Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Malaysian Ganoderma Lucidum Inoculum
2.2. Experimental Setup
2.3. Operation Conditions
2.4. Calculations and Statistical Analysis
2.5. Image Analysis
3. Results and Discussion
3.1. The Effectiveness of Malaysian Ganoderma Lucidum
3.2. Statistical Analysis
3.3. Microscopic Image Analysis
3.4. Ganoderma Lucidum in Wastewater Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ariffin, M.; Sulaiman, S.N.M. Regulating sewage pollution of Malaysian rivers and its challenges. Procedia Environ. Sci. 2015, 30, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.A.; Abdullah, S.R.S.; Kamarudin, S.K.; Kofli, N.T. Problems of ammonia and manganese in Malaysian drinking water treatments. World Appl. Sci. J. 2011, 12, 1890–1896. [Google Scholar]
- Zinicovscaia, I.; Cepoi, L. Conventional Methods of Wastewater Treatment. In Cyanobacteria for Bioremediation of Wastewaters; Springer: Cham, Switzerland, 2016; pp. 17–30. [Google Scholar]
- Saleem, J.; Shahid, U.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Conv. Bioref. 2019, 9, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Butler, E.; Hung, Y.T.; Ahmad, M.S.A.; Yeh, R.Y.; Liu, R.L.; Fu, Y. Oxidation pond for municipal wastewater treatment. Appl. Water Sci. 2017, 7, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Samer, M. Biological and Chemical Wastewater Treatment Processes. In Wastewater Treatment Engineering, 1st ed.; InTech: London, UK, 2015. [Google Scholar]
- Batstone, D.J. High Rate Anaerobic Treatment of Complex Wastewater. PhD Thesis, The University of Queensland, Brisbane, Australia, 2000. Available online: https://espace.library.uq.edu.au/view/UQ:10614 (accessed on 17 August 2022).
- Ammary, B.Y. Nutrients requirements in biological industrial wastewater treatment. Afr. J. Biotechnol. 2004, 3, 236–238. [Google Scholar]
- Tabassum, M.; Noor, A.Y.; Suraini, A.A.; Nor’Aini, A.R.; Yee, P.; Shirai, Y.; Mohd, A.H. Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent–a Malaysian perspective. J. Clean. Prod. 2010, 18, 1393–1402. [Google Scholar]
- Mir-Tutusaus, J.A.; Baccar, R.; Glòria, C.; Sarrà, M. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Res. 2018, 138, 137–151. [Google Scholar] [CrossRef] [PubMed]
- El Sheikha, A.F. Nutritional Profile and Health Benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as Functional Foods: Current Scenario and Future Perspectives. Foods 2022, 11, 1030. [Google Scholar] [CrossRef]
- Wachtel-Galor, S.; Tomlinson, B.; Benzie, I.F. Ganoderma lucidum (“Lingzhi”), a Chinese medicinal mushroom: Biomarker responses in a controlled human supplementation study. Br. J. Nutr. 2004, 2004. 91, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Oke, M.A.; Afolabi, F.J.; Oyeleke, O.O.; Kilani, T.A.; Adeosun, A.R.; Olanbiwoninu, A.A.; Adebayo, E.A. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front. Pharmacol. 2022, 13, 952027. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020, 6, e03170. [Google Scholar] [CrossRef]
- Kim, S. Mushroom Ligninolytic Enzymes–Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. Appl. Sci. 2021, 11, 6161. [Google Scholar] [CrossRef]
- Selvakumar, S.; Manivasagan, R.; Chinnappan, K. Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. Biotech 2013, 3, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Morató, C.; Lucas, D.; Llorca, M.; Rodriguez-Mozaz, S.; Gorga, M.; Petrovic, M.; Barceló, D.; Vicent, T.; Sarrà, M.; Marco-Urrea, E. Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci. Total Environ. 2014, 493, 365–376. [Google Scholar] [CrossRef]
