar] [CrossRef]
- Roy, S.C.; Shil, P. Black Rice Developed through Interspecific Hybridization (O. sativa x O. rufipogon): Origin of Black Rice Gene from Indian Wild Rice. bioRxiv 2020. [Google Scholar] [CrossRef]
- Rahim, M.A.; Umar, M.; Habib, A.; Imran, M.; Khalid, W.; Lima, C.M.G.; Shoukat, A.; Itrat, N.; Nazir, A.; Ejaz, A.; et al. Photochemistry, Functional Properties, Food Applications, and Health Prospective of Black Rice. J. Chem. 2022, 2022, 2755084. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Zhang, Y.; Li, J.; Sun, W. Black Sesame Seeds Ethanol Extract Ameliorates Hepatic Lipid Accumulation, Oxidative Stress, and Insulin Resistance in Fructose-Induced Nonalcoholic Fatty Liver Disease. J. Agric. Food Chem. 2018, 66, 10458–10469. [Google Scholar] [CrossRef]
- Brozdowski, J.; Waliszewska, B.; Loffler, J.; Hudina, M.; Veberic, R.; Mikulic-Petkovsek, M. Composition of Phenolic Compounds, Cyanogenic Glycosides, Organic Acids and Sugars in Fruits of Black Cherry (Prunus serotina Ehrh.). Forests 2021, 12, 762. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, K.; Yao, Y.; Chen, Y.; Guo, H.; Ren, G.; Yang, X.; Li, J. Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chem. 2020, 97, 703–713. [Google Scholar] [CrossRef]
- Jolvis Pou, K.R. Fermentation: The Key Step in the Processing of Black Tea. J. Biosyst. Eng. 2016, 41, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and sensory characteristics of soy sauce: A review. J. Agric. Food Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef]
- Cachaldora, A.; García, G.; Lorenzo, J.M.; García-Fontán, M.C. Effect of modified atmosphere and vacuum packaging on some quality characteristics and the shelf-life of “morcilla”, a typical cooked blood sausage. Meat Sci. 2013, 93, 220–225. [Google Scholar] [CrossRef]
- Ofori, J.A.; Hsieh, Y.-H.P. The Use of Blood and Derived Products as Food Additives; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Murali, R.; Kumar, N. Black Rice: A novel ingredient in food processing. J. Nutr. Food Sci. 2020, 10, 771. [Google Scholar]
- Nontasan, S.; Moongngarm, A.; Deeseenthum, S. Application of functional colorant prepared from black rice bran in yogurt. Apcbee Procedia 2012, 2, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Santiago, M.C.P.A.; Gouvêa, A.C.M.S.; Peixoto, F.M.; Borguini, R.G.; Godoy, R.L.O.; Pacheco, S.; Nascimento, L.S.M.; Nogueira, R.I. Characterization of jamelão ( Syzygium cumini (L.) Skeels) fruit peel powder for use as natural colorant. Fruits 2016, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Solano, F. Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New J. Sci. 2014, 2014, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Lightbourn, G.J.; Griesbach, R.J.; Novotny, J.A.; Clevidence, B.A.; Rao, D.D.; Stommel, J.R. Effects of Anthocyanin and Carotenoid Combinations on Foliage and Immature Fruit Color of Capsicum annuum L. J. Hered. 2008, 99, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Mazzucato, A.; Picarella, M.E.; Nicoletti, I.; Gerardi, C.; Gerardi, C.; et al. Nutraceutical Characterization of Anthocyanin-Rich Fruits Produced by “Sun Black” Tomato Line. Front. Nutr. 2019, 6, 133. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Jin, Q.; Yang, J.; Ma, L.; Cai, J.; Li, J. Comparison of Polyphenol Profile and Inhibitory Activities Against Oxidation and α-Glucosidase in Mulberry (Genus Morus) Cultivars from China. J. Food Sci. 2015, 80, C2440–C2451. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.T.; Tamura, H.; Tamura, H.; Harden, L.A. Delphinidin 3-O-(2-O-beta-D-Glucopyranosyl-alpha-l-arabinopyranoside): A novel anthocyanin identified in Beluga black lentils. J. Agric. Food Chem. 2005, 53, 4932–4937. [Google Scholar] [CrossRef]
