An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Analysis
4. Discussion
5. Conclusions
5.1. Research Conclusions
5.2. Research Limitations
5.3. Future Research Direction
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burda, Y.; Edwards, H.; Pathak, D.; Storkey, A.; Darrell, T.; Efros, A.A. Large-scale study of curiosity-driven learning. arXiv 2018, arXiv:1808.04355. [Google Scholar]
- Cook, R.I.; Woods, D.D. Operating at the sharp end: The complexity of human error. In Human Error in Medicine; CRC Press: Boca Raton, FL, USA, 2018; pp. 255–310. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of solid organic waste composting products: A critical review. J. Clean. Prod. 2020, 272, 122712. [Google Scholar] [CrossRef]
- Sivasankar, V.; Mylsamy, P.; Omine, K. (Eds.) Microbial Fuel Cell Technology for Bioelectricity; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Munoz-Cupa, C.; Hu, Y.; Xu, C.; Bassi, A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci. Total. Environ. 2020, 754, 142429. [Google Scholar] [CrossRef] [PubMed]
- Sazali, N.; Wan Salleh, W.N.; Jamaludin, A.S.; Mhd Razali, M.N. New Perspectives on Fuel Cell Technology: A Brief Review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef]
- Wang, Y.; Seo, B.; Wang, B.; Zamel, N.; Jiao, K.; Adroher, X.C. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy AI 2020, 1, 100014. [Google Scholar] [CrossRef]
- Xu, H.; Shang, H.; Wang, C.; Du, Y. Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis. Small 2021, 17, e2005092. [Google Scholar] [CrossRef]
- Zakaria, Z.; Awang Mat, Z.; Abu Hassan, S.H.; Kar, Y.B. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int. J. Energy Res. 2019, 44, 594–611. [Google Scholar] [CrossRef]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Varjani, S.; Kumar, M. Microbial fuel cell-based biosensor for online monitoring wastewater quality: A critical review. Sci. Total. Environ. 2019, 712, 135612. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Tian, X.; Tan, C.; McDaniel, C.T.; Hassett, D.J.; Gu, T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol. Adv. 2018, 36, 1316–1327. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Zhou, M.; Yang, H.; Liang, L.; Gu, T. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renew. Sustain. Energy Rev. 2018, 103, 13–29. [Google Scholar] [CrossRef]
- Wu, Q.; Jiao, S.; Ma, M.; Peng, S. Microbial fuel cell system: A promising technology for pollutant removal and environmental remediation. Environ. Sci. Pollut. Res. 2020, 27, 6749–6764. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Lu, S.; Xiang, Y. Pt-based nanoparticles on non-covalent functionalized carbon nanotubes as effective electro-catalysts for proton exchange membrane fuel cells. RSC Adv. 2014, 4, 46265–46284. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Cheng, Y.; Shen, P.K.; Li, C.M. Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. J. Mater. Chem. A 2015, 3, 1961–1971. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rachna; Singh, B.; Mungray, A.K.; Bharti, R.; Nema, A.K.; Pant, K.; Mulla, S.I. Bioelectrochemical technologies for removal of xenobiotics from wastewater. Sustain. Energy Technol. Assess. 2021, 49, 101652. [Google Scholar] [CrossRef]
- Guan, C.-Y.; Tseng, Y.-H.; Tsang, D.C.; Hu, A.; Yu, C.-P. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. J. Hazard. Mater. 2019, 365, 137–145. [Google Scholar] [CrossRef]
- Sharma, S.C.D.; Li, J.; Hu, A.; Chang, C.-C.; Yu, C.-P. Integration of pre-colonized and mediator immobilized mixed culture for the improvement of electricity production of microbial fuel cells. Environ. Technol. Innov. 2021, 22, 101514. [Google Scholar] [CrossRef]
