Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Malaysian Ganoderma lucidum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 23854 KiB  
Article
Water Quality Assessment and Decolourisation of Contaminated Ex-Mining Lake Water Using Bioreactor Dye-Eating Fungus (BioDeF) System: A Real Case Study
by Zarimah Mohd Hanafiah, Ammar Radzi Azmi, Wan Abd Al Qadr Imad Wan-Mohtar, Fabrizio Olivito, Giovanni Golemme, Zul Ilham, Adi Ainurzaman Jamaludin, Nadzmin Razali, Sarina Abdul Halim-Lim and Wan Hanna Melini Wan Mohtar
Toxics 2024, 12(1), 60; https://doi.org/10.3390/toxics12010060 - 11 Jan 2024
Cited by 11 | Viewed by 3303
Abstract
The environmental conditions of a lake are influenced by its type and various environmental forces such as water temperature, nutrients content, and longitude and latitude to which it is exposed. Due to population growth and development limits, former mining lakes are being converted [...] Read more.
The environmental conditions of a lake are influenced by its type and various environmental forces such as water temperature, nutrients content, and longitude and latitude to which it is exposed. Due to population growth and development limits, former mining lakes are being converted to more lucrative land uses like those of recreational zones, agriculture, and livestock. The fungus Ganoderma lucidum has the potential to be utilised as a substitute or to perform synergistic bacteria-coupled functions in efficient contaminated lake water treatment. The purpose of this paper is to evaluate the water quality and water quality index (WQI) of an ex-mining lake named Main Lake in the Paya Indah Wetland, Selangor. Furthermore, the current work simulates the use of a Malaysian fungus in decolourising the contaminated ex-mining lake by the BioDeF system in a 300 mL jar inoculated with 10% (v/v) of pre-grown Ganoderma lucidum pellets for 48 h. According to the results, the lake water is low in pH (5.49 ± 0.1 on average), of a highly intense dark brownish colour (average reading of 874.67 ± 3.7 TCU), and high in iron (Fe) content (3.2422 ± 0.2533 mg/L). The water quality index of the lake was between 54.59 and 57.44, with an average value of 56.45; thus, the water was categorized as Class III, i.e., under-polluted water, according to the Malaysian Department of Environment Water Quality Index (DOE-WQI, DOE 2020). The batch bioreactor BioDeF system significantly reduced more than 90% of the water’s colour. The utilization of Ganoderma lucidum as an adsorbent material offers a variety of advantages, as it is easily available and cultivated, and it is not toxic. Full article
(This article belongs to the Special Issue New Technologies to Decontaminate Pollutants in Water 2.0)
Show Figures

Graphical abstract

14 pages, 4567 KiB  
Article
Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum
by Silambarasi Mooralitharan, Zarimah Mohd Hanafiah, Teh Sabariah Binti Abd Manan, Firdaus Muhammad-Sukki, Wan Abd Al Qadr Imad Wan-Mohtar and Wan Hanna Melini Wan Mohtar
Sustainability 2023, 15(4), 3819; https://doi.org/10.3390/su15043819 - 20 Feb 2023
Cited by 17 | Viewed by 3729
Abstract
Mycoremediation, a fungal-based technology, has seen tremendous growth as an effective alternative to treat industrial wastewater due to its ability to oxidise pollutant loadings. Considering the non-toxic properties and high potential degradation performance of Ganoderma lucidum, this research aims to study the [...] Read more.
Mycoremediation, a fungal-based technology, has seen tremendous growth as an effective alternative to treat industrial wastewater due to its ability to oxidise pollutant loadings. Considering the non-toxic properties and high potential degradation performance of Ganoderma lucidum, this research aims to study the performance of a Malaysian G. lucidum strain, the effect of agitation speed, and different carbon-to-nitrogen (C/N) ratio concentrations of synthetic wastewater in degrading chemical oxygen demand (COD) and ammonia. Different agitation speeds (25 rpm, 50 rpm and 100 rpm) and C/N ratios (C10N1, C13.3N1 and C16.7N1) were chosen as parameters to be analysed in this study. The best degradation of COD and ammonia with a percentage removal in the range of 95% to 100% within 30 h of treatment. ANOVA analysis was done using the response surface methodology to verify the obtained results, and it was found that mycoremediation using 100 rpm agitation provided the best results, removing more than 95% of COD and ammonia from synthetic wastewater. The microscopic analysis also showed that the structure of G. lucidum changed after wastewater treatment. This result proved that the Malaysian G. lucidum strain has a good potential in treating synthetic domestic wastewater, especially with high organic content, as a naturally sustainable bioremediation system. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

Back to TopTop