- Duan, C.-Q.; Escribano-Bailón, M.T.; Alcalde-Eon, C.; Muñoz, O.; Rivas-Gonzalo, J.C.; Ferreira, I.C.F.R.; Santos-Buelga, C. Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem. Anal. 2006, 17, 8–14. [Google Scholar] [CrossRef]
- Pacheco-Palencia, L.A.; Hawken, P.; Talcott, S.T. Phytochemical, antioxidant and pigment stability of acai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage. Food Res. Int. 2007, 40, 620–628. [Google Scholar] [CrossRef]
- De Brito, E.S.; Araújo, M.C.P.d.; de Araujo, M.C.P.; Alves, R.E.; Carkeet, C.; Clevidence, B.A.; Novotny, J.A. Anthocyanins present in selected tropical fruits: Acerola, jambolão, jussara, and guajiru. J. Agric. Food Chem. 2007, 55, 9389–9394. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Z.; Guan, L.; Zheng, T.; Jiu, S.; Zhu, X.; Jia, H.; Fang, J. Changes of Anthocyanin Component Biosynthesis in ‘Summer Black’ Grape Berries after the Red Flesh Mutation Occurred. J. Agric. Food Chem. 2018, 66, 9209–9218. [Google Scholar] [CrossRef]
- Chung, K.-T.; Wong, T.Y.; Wei, C.-I.; Huang, Y.-W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Slimestad, R.; Solheim, H. Anthocyanins from black currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, 3228–3231. [Google Scholar] [CrossRef]
- Brito, B.d.N.d.C.; da Silva Pena, R.; Lopes, A.S.; Chisté, R.C. Anthocyanins of Jambolão (Syzygium cumini): Extraction and pH-Dependent Color Changes. J. Food Sci. 2017, 82, 2286–2290. [Google Scholar] [CrossRef]
- Piga, A.; Del Caro, A.; Pinna, I.; Agabbio, M. Anthocyanin and colour evolution in naturally black table olives during anaerobic processing. LWT Food Sci. Technol. 2005, 38, 425–429. [Google Scholar] [CrossRef]
- Harborne, J.B.; Hall, E. Plant polyphenols-XIII. Phytochemistry 1964, 3, 453–463. [Google Scholar] [CrossRef]
- Tian, Q.; Giusti, M.M.; Stoner, G.D.; Schwartz, S.J. Urinary Excretion of Black Raspberry (Rubus occidentalis) Anthocyanins and Their Metabolites. J. Agric. Food Chem. 2006, 54, 1467–1472. [Google Scholar] [CrossRef]
- Tian, Q.; Giusti, M.M.; Stoner, G.D.; Schwartz, S.J. Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry. Food Chem. 2006, 94, 465–468. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, W.; Chen, J.; Pan, H.; Xu, E.; Chen, S.; Ye, X.; Chen, J. Establishment of anthocyanin fingerprint in black wolfberry fruit for quality and geographical origin identification. LWT 2022, 157, 113080. [Google Scholar] [CrossRef]
- Vidana Gamage, G.C.; Lim, Y.Y.; Choo, W.S. Black Goji Berry Anthocyanins: Extraction, Stability, Health Benefits, and Applications. ACS Food Sci. Technol. 2021, 1, 1360–1370. [Google Scholar] [CrossRef]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavova, J. Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkes, K.; Howard, L.R.; Brownmiller, C.; Prior, R.L. Changes in Chokeberry (Aronia melanocarpa L.) Polyphenols during Juice Processing and Storage. J. Agric. Food Chem. 2014, 62, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, L.; Bai, W.; Chen, W.; Chen, F.; Shu, C. Anthocyanins: Chemistry, Processing & Bioactivity; Springer Nature: Berlin, Germany, 2022. [Google Scholar]