- Cao, Y.; Mu, H.; Liu, W.; Zhang, R.; Guo, J.; Xian, M.; Liu, H. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Factories 2019, 18, 39. [Google Scholar] [CrossRef] [Green Version]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, e290103. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Hao, Z.; Zhao, S.; Gong, J.; Yang, F. Artificial Intelligence in Health Care: Bibliometric Analysis. J. Med. Internet Res. 2020, 22, e18228. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, N.; Lim, W.M.; Chatterjee, A.N.; Pandey, N. What do we know about transfer pricing? Insights from bibliometric analysis. J. Bus. Res. 2021, 134, 275–287. [Google Scholar] [CrossRef]
- Khanra, S.; Dhir, A.; Kaur, P.; Mäntymäki, M. Bibliometric analysis and literature review of ecotourism: Toward sustainable development. Tour. Manag. Perspect. 2020, 37, 100777. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Vera-Baceta, M.-A.; Thelwall, M.; Kousha, K. Web of Science and Scopus language coverage. Scientometrics 2019, 121, 1803–1813. [Google Scholar] [CrossRef]
- Khurana, P.; Sharma, K. Impact of h-index on authors ranking: A comparative analysis of Scopus and WoS. arXiv 2021, arXiv:2102.06964. [Google Scholar]
- Budimir, G.; Rahimeh, S.; Tamimi, S.; Južnič, P. Comparison of self-citation patterns in WoS and Scopus databases based on national scientific production in Slovenia (1996–2020). Scientometrics 2021, 126, 2249–2267. [Google Scholar] [CrossRef]
- Ejsmont, K.; Gladysz, B.; Corti, D.; Castaño, F.; Mohammed, W.M.; Martinez Lastra, J.L. Towards ‘Lean Industry 4.0’—Current trends and future perspectives. Cogent Bus. Manag. 2020, 7, 1781995. [Google Scholar] [CrossRef]
- Ni, J.; Steinberger-Wilckens, R.; Jiang, S.; Xu, M.; Wang, Q. Novel study on microbial fuel cells via a comprehensive bibliometric and dynamic approach. Rev. Environ. Heal. 2021, 37, 13–27. [Google Scholar] [CrossRef]
- Naseer, M.N.; Zaidi, A.A.; Khan, H.; Kumar, S.; bin Owais, M.T.; Jaafar, J.; Suhaimin, N.S.; Wahab, Y.A.; Dutta, K.; Asif, M.; et al. Mapping the field of microbial fuel cell: A quantitative literature review (1970–2020). Energy Rep. 2021, 7, 4126–4138. [Google Scholar]
- Venegas, C.N. The importance of publishing in journals that are not yet indexed in Scopus, PubMed or WOS. World J. Adv. Res. Rev. 2022, 14, 629–633. [Google Scholar] [CrossRef]
- Casimiro, A.H.T.; Araújo, W.J. Prospective Scenarios: Systematic Review at Lisa, Emerald, Scopus and Web of Science; Universidade Estadual de Campinas (UNICAMP): Campinas, Brasil, 2020. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Goyal, K.; Kumar, S. Financial literacy: A systematic review and bibliometric analysis. Int. J. Consum. Stud. 2020, 45, 80–105. [Google Scholar] [CrossRef]
- Tandon, A.; Kaur, P.; Mäntymäki, M.; Dhir, A. Blockchain applications in management: A bibliometric analysis and literature review. Technol. Forecast. Soc. Chang. 2021, 166, 120649. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Tanaka, K.; Vega, C.A.; Tamamushi, R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells. J. Electroanal. Chem. Interfacial Electrochem. 1983, 156, 289–297. [Google Scholar] [CrossRef]
- Chakraborty, I.; Sathe, S.; Dubey, B.; Ghangrekar, M. Waste-derived biochar: Applications and future perspective in microbial fuel cells. Bioresour. Technol. 2020, 312, 123587. [Google Scholar] [CrossRef] [PubMed]
- Grattieri, M.; Minteer, S.D. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives. Bioelectrochemistry 2018, 120, 127–137. [Google Scholar] [CrossRef]
