Spatial Correlation Network of Energy Consumption and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Gravitational Model
3.3. Characteristic Index of the Spatial Correlation Network
3.3.1. Overall Network Characteristics
3.3.2. Individual Network Characteristics
3.3.3. Block Model
3.3.4. QAP Analysis
3.4. Data Source
4. Results and Discussion
4.1. Characteristics of the Overall Network Structure
4.2. Overall Network Density
4.3. Centrality Analysis Results
4.4. Block Model Analysis Results
4.5. Influencing Factors of the Spatial Correlation Network
4.5.1. QAP Correlation Analysis
4.5.2. QAP Regression Analysis
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Zhang, X.; Geng, Y.; Shao, S.; Wilson, J.; Song, X.Q.; You, W. China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization. Appl. Energy 2020, 216, 114353. [Google Scholar] [CrossRef]
- Wang, A.I.; Hu, S.; Lin, B.Q. Emission abatement cost in China with consideration of technological heterogeneity. Appl. Energy 2021, 290, 116748. [Google Scholar] [CrossRef]
- Mi, Z.F.; Zhang, Y.K.; Guan, D.B.; Shan, Y.L.; Liu, Z.; Cong, R.G.; Yuan, X.C.; Wei, Y.M. Consumption-based emission accounting for Chinese cities. Appl. Energy 2016, 184, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Xie, R.; Lu, Y.; Fang, J.Y.; Liu, Y. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities. J. Clean. Prod. 2018, 172, 1096–1110. [Google Scholar] [CrossRef]
- Kang, X.; Yang, D. An analysis on the difference of regional energy consumption in China based on the method of the Theil index. Resour. Sci. 2010, 3, 485–490. [Google Scholar]
- Wu, S.; Zheng, X.; Wei, C. Measurement of inequality using household energy consumption data in rural China. Nat. Energy 2017, 2, 795–803. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhao, C.; Pu, H. Residential energy consumption and its linkages with life expectancy in mainland China: A geographically weighted regression approach and energy-ladder-based perspective. Energy 2019, 177, 347–357. [Google Scholar] [CrossRef]
- Wang, S.B.; Liu, H.M.; Pu, H.X.; Yang, H. Spatial disparity and hierarchical cluster analysis offinal energy consumption in China. Energy 2020, 197, 117195. [Google Scholar] [CrossRef]
- Wang, N.; Fu, X.D.; Wang, S.B. Spatial-temporal variation and coupling analysis of residential energy consumption and economic growth in China. Appl. Energy 2022, 309, 118504. [Google Scholar] [CrossRef]
- Hao, Y.; Peng, H. On the convergence in China’s provincial per capita energy consumption: New evidence from a spatial econometric analysis. Energy Econ. 2017, 68, 31–43. [Google Scholar] [CrossRef]
- Jiang, S.R.; Wang, J.Y.; Shi, L.; Ma, Z. Impact of energy consumption and air pollution on economic growth:An empirical study based on dynamic spatial Durbin model. Energy Procedia 2019, 158, 4011–4016. [Google Scholar]
- Park, J.; Yun, S.J. Social determinants of residential electricity consumption in Korea: Findings from a spatial panel model. Energy 2021, 239, 122272. [Google Scholar] [CrossRef]
- Jeetoo, J. Spatial interaction effect in renewable energy consumption in sub-Saharan Africa. Renew. Energy 2022, 190, 148–155. [Google Scholar]
- Tian, W.; Song, J.; Li, Z. Spatial regression analysis of domestic energy in urban areas. Energy 2014, 76, 629–640. [Google Scholar] [CrossRef]
- Liu, X.R.; Guo, W.; Feng, Q.; Wang, P. Spatial correlation, driving factors and dynamic spatial spillover of electricity consumption in China: A perspective on industry heterogeneity. Energy 2022, 257, 124756. [Google Scholar] [CrossRef]