- Zapsalis, C.; Francis, F.J. Cranberry Anthocyanins. J. Food Sci. 1965, 30, 396–399. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Todorovic, B.; Veberic, R.; Stampar, F.; Ivancic, A. Investigation of Anthocyanin Profile of Four Elderberry Species and Interspecific Hybrids. J. Agric. Food Chem. 2014, 62, 5573–5580. [Google Scholar] [CrossRef]
- Panzella, L.; Eidenberger, T.; Napolitano, A.; d’Ischia, M. Black sesame pigment: DPPH assay-guided purification, antioxidant/antinitrosating properties, and identification of a degradative structural marker. J. Agric. Food Chem. 2012, 60, 8895–8901. [Google Scholar] [CrossRef]
- Shahidi, F.; Liyana-Pathirana, C.M.; Wall, D.S. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem. 2006, 99, 478–483. [Google Scholar] [CrossRef]
- Yin, P.; Lu, M.; Kong, Q.; Rong, R.; Liu, G. Structure characterization of melanin in black sesame by GC/MS. Se Pu=Chin. J. Chromatogr. 2001, 19, 268–269. [Google Scholar]
- Hou, Z.; Qin, P.; Zhang, Y.; Cui, S.; Ren, G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res. Int. 2013, 50, 691–697. [Google Scholar] [CrossRef]
- Yawadio, R.; Tanimori, S.; Morita, N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 2007, 101, 1616–1625. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Takeoka, G.R.; Dao, L.T.; Full, G.; Full, G.H.; Wong, R.Y.; Harden, L.A.; Edwards, R.H.; Berrios, J.D.J. Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J. Agric. Food Chem. 1997, 45, 3395–3400. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W.; Waniska, R.D. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005, 90, 293–301. [Google Scholar] [CrossRef]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- Câmara, C.R.S.; Schlegel, V. A Review on the Potential Human Health Benefits of the Black Walnut: A Comparison with the English Walnuts and Other Tree Nuts. Int. J. Food Prop. 2016, 19, 2175–2189. [Google Scholar] [CrossRef]
- Salinas Moreno, Y.; Sanchez, G.S.; Hernandez, D.R.; Lobato, N.R. Characterization of Anthocyanin Extracts from Maize Kernels. J. Chromatogr. Sci. 2005, 43, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kang, N.S.; Shin, S.-O.; Shin, S.-H.; Lim, S.-G.; Suh, D.-Y.; Baek, I.-Y.; Park, K.-Y.; Ha, T.J. Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. Food Chem. 2009, 112, 226–231. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, M.; Zhan, Y.; Zhan, K.; Chang, X.; Yang, H.; Li, Z. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography. J. Chromatogr. A 2017, 1519, 74–82. [Google Scholar] [CrossRef]
- Jiménez-González, O.; Guerrero-Beltrán, J.Á. Diospyros digyna (black sapote), an Undervalued Fruit: A Review. ACS Food Sci. Technol. 2021, 1, 3–11. [Google Scholar] [CrossRef]
- Eichhorn, S.; Winterhalter, P. Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Res. Int. 2005, 38, 943–948. [Google Scholar] [CrossRef]
- Hashimoto, F.; Nonaka, G.-i.; Nishioka, I. Tannins and related compounds. CXIV. Structure of novel fermentation products, theogallinin, theaflavonin and desgalloyl theaflavonin from black tea, and changes of tea leaf polyphenols during fermentation. Chem. Pharm. Bull. 1992, 40, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Mallik, S.; Sharangi, A.; Sarkar, T. Phytochemicals of coriander, cumin, fenugreek, fennel and black cumin: A preliminary study. Natl. Acad. Sci. Lett. 2020, 43, 477–480. [Google Scholar] [CrossRef]