- Khudzari, J.M.; Kurian, J.; Tartakovsky, B.; Raghavan, G. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem. Eng. J. 2018, 136, 51–60. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Guo, Z.; Dai, L.; Wu, Y.; Liu, H.; Li, Y.; Chen, H.; Zhang, Y.; Zhao, Y.; et al. Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered Red-crowned crane. Ecol. Indic. 2020, 116, 106472. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Li, W.-W.; Yu, H.-Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2013, 7, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Hur, A.Y.; Page, M.A.; Thomas, A.O.; Butkiewicz, J.J.; Jones, D.W.; Baek, G.; Saikaly, P.E.; Cropek, D.M.; Logan, B.E. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Res. 2022, 215, 118208. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Evans, P.J.; Logan, B.E. Impact of flow recirculation and anode dimensions on performance of a large scale mi-crobial fuel cell. J. Power Sources 2019, 412, 294–300. [Google Scholar] [CrossRef]
- Ben Liew, K.; Daud, W.R.W.; Ghasemi, M.; Leong, J.X.; Lim, S.S.; Ismail, M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. Int. J. Hydrogen Energy 2014, 39, 4870–4883. [Google Scholar] [CrossRef]
- Gil, G.C.; Chang, I.S.; Kim, B.H.; Kim, M.; Jang, J.K.; Park, H.S.; Kim, H.J. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 2003, 18, 327–334. [Google Scholar] [CrossRef]
- Freguia, S.; Rabaey, K.; Yuan, Z.; Keller, J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim. Acta 2007, 53, 598–603. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, S.-G.; Zhuang, L.; Zhang, J.-T.; Ni, J.-R. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J. 2009, 43, 246–251. [Google Scholar] [CrossRef]
- Saratale, G.D.; Saratale, R.G.; Shahid, M.K.; Zhen, G.; Kumar, G.; Shin, H.-S.; Choi, Y.-G.; Kim, S.-H. A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere 2017, 178, 534–547. [Google Scholar] [CrossRef]
- Do, M.; Ngo, H.; Guo, W.; Liu, Y.; Chang, S.; Nguyen, D.; Nghiem, L.; Ni, B. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Sci. Total. Environ. 2018, 639, 910–920. [Google Scholar] [CrossRef]
- Khilari, S.; Pandit, S.; Ghangrekar, M.M.; Das, D.; Pradhan, D. Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. Rsc Adv. 2013, 3, 7902–7911. [Google Scholar] [CrossRef]
- Logan, B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Genet. 2009, 7, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Rabaey, K.; Verstraete, W. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Logan, B.E. Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E. Microbial Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ramnarayanan, R.; Logan, B.E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 2281–2285. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.K.; Lovley, D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 3341–3346. [Google Scholar] [CrossRef]
- Segundo, R.-F.; Magaly, D.L.C.-N.; Benites, S.M.; Daniel, D.-N.; Angelats-Silva, L.; Díaz, F.; Luis, C.-C.; Fernanda, S.-P. Increase in Electrical Parameters Using Sucrose in Tomato Waste. Fermentation 2022, 8, 335. [Google Scholar] [CrossRef]
- Ghosh, P.; Das, S.P. Microbial Fuel Cells (MFC) and Its Prospects on Bioelectricity Potential. In Status and Future Challenges for Non-conventional Energy Sources; Springer: Singapore, 2022; Volume 2, pp. 157–176. [Google Scholar]
- Yang, W.; Wang, X.; Rossi, R.; Logan, B.E. Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chem. Eng. J. 2019, 380, 122522. [Google Scholar] [CrossRef]
- Dhillon, S.K.; Kundu, P.P. Polyaniline interweaved iron embedded in urea–formaldehyde resin-based carbon as a cost-effective catalyst for power generation in microbial fuel cell. Chem. Eng. J. 2021, 431, 133341. [Google Scholar] [CrossRef]
- Wang, C.; Ye, X.; Liu, Y.; Jia, Z.; Cao, C.; Xiao, Q.; Du, J.; Kong, X.; Wu, X.; Chen, Z.; et al. Enhanced anaerobic digestion for degradation of swine wastewater through a Fe/Ni-MOF modified microbial electrolysis cell. J. Clean. Prod. 2022, 380, 134773. [Google Scholar] [CrossRef]
- Liu, S.; Xue, H.; Wang, M.; Feng, X.; Lee, H.-S. The role of microbial electrogenesis in regulating methane and nitrous oxide emissions from constructed wetland-microbial fuel cell. Int. J. Hydrogen Energy 2022, 47, 27279–27292. [Google Scholar] [CrossRef]