- Selim, M.T.; Salem, S.S.; Mohamed, A.A.; El-Gamal, M.S.; Awad, M.F.; Fouda, A. Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. J. Fungi 2021, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Cruz del Álamo, A.; Pariente, M.I.; Alejandra, S.B.; Puyol, D.; Rodríguez, R.; Morales, V.; Bautista, L.F.; Vicente, G.; Melero, J.A.; Molina, R.; et al. Assessment of Trametes versicolor, Isochrysis galbana, and Purple Phototrophic Bacteria for the Removal of Pharmaceutical Compounds in Hospital Wastewater. Adv. Environ. Eng. Res. 2021, 2, 027. [Google Scholar]
- Lucas, D.; Barcelo, D.; Rodríguez-Mozaz, S. Removal of pharmaceuticals from wastewater by fungal treatment and reduction of hazard quotients. Sci. Total Environ. 2016, 571, 909–915. [Google Scholar] [CrossRef]
- Hanafiah, Z.M.; Mohtar, W.H.M.W.; Hasan, H.A.; Jensen, H.S.; Klaus, A.; Wan-Mohtar, W.A.A.Q.I. Performance of wild- Serbian Ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor. Sci. Rep. 2019, 9, 16109. [Google Scholar] [CrossRef] [Green Version]
- Taufek, N.M.; Harith, H.H.; Rahim, M.H.A.; Ilham, Z.; Rowan, N.; Wan-Mohtar, W.A.A.Q.I. Performance of mycelial biomass and exopolysaccharide from Malaysian Ganoderma lucidum for the fungivore red hybrid Tilapia (Oreochromis sp.) in Zebrafish embryo. Aquac. Rep. 2020, 17, 100322. [Google Scholar] [CrossRef]
- Wan-Mohtar, W.A.A.Q.I.; Young, L.; Abbott, G.M.; Clements, C.; Harvey, L.M.; McNeil, B. Antimicrobial properties and cytotoxicity of sulfated (1, 3)-β-D-glucan from the mycelium of the mushroom Ganoderma lucidum. J. Microbiol. Biotechnol. 2016, 26, 999–1010. [Google Scholar] [CrossRef] [Green Version]
- Supramani, S.; Jailani, N.; Ramarao, K.; Zain, N.A.M.; Klaus, A.; Ahmad, R.; Wan-Mohtar, W.A.A.Q.I. Pellet diame ter and morphology of European Ganoderma pfeifferi in a repeated-batch fermentation for exopolysaccharide production. Biocatal. Agric. Biotechnol. 2019, 19, 101118. [Google Scholar] [CrossRef]
- Method 8000, 05/2021, Edition 12, Oxygen Demand, Chemical, USEPA Reactor Digestion Method, HACH, Kuala Lumpur, Malaysia. Available online: https://www.hach.com/asset-get.download.jsa?id=7639983816 (accessed on 26 April 2022).
- Method 8155, 09/2015, Edition 10, Nitrogen ammonia, Salicylate method, HACH, Kuala Lumpur, Malaysia. Available online: https://ca.hach.com/asset-get.download.jsa?id=7639983745 (accessed on 26 April 2022).
- Hanafiah, Z.M.; Mohtar, W.H.M.W.; Hasan, H.A.; Jensen, H.S.; Klau, A.; Sharil, S.; Wan-Mohtar, W.A.A.Q.I. Ability of Ganoderma lucidum mycelial pellets to remove ammonia and organic matter from domestic wastewater. Int. J. Environ. Sci. Technol. 2022, 19, 7307–7320. [Google Scholar] [CrossRef]
- Sankaran, S.; Khanal, S.K.; Jasti, N.; Jin, B.; Pometto, A.L., III. Leeuwen, JHV Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 149. [Google Scholar] [CrossRef]
- Dalecka, B.; Oskarsson, C.; Juhna, T.; Rajarao, G.K. Isolation of fungal strains from municipal wastewater for removal of pharmaceutical substances. Water 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Seth, M.; Chand, S. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori-optimisation of process parameter. Process Biochem 2000, 36, 39–44. [Google Scholar] [CrossRef]
- Ibrahim, D.; Weloosamy, H.; Lim, S.H. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World J. Biol. Chem. 2015, 6, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Lueangjaroenkit, P.; Teerapatsakul, C.; Chitradon, L. Morphological Characteristic Regulation of Ligninolytic Enzyme Produced by Trametes polyzona. Mycobiology 2018, 6, 396–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmideder, S.; Barthel, L.; Müller, H.; Meyer, V.; Briesen, H. From macro- to micromorphological properties of filamentous fungal pellets. Chem. Ing. Tech. 2020, 92, 1182–1183. [Google Scholar] [CrossRef]