- Al-Mufarrej, S.I.; Hassib, A.M.; Hussein, M.F. Effect of Melanin Extract from Black Cumin Seeds (Nigella sativa L.) on Humoral Antibody Response to Sheep Red Blood to Cells in Albino Rats. J. Appl. Anim. Res. 2006, 29, 37–41. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Kumar, R.; Kumar, R.; Joy, K.P. Melanins as biomarkers of ovarian follicular atresia in the catfish Heteropneustes fossilis: Biochemical and histochemical characterization, seasonal variation and hormone effects. Fish Physiol. Biochem. 2015, 41, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Fingerman, M.; Nagabhushanam, R.; Philpott, L. Physiology of the melanophores in the crab sesarma reticulatum. Biol. Bull. 1961, 120, 337–347. [Google Scholar] [CrossRef]
- Vissio, P.G.; Darias, M.J.; Di Yorio, M.P.; Pérez Sirkin, D.I.; Delgadin, T.H. Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation. Gen. Comp. Endocrinol. 2021, 301, 113662. [Google Scholar] [CrossRef]
- Téllez-Téllez, M.; Díaz-Godínez, G. Mushroom Pigments and Their Applications. In Biomolecules from Natural Sources, 1st ed.; Gupta, V.K., Sarker, S.D., Sharma, M., Pirovani, M.E., Usmani, Z., Jayabaskaran, C., Eds.; Wiley: New York, NY, USA, 2022; pp. 82–100. [Google Scholar]
- Wogelius, R.A.; Manning, P.L.; Barden, H.; Edwards, N.; Webb, S.; Sellers, W.; Taylor, K.; Larson, P.; Dodson, P.; You, H. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 2011, 333, 1622–1626. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, E.; Xu, R.; Soliveri, G.; Santato, C. Natural melanin pigments and their interfaces with metal ions and oxides: Emerging concepts and technologies. MRS Commun. 2017, 7, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Pagano, M.C.; Dhar, P.P. Fungal pigments: An overview. In Fungal Biomolecules: Sources, Applications and Recent Developments; Wiley: New York, NY, USA, 2015; pp. 173–181. [Google Scholar]
- Mbonyiryivuze, A.; Mbonyiryivuze, A.; Mwakikunga, B.W.; Dhlamini, S.M.; Maaza, M. Fourier Transform Infrared Spectroscopy for Sepia Melanin. Phys. Mater. Chem. 2015, 3, 25–29. [Google Scholar] [CrossRef]
- Prota, G. Melanin pigmentation in mammals. Endeavour 1976, 35, 32–38. [Google Scholar] [CrossRef]
- Nofsinger, J.B.; Weinert, E.E.; Simon, J.D. Establishing structure-function relationships for eumelanin. Biopolymers 2002, 67, 302–305. [Google Scholar] [CrossRef]
- Lerner, A.B.; Fitzpatrick, T.B. Biochemistry of melanin formation. Physiol. Rev. 1950, 30, 91–126. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Van Leur, J. Genetic diversity in barley landraces from Syria and Jordan. Euphytica 1987, 36, 389–405. [Google Scholar] [CrossRef]
- Phipps, E. Natural Dyes: Sources, Tradition, Technology and Science; Archetype: London, UK, 2008. [Google Scholar]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar] [CrossRef] [Green Version]
- Rosa, L.H.; Almeida Vieira, M.d.L.; Santiago, I.F.; Rosa, C.A. Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl.(Caryophyllaceae) in Antarctica. FEMS Microbiol. Ecol. 2010, 73, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Zhdanova, N.N.; Zakharchenko, V.A.; Vember, V.V.; Nakonechnaya, L.T. Fungi from Chernobyl: Mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol. Res. 2000, 104, 1421–1426. [Google Scholar] [CrossRef]
- Velíšek, J.; Cejpek, K. Pigments of higher fungi-a review. Czech J. Food Sci. 2011, 29, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Musso, H. The pigments of fly agaric, Amanita muscaria. Tetrahedron 1979, 35, 2843–2853. [Google Scholar] [CrossRef]
- ElObeid, A.S.; Kamal-Eldin, A.; Abdelhalim, M.A.K.; Haseeb, A.M. Pharmacological properties of melanin and its function in health. Basic Clin. Pharmacol. Toxicol. 2017, 120, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Montefiori, D.C.; Zhou, J. Selective antiviral activity of synthetic soluble L-tyrosine and L-dopa melanins against human immunodeficiency virus in vitro. Antivir. Res. 1991, 15, 11–25. [Google Scholar] [CrossRef]