- Kirkwood, M.K.; Hanley, A.; Bruinooge, S.S.; Garrett-Mayer, E.; Levit, L.A.; Schenkel, C.; Seid, J.E.; Polite, B.N.; Schilsky, R.L. The State of Oncology Practice in America, 2018: Results of the ASCO Practice Census Survey. J. Oncol. Pract. 2018, 14, e412–e420. [Google Scholar] [CrossRef]
- Alizadeh, A.; Moghadam, M.; Bicer, Y.; Ure, N.K.; Yavas, U.; Kurtulus, C. Automated Lane Change Decision Making using Deep Reinforcement Learning in Dynamic and Uncertain Highway Environment. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand; 2019; pp. 1399–1404. [Google Scholar] [CrossRef] [Green Version]
- Baek, G.; Shi, L.; Rossi, R.; Logan, B.E. Using copper-based biocathodes to improve carbon dioxide conversion efficiency into methane in microbial methanogenesis cells. Chem. Eng. J. 2022, 435, 135076. [Google Scholar] [CrossRef]
- Amirdehi, M.A.; Gong, L.; Khodaparastasgarabad, N.; Sonawane, J.M.; Logan, B.E.; Greener, J. Hydrodynamic interventions and measurement protocols to quantify and mitigate power overshoot in microbial fuel cells using microfluidics. Electrochim. Acta 2022, 405, 139771. [Google Scholar] [CrossRef]
- Li, Y.Y.; Li, X.F.; Qi, X.G.; Li, J.; Ren, Y.P.; Wang, X.H.; Xia, Q.Q. Optimization of spore production process of Bacillus subtilis GX2 for aerobic composting [好氧堆肥用枯草芽孢杆菌 GX2 产芽孢工艺优化]. Food Sci. Biotechnol. 2021, 40, 91–99. [Google Scholar] [CrossRef]
- Wang, X.; Chang, V.W.; Tang, C.Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future. J. Membr. Sci. 2016, 504, 113–132. [Google Scholar] [CrossRef]
- Žalnėravičius, R.; Paškevičius, A.; Samukaitė-Bubnienė, U.; Ramanavičius, S.; Vilkienė, M.; Mockevičienė, I.; Ramanavičius, A. Microbial fuel cell based on nitrogen-fixing Rhizobium anhuiense bacteria. Biosensors 2022, 12, 113. [Google Scholar] [CrossRef]
- Wang, H.; Chen, P.; Zhang, S.; Jiang, J.; Hua, T.; Li, F. Degradation of pyrene using single-chamber air-cathode microbial fuel cells: Electrochemical parameters and bacterial community changes. Sci. Total. Environ. 2021, 804, 150153. [Google Scholar] [CrossRef]
Author (a) | TD | R | University | TD | R | Country | TD |
---|---|---|---|---|---|---|---|
Logan B.E. | 162 | 1 | Pennsylvania State University | 195 | 1 | China | 2773 |
Wang X. | 58 | 3 | Southeast University, Republic of Korea | 152 | 3 | United States | 1008 |
Liu Y. | 61 | 1 | Chongqing University, China | 187 | 1 | India | 962 |
Wang Y. | 60 | 2 | Nankai University, China | 161 | 2 | Republic of Korea | 536 |
Ghangrekar M.M. | 51 | 4 | Tianjin University, China | 131 | 4 | United Kingdom | 374 |
Zhang X. | 50 | 5 | Guangzhou University, China | 129 | 5 | Malaysia | 271 |
Li Y. | 47 | 6 | Indian Institute Of Technology Kharagpur, India | 111 | 6 | Taiwan | 261 |
Li X. | 43 | 7 | South China University Of Technology, China | 92 | 7 | Japan | 226 |
Zhang Y. | 43 | 8 | University Of The West Of England, Reino Unido | 78 | 8 | Italy | 218 |
Li J. | 40 | 9 | Nanjing Tech University, China | 75 | 9 | Iran | 203 |
Year | >200 | >100> | >50> | >20> | >10> | >5> | >1> | 0 | TD |
---|---|---|---|---|---|---|---|---|---|
2012 | 83 | 127 | 284 | 191 | 84 | 77 | 116 | 90 | 1052 |
2013 | 17 | 40 | 149 | 185 | 85 | 53 | 81 | 56 | 666 |
2014 | 13 | 43 | 121 | 191 | 102 | 59 | 83 | 39 | 651 |
2015 | 13 | 46 | 134 | 267 | 131 | 75 | 124 | 79 | 869 |
2016 | 11 | 32 | 123 | 261 | 177 | 94 | 112 | 43 | 853 |
2017 | 9 | 22 | 91 | 319 | 213 | 112 | 134 | 50 | 950 |
2018 | 8 | 20 | 76 | 321 | 213 | 155 | 176 | 82 | 1051 |
2019 | 4 | 7 | 64 | 298 | 261 | 186 | 175 | 61 | 1056 |
2020 | 0 | 2 | 26 | 208 | 288 | 221 | 260 | 81 | 1086 |
2021 | 0 | 2 | 5 | 64 | 172 | 286 | 471 | 180 | 1180 |
2022 | 0 | 0 | 0 | 1 | 18 | 60 | 326 | 452 | 857 |