- Lv, Z.K.; Liu, W.X.; Xu, T. Evaluating the impact of information and communication technology on renewable energy consumption: A spatial econometric approach. Renew. Energy 2022, 189, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.M.; Li, R.Y. Impacts of green certification programs on energy consumption and GHG emissions in buildings: A spatial regression approach. Energy Build. 2022, 256, 111677. [Google Scholar] [CrossRef]
- Wang, T.; Wen, Y.Y.; Lin, B.Q. Energy consumption and the influencing factors in China: A nonlinear perspective. J. Clean. Prod. 2020, 249, 119375. [Google Scholar] [CrossRef]
- Huang, J.B.; Xiang, S.Q.; Wu, P.L.; Chen, X. How to control China’s energy consumption through technological progress: A spatial heterogeneous investigation. Energy 2022, 238, 121965. [Google Scholar] [CrossRef]
- Lin, B.Q.; Wang, M. Possibilities of decoupling for China’s energy consumption from economic growth: A temporal-spatial analysis. Energy 2019, 185, 951–960. [Google Scholar]
- Lv, Y.L.; Chen, W.; Chen, J.Q. Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach. Energy Policy 2019, 133, 110841. [Google Scholar] [CrossRef]
- Ji, X.; Chen, B. Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. J. Clean. Prod. 2017, 163, 306–314. [Google Scholar] [CrossRef]
- Liu, H.J.; Liu, C.M.; Sun, Y.N. Spatial correlation network structure of energy consumption and its effect in China. China Ind. Econ. 2015, 5, 83–95. [Google Scholar]
- Wang, S.Y.; Chen, H.N.; Wei, P. Study on the influencing factors of energy consumption in China’s cities along the belt and road: Based on two-way fixed effects model. J. China Univ. Petrol. 2022, 2, 19–26. [Google Scholar]
- Amoakoa, S.; Insaidoo, M. Symmetric impact of FDI on energy consumption: Evidence from Ghana. Energy 2021, 223, 120005. [Google Scholar] [CrossRef]
- Li, Y.M.; Sun, L.Y.; Zhang, H.L.; Liu, T.T.; Fang, K. Does industrial transfer within urban agglomerations promote dual control of total energy consumption and energy intensity? J. Clean. Prod. 2018, 204, 607–617. [Google Scholar] [CrossRef]
- Norbutas, L.; Corten, R. Network structure and economic prosperity in municipalities: A large-scale test of social capital theory using social media data. Soc. Netw. 2018, 52, 120–134. [Google Scholar] [CrossRef]
- Hamilton, J.; Hogan, B.; Lucas, K.; Mayne, R. Conversations about conservation? Using social network analysis to understand energy practices. Energy Res. Soc. Sci. 2019, 49, 180–191. [Google Scholar] [CrossRef]
- Yu, J.K.; Ma, J.Q. Social network analysis as a tool for the analysis of the international trade network of aquatic products. Aquacult. Int. 2020, 28, 1195–1211. [Google Scholar] [CrossRef]
- Zhang, P.F.; Zhao, Y.Y.; Zhu, X.H.; Cai, Z.W.; Xu, J.X.; Shi, S. Spatial structure of urban agglomeration under the impact of high-speed railway construction: Based on the social network analysis. Sustain. Cities Soc. 2020, 62, 10240. [Google Scholar] [CrossRef]
- Leng, Z.H.; Sun, H.; Cheng, J.H.; Wang, H.; Yao, Z. China’s rare earth industry technological innovation structure and driving factors: A social network analysis based on patents. Resour. Policy 2021, 73, 102233. [Google Scholar] [CrossRef]
- Meng, X.X.; Liu, M.L.; Wang, J. Innovation network economic model of new energy automobile industry based on social network perspective. J. Therm. Anal. Calorim. 2021, 144, 1671–1680. [Google Scholar] [CrossRef]