- Cuzzubbo, S.; Carpentier, A.F. Applications of melanin and melanin-like nanoparticles in cancer therapy: A review of recent advances. Cancers 2021, 13, 1463. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. New insight into melanin for food packaging and biotechnology applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 4629–4655. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Trocer, P.; Kostek, M.; Śliwiński, M.; Henriques, M.H.; Bartkowiak, A.; Sobolewski, P. Whey protein concentrate/isolate biofunctional films modified with melanin from watermelon (Citrullus lanatus) seeds. Materials 2020, 13, 3876. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surf. B Biointerfaces 2019, 176, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Grotewold, E. The Science of Flavonoids; Springer: New York, NY, USA, 2006. [Google Scholar]
- Noda, Y.; Kneyuki, T.; Igarashi, K.; Mori, A.; Packer, L. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 2000, 148, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.J.; Markakis, P.C. Food colorants: Anthocyanins. Crit. Rev. Food Sci. Nutr. 1989, 28, 273–314. [Google Scholar] [CrossRef] [PubMed]
- Bąkowska-Barczak, A. Acylated anthocyanins as stable, natural food colorants—A review. Pol. J. Food Nutr. Sci. 2005, 14, 55. [Google Scholar]
- Delgado-Vargas, F.; Jiménez, A.; Paredes-López, O. Natural pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef]
- Harborne, J.B.; Grayer, R.J. The anthocyanins. In The Flavonoids; Springer: New York, NY, USA, 1988; pp. 1–20. [Google Scholar]
- Markakis, P.; Jurd, L. Anthocyanins and their stability in foods. CRC Crit. Rev. Food Technol. 1974, 4, 437–456. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W.; Waniska, R.D. Properties of 3-deoxyanthocyanins from sorghum. J. Agric. Food Chem. 2004, 52, 4388–4394. [Google Scholar] [CrossRef]
- Tikhomirov, B.; Shamurin, V.; Shtepa, V. The temperature of arctic plants. Russian. Acad. Sci. USSR Biol. Ser. 1960, 3, 429–442. [Google Scholar]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin composition of different wild and cultivated berry species. LWT Food Sci. Technol. 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Paun, N.; Botoran, O.R.; Botoran, O.R.; Niculescu, V.-C.; Niculescu, V. Total Phenolic, Anthocyanins HPLC-DAD-MS Determination and Antioxidant Capacity in Black Grape Skins and Blackberries: A Comparative Study. Appl. Sci. 2022, 12, 936. [Google Scholar] [CrossRef]
- Earling, M.; Beadle, T.; Niemeyer, E.D. Açai Berry (Euterpe oleracea) Dietary Supplements: Variations in Anthocyanin and Flavonoid Concentrations, Phenolic Contents, and Antioxidant Properties. Plant Foods Hum. Nutr. 2019, 74, 421–429. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Wallace, T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. 2011, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef]
- Ahles, S.; Joris, P.J.; Plat, J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: A systematic review of randomized placebo-controlled intervention studies in humans. Int. J. Mol. Sci. 2021, 22, 6482. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Lwt 2022, 153, 112527. [Google Scholar] [CrossRef]