Sum | 158 | 341 | 1073 | 2306 | 1744 | 1378 | 2058 | 1213 | 10,271 |
Journal | TP | TC | CiteScore (2021) | Most Cited Article (Reference) | Times Cited | Publisher | |
---|---|---|---|---|---|---|---|
1 | Environmental science and technology | 578 | 35,053 | 11.357 | Microbial Fuel Cells: Methodology and Technology [43] | 4496 | ACS |
2 | Journal of power sources | 374 | 27,458 | 15.4 | Microbial fuel cells: From fundamentals to applications. A review [44] | 883 | Elsevier |
3 | International journal of hydrogen energy | 316 | 22,218 | 10 | Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review [42] | 229 | Elsevier |
4 | Biosensors and bioelectronics | 143 | 22,218 | 20.2 | Operational parameters affecting the performance of a mediator-less microbial fuel cell [47] | 870 | Elsevier |
5 | Electrochimica acta | 139 | 10,398 | 12.3 | Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells [48] | 225 | Elsevier |
6 | Chemical engineering journal | 127 | 6106 | 6.7 | Electricity generation from starch processing wastewater using microbial fuel cell technology [49] | 334 | Elsevier |
7 | Chemosphere | 121 | 8182 | 11..7 | A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs) [50] | 104 | Elsevier |
8 | Science of the total environment | 117 | 5684 | 14.1 | Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review [51] | 137 | Elsevier |
9 | Rsc advances | 114 | 6462 | 5.9 | Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells [52] | 112 | Royal Society of Chemistry |
10 | Bioelectrochemistry | 109 | 4354 | 8.7 | Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell [53] | 283 | Elsevier |
Author | Year | Title of the Document | TC | TC per Year |
---|---|---|---|---|
Logan et al. [44] | 2006 | Microbial fuel cells: Methodology and technology. | 4496 | 264.47 |
Logan et al. [54] | 2009 | Exoelectrogenic bacteria that power microbial fuel cells. | 1730 | 123.57 |
Rabaeay et al. [55] | 2005 | Microbial fuel cells: novel biotechnology for energy generation. | 1686 | 93.67 |
Liu et al. [56] | 2004 | Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. | 1686 | 88.74 |
Logan et al. [57] | 2008 | Microbial fuel cells. | 1378 | 91.87 |
Pant et al. [58] | 2010 | A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. | 1301 | 100.08 |
Liu et al. [59] | 2004 | Production of electricity during wastewater treatment using a single chamber microbial fuel cell. | 1284 | 67.58 |
Chaudhuri et al. [60] | 2003 | Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. | 1222 | 61.10 |
Du et al. [61] | 2007 | A state of the art review on microbial fuel cells. | 1181 | 73.81 |
Logan et al. [62] | 2007 | Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. | 999 | 62.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Flores, S.; Ramirez-Asis, E.; Delgado-Caramutti, J.; Nazario-Naveda, R.; Gallozzo-Cardenas, M.; Diaz, F.; Delfin-Narcizo, D. An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis. Sustainability 2023, 15, 3651. https://doi.org/10.3390/su15043651
Rojas-Flores S, Ramirez-Asis E, Delgado-Caramutti J, Nazario-Naveda R, Gallozzo-Cardenas M, Diaz F, Delfin-Narcizo D. An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis. Sustainability. 2023; 15(4):3651. https://doi.org/10.3390/su15043651
Chicago/Turabian StyleRojas-Flores, Segundo, Edwin Ramirez-Asis, Jorge Delgado-Caramutti, Renny Nazario-Naveda, Moisés Gallozzo-Cardenas, Félix Diaz, and Daniel Delfin-Narcizo. 2023. "An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis" Sustainability 15, no. 4: 3651. https://doi.org/10.3390/su15043651
APA StyleRojas-Flores, S., Ramirez-Asis, E., Delgado-Caramutti, J., Nazario-Naveda, R., Gallozzo-Cardenas, M., Diaz, F., & Delfin-Narcizo, D. (2023). An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis. Sustainability, 15(4), 3651. https://doi.org/10.3390/su15043651