- Zahmatkesh, M.; Spanjers, H.; Lier, J.B.V. A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: Immobilisation of fungi on sorghum. Environ. Technol. 2018, 39, 2030–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, D.; Castellet-Rovira, F.; Villagrasa, M.; Badia-Fabregat, M.; Barceló, D.; Vicent, T.; Caminal, G.; Sarràb, M.; Rodríguez-Mozaza, S. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Sci. Total Environ. 2018, 610–611, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X.; Sun, S.; Zhao, Y.; Hu, C. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage. Sci. Rep. 2017, 7, 10897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werkneh, A.A.; Rene, E.R.; Lens, P.N.L. Simultaneous removal of selenite and phenol from wastewater in an upflow fungal pellet bioreactor. J. Chem. Technol. Biotechnol. 2017, 93, 1003–1011. [Google Scholar] [CrossRef]
Glucose (mg) | COD (mg/L) | Ammonia (mg/L) | C/N Ratio |
---|---|---|---|
300 | 300 | 30 | C10N1 |
400 | 400 | 30 | C13.3N1 |
500 | 500 | 30 | C16.7N1 |
(a) | |||||||
Model/Response | Source | Sum of Square | DF | Mean Square | F-Value | p-Value | |
Model 1-COD | Quadratic Model | 16,540.60 | 5 | 3308.12 | 16.29 | <0.0001 | Significant |
A-COD/N ratio | 463.58 | 1 | 463.58 | 2.28 | 0.1567 | Not significant | |
B-Treatment time | 9497.60 | 1 | 9497.60 | 46.78 | <0.0001 | Significant | |
AB | 259.62 | 1 | 259.62 | 1.28 | 0.2802 | Not significant | |
A2 | 84.03 | 1 | 84.03 | 0.4138 | 0.5321 | Not significant | |
B2 | 5880.98 | 1 | 5880.98 | 28.96 | 0.0002 | Significant | |
Residual | 2436.51 | 12 | 203.04 | ||||
Cor Total | 18,977.11 | 17 | |||||
Model 1-NH3-N | Quadratic Model | 20,807.73 | 5 | 4161.55 | 9.51 | 0.0007 | Significant |
A-COD/N ratio | 3843.22 | 1 | 3843.22 | 8.78 | 0.0118 | Not significant | |
B-Treatment time | 8758.47 | 1 | 8758.47 | 20.01 | 0.0008 | Significant | |
AB | 61.49 | 1 | 61.49 | 0.1405 | 0.7143 | Not significant | |
A2 | 484.00 | 1 | 484.00 | 1.11 | 0.3137 | Not significant | |
B2 | 6673.25 | 1 | 6673.25 | 15.25 | 0.0021 | Significant | |
Residual | 5252.27 | 12 | 437.69 | ||||
Cor Total | 26,060.00 | 17 | |||||
(b) | |||||||
Model/Response | Std. Dev | R2 | Adjusted R2 | Predicted R2 | |||
Model 1-COD | 14.25 | 0.8716 | 0.8181 | 0.7137 | |||
Model 1-NH3-N | 20.92 | 0.7985 | 0.7145 | 0.5256 |
(a) | |||||||
Model/Response | Source | Sum of Square | DF | Mean Square | F-Value | p-Value | |
Model 2-COD | Quadratic Model | 34,672.94 | 5 | 6934.59 | 25.61 | <0.0001 | Significant |
A-COD/N ratio | 4.62 | 1 | 4.62 | 0.0171 | 0.8978 | Not significant | |
B-Treatment time | 29,701.44 | 1 | 29,701.44 | 109.71 | <0.0001 | Significant | |
AB | 5.09 | 1 | 5.09 | 0.0188 | 0.8928 | Not significant | |
A2 | 57.17 | 1 | 57.17 | 0.2112 | 0.6524 | Not significant | |
B2 | 2719.56 | 1 | 2719.56 | 10.05 | 0.0063 | Significant | |
Residual | 4060.87 | 15 | 270.72 | ||||
Cor Total | 38,733.81 | 20 | |||||
Model 2-NH3-N | Quadratic Model | 21,674.40 | 5 | 4334.88 | 61.03 | <0.0001 | Significant |
A-COD/N ratio | 871.74 | 1 | 871.74 | 12.27 | 0.0032 | Significant | |
B-Treatment time | 13,396.99 | 1 | 13,396.99 | 188.62 | <0.0001 | Significant | |
AB | 104.36 | 1 | 104.36 | 1.47 | 0.2442 | Not significant | |
A2 | 372.02 | 1 | 372.02 | 5.24 | 0.0370 | Significant | |
B2 | 5093.90 | 1 | 5093.90 | 71.72 | <0.0001 | Significant | |
Residual | 1065.41 | 15 | 71.03 | ||||
Cor Total | 26,060.00 | 17 | |||||
(b) | |||||||
Model/Response | Std.Dev | R2 | Adjusted R2 | Predicted R2 | |||
Model 2-COD | 16.45 | 0.8952 | 0.8602 | 0.7992 | |||
Model 2-NH3-N | 8.43 | 0.9531 | 0.9375 | 0.9094 |
(a) | |||||||
Model/Response | Source | Sum of Square | DF | Mean Square | F-Value | p-Value | |
Model 3-COD | Quadratic Model | 8.868 × 105 | 5 | 1.774 × 105 | 91.89 | <0.0001 | Significant |
A-COD/N ratio | 34,755.61 | 1 | 34755.61 | 18.01 | 0.0007 | Significant | |