- Correia, P.; Araújo, P.; Ribeiro, C.; Oliveira, H.; Pereira, A.R.; Mateus, N.; de Freitas, V.; Brás, N.F.; Gameiro, P.; Coelho, P. Anthocyanin-related pigments: Natural allies for skin health maintenance and protection. Antioxidants 2021, 10, 1038. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Murata, M. Browning and pigmentation in food through the Maillard reaction. Glycoconj. J. 2021, 38, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; De Freitas, V. Tannins in food: Insights into the molecular perception of astringency and bitter taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef] [PubMed]
- Dykes, L.; Peterson, G.C.; Rooney, W.L.; Rooney, L.W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem. 2011, 128, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Roy, G.M. Activated Carbon Applications in the Food and Pharmaceutical Industries; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Middleton, M.E., Jr. Biological properties of plant flavonoids: An overview. Int. J. Pharmacogn. 1996, 34, 344–348. [Google Scholar] [CrossRef]
- Soto-Hernández, M.; Tenango, M.P.; García-Mateos, R. Phenolic Compounds: Biological Activity; BoD–Books on Demand: Norderstedt, Germany, 2017. [Google Scholar]
- Guerrero, J.; Ciampi, L.; Castilla, A.; Medel, F.; Schalchli, H.; Hormazabal, E.; Bensch, E.; Alberdi, M. Antioxidant capacity, anthocyanins, and total phenols of wild and cultivated berries in Chile. Chil. J. Agric. Res. 2010, 70, 537–544. [Google Scholar] [CrossRef]
- ALNasser, M.N.; Mellor, I.R.; Carter, W.G. A Preliminary Assessment of the Nutraceutical Potential of Acai Berry (Euterpe sp.) as a Potential Natural Treatment for Alzheimer’s Disease. Molecules 2022, 27, 4891. [Google Scholar] [CrossRef]
- Farrell, N.; Norris, G.; Lee, S.G.; Chun, O.K.; Blesso, C.N. Anthocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice. Food Funct. 2015, 6, 1278–1287. [Google Scholar] [CrossRef]
- Skrede, G.; Wrolstad, R. Flavonoids from berries and grapes. Funct. Foods Biochem. Process. Asp. 2002, 2, 71–133. [Google Scholar]
- Masoodi, H.; Villaño, D.; Zafrilla, P. A comprehensive review on fruit Aristotelia chilensis (Maqui) for modern health: Towards a better understanding. Food Funct. 2019, 10, 3057–3067. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Dana, N.; Javanmard, S.H.; Rafiee, L. Antiangiogenic and antiproliferative effects of black pomegranate peel extract on melanoma cell line. Res. Pharm. Sci. 2015, 10, 117. [Google Scholar]
- Sato, E.; Kohno, M.; Hamano, H.; Niwano, Y. Increased anti-oxidative potency of garlic by spontaneous short-term fermentation. Plant Foods Hum. Nutr. 2006, 61, 157–160. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, R.; Mine, Y. The impact of oolong and black tea polyphenols on human health. Food Biosci. 2019, 29, 55–61. [Google Scholar] [CrossRef]
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef]
- Baliga, M.S.; Bhat, H.P.; Baliga, B.R.V.; Wilson, R.; Palatty, P.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): A review. Food Res. Int. 2011, 44, 1776–1789. [Google Scholar] [CrossRef]
- Ololade Zacchaeus, S.; Anuoluwa Iyadunni, A.; Adejuyitan Johnson, A.; Uyaboerigha Daubotei, I. Black Velvet Tamarind: Phytochemical Analysis, Antiradical and Antimicrobial Properties of the Seed Extract for Human Therapeutic and Health Benefits. J. Phytopharm. 2021, 10, 249–255. [Google Scholar]