- Sun, L.; Qin, L.; Taghizadeh-Hesary, F.; Zhang, J.; Mohsin, M.; Chaudhry, I.S. Analyzing carbon emission transfer network structure among provinces in China: New evidence from social network analysis. Environ. Sci. Pollut. Res. 2020, 27, 23281–23300. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.P.; Ge, Q. Analysis of the spatial association network of PM2.5 and its influencing factors in China. Int. J. Environ. Res. Public Health 2022, 19, 12753. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, M.N.; Liu, J.; Fan, W.N. The Spatial Network Structure of China’s Regional Carbon Emissions and Its Network Effect. Energies 2018, 11, 2076. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Feng, Q.; Wang, X.; Fu, H.; Jiang, W.; Chen, B. Spatial association and effect evaluation of CO2 emission in the Chengdu-Chongqing urban agglomeration: Quantitative evidence from social network analysis. Sustainability 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.Q.; Zhou, L.; Xia, M.L.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef]
- Shen, W.R.; Liang, H.W.; Dong, L.; Ren, J.Z.; Wang, G.J. Synergistic CO2 reduction effects in Chinese urban agglomerations: Perspectives from social network analysis. Sci. Total Environ. 2021, 798, 149352. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Y.Q. Spatial association effect of regional pollution control. J. Clean. Prod. 2019, 213, 540–552. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, E.D.; Bai, J.H.; Shi, Q.B. Spatial pattern and driving factors for interprovincial natural gas consumption in China: Based on SNA and LMDI. J. Clean. Prod. 2020, 263, 121392. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, X.M.; Su, B.; Wang, W.B.; Sun, K.; Sadia, U.H. A social network analysis regarding electricity consumption and economic growth in China. J. Clean. Prod. 2020, 274, 122973. [Google Scholar] [CrossRef]
- Li, F.Y.; Li, X.M. An empirical analysis on regional natural gas market of China from a spatial pattern and social network perspective. Energy 2022, 244, 122598. [Google Scholar] [CrossRef]
- Huang, J. The spatial network structure of energy-environmental efficiency and its determinants in China. Resour. Sci. 2018, 40, 759–772. [Google Scholar]
City | 2005 | 2008 | 2011 | 2014 | ||||
---|---|---|---|---|---|---|---|---|
In-Degree | Rank | In-Degree | Rank | In-Degree | Rank | In-Degree | Rank | |
Hangzhou | 24 | 1 | 25 | 1 | 24 | 1 | 23 | 1 |
Suzhou | 22 | 2 | 21 | 2 | 19 | 3 | 18 | 3 |
Nanjing | 20 | 3 | 21 | 2 | 21 | 2 | 20 | 2 |
Nantong | 19 | 4 | 19 | 4 | 18 | 4 | 17 | 4 |
Wuxi | 17 | 5 | 16 | 5 | 16 | 5 | 16 | 5 |
Shanghai | 16 | 6 | 16 | 5 | 16 | 5 | 16 | 5 |
Changzhou | 12 | 7 | 11 | 7 | 11 | 7 | 11 | 7 |
Yangzhou | 10 | 8 | 10 | 8 | 9 | 9 | 9 | 8 |
Jiaxing | 9 | 9 | 9 | 9 | 9 | 9 | 7 | 13 |
Taizhou | 8 | 11 | 8 | 12 | 8 | 11 | 8 | 10 |
Shaoxing | 9 | 9 | 9 | 9 | 8 | 11 | 8 | 10 |
Hefei | 8 | 11 | 8 | 12 | 10 | 8 | 9 | 8 |
Wuhu | 8 | 11 | 8 | 12 | 8 | 11 | 8 | 10 |
Chuzhou | 8 | 11 | 8 | 12 | 8 | 11 | 7 | 13 |
Yancheng | 7 | 15 | 7 | 16 | 7 | 16 | 7 | 13 |
Ningbo | 7 | 15 | 9 | 9 | 8 | 11 | 7 | 13 |
Zhenjiang | 6 | 17 | 6 | 17 | 6 | 18 | 6 | 17 |
Maanshan | 5 | 18 | 6 | 17 | 7 | 16 | 6 | 17 |
Xuancheng | 5 | 18 | 6 | 17 | 5 | 19 | 5 | 19 |
Anqing | 5 | 18 | 6 | 17 | 5 | 19 | 5 | 19 |
Huzhou | 4 | 21 | 5 | 21 | 4 | 21 | 3 | 22 |
Jinhua | 4 | 21 | 4 | 22 | 4 | 21 | 4 | 21 |