B-Treatment time | 6.110 × 105 | 1 | 6.110 × 105 | 316.55 | <0.0001 | Significant | |
AB | 35,643.00 | 1 | 35,643.00 | 18.47 | 0.0006 | Significant | |
A2 | 77,895.56 | 1 | 77,895.56 | 40.35 | <0.0001 | Significant | |
B2 | 96,208.65 | 1 | 96,208.65 | 49.84 | <0.0001 | Significant | |
Residual | 28,953.94 | 15 | 1930.26 | ||||
Cor Total | 28,953.94 | 3 | 9651.31 | ||||
Model 3-NH3-N | Quadratic Model | 2105.26 | 5 | 421.05 | 44.48 | <0.0001 | Significant |
A-COD/N ratio | 5.90 | 1 | 5.90 | 0.6231 | 0.4422 | Not Significant | |
B-Treatment time | 1481.75 | 1 | 1481.75 | 156.55 | <0.0001 | Significant | |
AB | 12.00 | 1 | 12.00 | 1.27 | 0.2779 | Not significant | |
A2 | 241.66 | 1 | 241.66 | 25.53 | 0.0001 | Significant | |
B2 | 299.21 | 1 | 299.21 | 31.61 | <0.0001 | Significant | |
Residual | 141.98 | 15 | 9.47 | ||||
Cor Total | 141.98 | 3 | 47.33 | ||||
(b) | |||||||
Model/Response | Std. Dev | R2 | Adjusted R2 | Predicted R2 | |||
Model 3-COD | 43.93 | 0.9684 | 0.9578 | 0.9493 | |||
Model 3-NH3-N | 3.08 | 0.9368 | 0.9158 | 0.8987 |
Fungi | Reactor | Condition | Wastewater | Target Pollution to Remove | Percentage Removal | Ref. |
---|---|---|---|---|---|---|
WRF-Malaysian G. lucidum | Batch reactor | Initial weight | Synthetic domestic wastewater | Chemical oxygen demand (COD) | 70–95% | current |
Ammonia (NH3-N) | 60–100% | |||||
Algal-WRF: Chlorellavulgaris and G. lucidum | Photo-bioreactor | Initial dry weight (DW) 90.21 ± 6.39 mg/L | Synthetic domestic wastewater | Chemical oxygen demand (COD) | 52.36–93.87% | [36] |
Total nitrogen (TN) | 54.25–94.28% | |||||
Total phosphorus (TP) | 49.36–93.77% | |||||
WRF: Phanerochaete chrysosporium | Up-flow bioreactor | 5% (v/v) of fungal to 50 mL wastewater | Synthetic oil refinery wastewater | Phenol | 69.0–82.4% | [37] |
Phenol removal in the presence of selenite | 31.0–76.9% | |||||
Selenite removal in presence of phenol | 40.0–91.0% | |||||
WRF: T. Versicolor | Sequential batch bioreactor | Approximately 10 fungal granules per 150 mL wastewater | Synthetic and real industrial wastewater | Humic acid (HA) (synthetic wastewater) | >70% | [34] |
Humic acid HA (real wastewater) | >82% | |||||
WRF: T. versicolor, Irpex lacteus, G. lucidum Litter decomposing fungi: Stropharia rugosoannulata, Gymnopilus luteofolius, Agrocybe erebia | Batch bioreactor | Mycelial pellets of 0.5 ± 0.1 g in dry weight (DW) were added in 100 mL of wastewater | Synthetic wastewater spiked with selected pharmaceutically active compounds (PACs) | Elimination of the four selected PhACs (carbamazepine, diclofenac, iopromide and venlafaxine) | 44–75% | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mooralitharan, S.; Mohd Hanafiah, Z.; Abd Manan, T.S.B.; Muhammad-Sukki, F.; Wan-Mohtar, W.A.A.Q.I.; Wan Mohtar, W.H.M. Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum. Sustainability 2023, 15, 3819. https://doi.org/10.3390/su15043819
Mooralitharan S, Mohd Hanafiah Z, Abd Manan TSB, Muhammad-Sukki F, Wan-Mohtar WAAQI, Wan Mohtar WHM. Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum. Sustainability. 2023; 15(4):3819. https://doi.org/10.3390/su15043819
Chicago/Turabian StyleMooralitharan, Silambarasi, Zarimah Mohd Hanafiah, Teh Sabariah Binti Abd Manan, Firdaus Muhammad-Sukki, Wan Abd Al Qadr Imad Wan-Mohtar, and Wan Hanna Melini Wan Mohtar. 2023. "Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum" Sustainability 15, no. 4: 3819. https://doi.org/10.3390/su15043819
APA StyleMooralitharan, S., Mohd Hanafiah, Z., Abd Manan, T. S. B., Muhammad-Sukki, F., Wan-Mohtar, W. A. A. Q. I., & Wan Mohtar, W. H. M. (2023). Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum. Sustainability, 15(4), 3819. https://doi.org/10.3390/su15043819