- Schulz, M.; Borges, G.d.S.C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Juçara fruit (Euterpe edulis Mart.): Sustainable exploitation of a source of bioactive compounds. Food Res. Int. 2016, 89, 14–26. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Mojica, L.; Berhow, M.A.; de Mejia, E.G. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem. 2017, 229, 628–639. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H.; Khalid, S.; Mubarak, M.S. Potential health benefits of natural products derived from truffles: A review. Trends Food Sci. Technol. 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Radović, J.; Leković, A.; Tačić, A.; Dodevska, M.; Stanojković, T.; Marinković, T.; Jelić, Č.; Kundakovic-Vasović, T.; Spórna-Kucab, A.; Tekieli, A. Black Trumpet, Craterellus cornucopioides (L.) Pers.: Culinary Mushroom with Angiotensin Converting Enzyme Inhibitory and Cytotoxic Activity. Pol. J. Food Nutr. Sci. 2022, 72, 171–181. [Google Scholar] [CrossRef]
- Fiore, A.; Troise, A.D.; Ataç Mogol, B.e.; Roullier, V.; Gourdon, A.; El Mafadi Jian, S.; Hamzalıoğlu, B.A.l.; Gökmen, V.; Fogliano, V. Controlling the Maillard reaction by reactant encapsulation: Sodium chloride in cookies. J. Agric. Food Chem. 2012, 60, 10808–10814. [Google Scholar] [CrossRef] [PubMed]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.R. Activated charcoal for acute poisoning: One toxicologist’s journey. Journal of medical toxicology 2010, 6, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, C.N.; Koski, M.H. The effects of climate change on floral anthocyanin polymorphisms. Proc. R. Soc. B 2021, 288, 20202693. [Google Scholar] [CrossRef]
Black Foods | Pigments | List of Pigments | Ref. |
---|---|---|---|
Fruits | |||
Mulberries | ACN | Cy 3-Glu, Cy 3-Ru, Pg 3-Glu, Pg 3-Ru | [73,74] |
Blackberries | ACN | Cy 3-Glu, Cy 3-Ru, Cy 3-Xy, Cy 3-(Ma)Glu | [17] |
Tannins | ellagitannins | [75] | |
Maqui berry | ACN | De 3-Glu, De 3,5-diGlu, De 3-Sam, De 3-Sam-5-Glu, Cy 3-Glu, Cy 3,5-diGlu, Cy 3-Sam, Cy 3-Sam-5-Glu | [76] |
Acai berry | ACN | Cy 3-Ru, Cy 3-Glu, Cy 3-Sam, Pn 3-Glu | [77] |
Black plums | ACN | De 3,5-diGlu, Cy 3,5-diGlu, Pt 3,5-diGlu, Pn 3,5-diGlu, Mv 3,5-diGlu | [78] |
Summer black grape | ACN | Pn 3-(6-p-Co)Glu, Pn 3-Glu, Cy 3-(6-p-Co)Glu, Cy 3-(6”-acetyl-Ga), Cy 3-(6-p-Co)Glu-5-Glu, Cy 3,5-diGlu, Cy 3-Glu, Cy 3-Ar, Mv 3-(Co-D-Glu), Mv 3-Glu, De 3-(Co-D-Glu), De 3-(6”-acetyl-Ga), De 3- Glu, De 3-Ar, De 3,5-diGlu, Pt 3-(Co-D-Glu), Pt 3-Glu, Pg 3-Glu | [79] |
Tannins | Tannin | [80] | |
Black currants | ACN | De 3-Glu, De 3-Ru, Cy 3-Glu, Cy 3-Ru | [17,81] |
Tannins | Tannin | [80] | |
Juçara fruit | ACN | Cy 3-Glu, Cy 3-Ru, Cy 3-Sam, Pg 3-Glu, Cy 3-Rh, Pg 3-Ru | [82] |
Fresh black olives | ACN | Cy 3-Ru, Cy 3-Glu | [83] |
Black raspberry | ACN | Cy 3-Glu, Cy 3-Sam, Cy 3-Ru, Cy 3-xylosylRu, Pg 3-Ru | [84,85,86] |
Wolfberry | ACN | Pt 3-Ru(Co)-5-Glu, De 3-Ru(Co)-5- diGlu, Pt 3-Ru(Cf)-5-Glu, De 3-Ru (Co)-5-Glu, Pt 3-Ru(Fr)-5-Glu, Pt 3-Ru(Fr)-5-Ga Mv 3-Ru(Fr)-5-Glu | [87,88] |
Black chokeberry | ACN | Cy 3-Ga, Cy 3-Glu, Cy 3-Ar, Cy 3-Xy | [89,90] |
Black cherry | ACN | Cy 3-Glu, Cy 3-Ru, Cy 3-Ar, Pn 3-Glu | [62] |
Cranberry ’Early black’ | ACN | Cy 3-Ga, Pn 3-Ga, Cy 3-Ar, Pn 3-Ar | [91,92] |
Black elderberry | ACN | Cy 3-Sam-5-O- Glu, Cy 3,5-diGlu, Cy pentoside-hexoside, Cy 3-Ga, Cy 3-Sam, Cy 3-Glu, Cy 3-Ru, Cy SammalonylGlu, Cy-dipentoside, Pg-3-Glu, Pg-3-Sam, Cy-SamacetylGlu, Cy-xylosyl-dihexoside, Cy-3-Sam-5-Glu, Cy-3-Sam-5-Glu, Cy-3-Sam | [93] |
Cereals | |||
Black sesame seeds | ACN | na | [94,95] |
Melanin | melanin | [96] | |
Sunflower seeds | Melanin | allomelanins | [2] |
Black rice | ACN | Cy 3-Glu, Pn 3-Glu, Cy 3,5-diGlu, Cy 3-Ru | [97,98] |
Black bean | ACN | De 3-Glu, Pt 3-Glu, Mv 3-Glu, De 3,5-diGlu, Pt 3,5-diGlu, Mv 3,5-diGlu, De 3-Ga, Pt 3-Ga and Mv 3-Ga | [16,99] |
Black sorghum | ACN | Apigeninidin, luteolinidin, luteolinidin-5-Glu, and 5-methoxyluteolinidin | [91,100] |
Black lentil | ACN | De 3-glucosylAr, De 3,5-diGlu | [91] |
Black oat | Melanin | melanin | [7] |
Black wheat | ACN | De 3-Sam, De 3-Glu, Pg 3-(6”-malonylGlu), De 3-Ru, Cy 3-Glu, Cy 3-Ru, Cy 3-(2-xylosylRu), De 3-(6”-malonylGlu), Cy 3-(6”-succinyl-Glu), Cy 3-(3”,6”-dimalonylGlu), Pt 3-Ru-5-Glu, Cy-3-Ru-3′-Glu, Pn 3,5-diGlu, Mv 3-(6”-p-caffeoylGlu), Mv 3-Ru-5-Glu, De 3-caffeoylGlu, Pn 3-Ru-5-Glu, Mv-3-Ru, Pn 3-Ru, Pg-3-Ru, Mv-3-Glu, Pg 3-Glu, Pn-3-Glu, Cy 3-(6”-malonylGlu), Pt 3-Glu, Cy 3-(6”-feruloylGlu)-5-Glu | [55,101] |
Black walnut | Tannin | Condensed tannin (proanthocyanin B2) | [102] |
ACN | na | [102] | |
Black maize kernels | ACN | Cy 3-Glu, Pg 3-Glu, Pn 3-Glu, Cy 3-malonylGlu, and Cy 3-dimalonyGlu | [103] |
Black soybean | ACN | De 3-Glu, Cy 3-Glu, Pt 3-Glu, Pg 3-Glu, catechin-Cy 3-Glu, De 3-Ga, Cy 3-Ga, Pn 3-Glu | [104] |
Black peanut | ACN | Cy 3-sophoroside, Cy 3-glucosylRu, Cy 3-Sam, Cy 3-xylosylRu | [105] |
Vegetables | |||
Black eggplant | ACN | De 3-Glu, De 3-Ru, De 3-Ru-5-Ga and De 3-Ru-5-Glu | [16,24] |
Black carrot | ACN | Cy 3-xylosylglucosylGa, Cy 3-xylosylGa, the sinapic, ferulic and coumaric acid derivatives of Cy 3-xylosylglucosylGa | [18,19] |
Black sapote | Carotenoid | β-carotene, lycopene | [106] |
ACN | Cy 3-Ga, Cy 3-Glu, Cy 3-Ar, Cy 3-Xy | [106] | |
Black Hungarian peppers | ACN | De 3-Co-Ru-5-Glu | [72] |
Chlorophyll | [72] | ||
Carotenoid | β-carotene, lycopene | [72] | |
Shetland black potato | ACN | Pn 3-Ru-5-Glu, Pt 3-Co-Ru-5-Glu, Pn-3-Co-Ru-5-Glu | [107] |
Herbs and Spices | |||
Black tea | Melanin | Melanin | [8] |
Tannin | Tannin | [108] | |
Black cumin | Tannin | Tannin | [109] |
ACN | na | [109] | |
Melanin | Melanin | [110] | |
Black mustard | Melanin | Melanin | [3] |
Black ginger | Melanin | Melanin | |
Meats and Seafoods | |||
Black chicken | Melanin | Eumelanin | [5] |
Sepia ink | Melanin | Eumelanin | [2,4] |
Squid ink | Melanin | Eumelanin | [2] |
Catfish | Melanin | Eumelanin, pheomelanin | [111] |
The crab Sesarma reticulatum | Melanin | Eumelanin | [112] |
Black fish skin | Melanin | Eumelanin | [113] |
Fungus | |||
Black truffle | Melanin | Allomelanin | [58] |
Dead man’s fingers mushroom | Melanin | Allomelanin | [114] |
Chaga mushroom | Melanin | Allomelanin | [114] |
Tinder Fungus | Melanin | Allomelanin | [114] |
Black processed foods | |||
black garlic | Melanin | Allomelanin | [4] |
MRPs | MPs | [20] | |
Coke | Caramel | Amonia caramel | [23] |
Soy sauce | MRPs | ||
Black sugar | Caramel | Caramel | [22] |
Soy sauce | MRPs | MRPs | |
Roasted coffee | MRPs | MRPs | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.H.H.; El-Ramady, H.; Llanaj, X.; Törős, G.; Hajdú, P.; Prokisch, J. Chemical Composition and Health Attributes of Agri-Foods: A Scientific Overview on Black Foods. Sustainability 2023, 15, 3852. https://doi.org/10.3390/su15043852
Nguyen DHH, El-Ramady H, Llanaj X, Törős G, Hajdú P, Prokisch J. Chemical Composition and Health Attributes of Agri-Foods: A Scientific Overview on Black Foods. Sustainability. 2023; 15(4):3852. https://doi.org/10.3390/su15043852
Chicago/Turabian StyleNguyen, Duyen H. H., Hassan El-Ramady, Xhensila Llanaj, Gréta Törős, Peter Hajdú, and József Prokisch. 2023. "Chemical Composition and Health Attributes of Agri-Foods: A Scientific Overview on Black Foods" Sustainability 15, no. 4: 3852. https://doi.org/10.3390/su15043852