Taizhou2 | 3 | 23 | 3 | 23 | 3 | 23 | 3 | 22 |
Chizhou | 3 | 23 | 3 | 23 | 3 | 23 | 2 | 24 |
Tongling | 1 | 25 | 2 | 25 | 2 | 25 | 1 | 25 |
Zhoushan | 0 | 26 | 1 | 26 | 1 | 26 | 1 | 25 |
City | 2005 | 2008 | 2011 | 2014 | ||||
---|---|---|---|---|---|---|---|---|
Out-Degree | Rank | Out-Degree | Rank | Out-Degree | Rank | Out-Degree | Rank | |
Nanjing | 13 | 1 | 13 | 1 | 13 | 1 | 13 | 1 |
Chuzhou | 10 | 2 | 12 | 2 | 9 | 12 | 9 | 7 |
Hefei | 10 | 2 | 10 | 3 | 10 | 4 | 9 | 7 |
Yancheng | 10 | 2 | 10 | 3 | 11 | 2 | 11 | 2 |
Taizhou | 10 | 2 | 10 | 3 | 10 | 4 | 10 | 3 |
Changzhou | 10 | 2 | 10 | 3 | 10 | 4 | 10 | 3 |
Jinhua | 10 | 2 | 10 | 3 | 10 | 4 | 9 | 7 |
Shanghai | 10 | 2 | 10 | 3 | 10 | 4 | 9 | 7 |
Maanshan | 10 | 2 | 8 | 21 | 8 | 19 | 7 | 22 |
Yangzhou | 10 | 2 | 10 | 3 | 11 | 2 | 9 | 7 |
Hangzhou | 10 | 2 | 10 | 3 | 10 | 4 | 10 | 3 |
Ningbo | 9 | 12 | 10 | 3 | 10 | 4 | 10 | 3 |
Nantong | 9 | 12 | 9 | 16 | 9 | 12 | 9 | 7 |
Huzhou | 9 | 12 | 10 | 3 | 9 | 12 | 9 | 7 |
Taizhou2 | 9 | 12 | 10 | 3 | 10 | 4 | 8 | 15 |
Chizhou | 9 | 12 | 9 | 16 | 9 | 12 | 8 | 15 |
Suzhou | 9 | 12 | 10 | 3 | 9 | 12 | 8 | 15 |
Xuancheng | 9 | 12 | 9 | 16 | 8 | 19 | 7 | 22 |
Wuhu | 9 | 12 | 8 | 21 | 7 | 25 | 7 | 22 |
Zhenjiang | 9 | 12 | 10 | 3 | 9 | 12 | 9 | 7 |
Shaoxing | 8 | 21 | 9 | 16 | 8 | 19 | 8 | 15 |
Tongling | 8 | 21 | 9 | 16 | 8 | 19 | 8 | 15 |
Wuxi | 8 | 21 | 8 | 21 | 8 | 19 | 8 | 15 |
Jiaxing | 8 | 21 | 8 | 21 | 8 | 19 | 8 | 15 |
Anqing | 7 | 25 | 8 | 21 | 9 | 12 | 7 | 22 |
Zhoushan | 7 | 25 | 7 | 26 | 7 | 25 | 7 | 22 |
City | 2005 | 2008 | 2011 | 2014 | ||||
---|---|---|---|---|---|---|---|---|
Closeness | Rank | Closeness | Rank | Closeness | Rank | Closeness | Rank | |
Hangzhou | 96.154 | 1 | 100 | 1 | 96.154 | 1 | 92.593 | 1 |
Suzhou | 89.286 | 2 | 86.207 | 2 | 80.645 | 3 | 78.125 | 3 |
Nanjing | 83.333 | 3 | 86.207 | 2 | 86.207 | 2 | 83.333 | 2 |
Nantong | 80.645 | 4 | 80.645 | 4 | 78.125 | 4 | 75.758 | 4 |
Wuxi | 75.758 | 5 | 73.529 | 5 | 73.529 | 5 | 73.529 | 5 |
Shanghai | 73.529 | 6 | 73.529 | 5 | 73.529 | 5 | 73.529 | 5 |
Changzhou | 67.568 | 7 | 65.789 | 10 | 65.789 | 8 | 65.789 | 7 |
Hefei | 67.568 | 7 | 67.568 | 7 | 67.568 | 7 | 65.789 | 7 |
Chuzhou | 67.568 | 7 | 67.568 | 7 | 65.789 | 8 | 64.103 | 10 |
Yangzhou | 67.568 | 7 | 67.568 | 7 | 65.789 | 8 | 64.103 | 10 |
Yancheng | 65.789 | 11 | 65.789 | 10 | 65.789 | 8 | 65.789 | 7 |
Taizhou | 64.103 | 12 | 64.103 | 12 | 64.103 | 12 | 64.103 | 10 |
Shaoxing | 64.103 | 12 | 64.103 | 12 | 64.103 | 12 | 64.103 | 10 |
Jinhua | 64.103 | 12 | 64.103 | 12 | 64.103 | 12 | 62.5 | 14 |
Wuhu | 64.103 | 12 | 62.5 | 17 | 60.976 | 20 | 60.976 | 17 |
Ningbo | 62.5 | 16 | 64.103 | 12 | 62.5 | 15 | 62.5 | 14 |
Jiaxing | 62.5 | 16 | 62.5 | 17 | 62.5 | 15 | 59.524 | 20 |
Maanshan | 62.5 | 16 | 60.976 | 22 | 62.5 | 15 | 59.524 | 20 |
Xuancheng | 62.5 | 16 | 62.5 | 17 | 60.976 | 20 | 60.976 | 17 |
Zhenjiang | 62.5 | 16 | 64.103 | 12 | 62.5 | 15 | 62.5 | 14 |
Huzhou | 60.976 | 21 | 62.5 | 17 | 60.976 | 20 | 60.976 | 17 |
Taizhou2 | 60.976 | 21 | 62.5 | 17 | 62.5 | 15 | 59.524 | 20 |
Anqing | 59.524 | 24 | 59.524 | 25 | 60.976 | 20 | 59.524 | 20 |
Chizhou | 60.976 | 21 | 60.976 | 22 | 60.976 | 20 | 59.524 | 20 |
Tongling | 59.524 | 24 | 60.976 | 22 | 59.524 | 25 | 59.524 | 20 |
Zhoushan | 58.14 | 26 | 58.14 | 26 | 58.14 | 26 | 58.14 | 26 |
City | 2005 | 2008 | 2011 | 2014 | ||||
---|---|---|---|---|---|---|---|---|
Betweenness | Rank | Betweenness | Rank | Betweenness | Rank | Betweenness | Rank | |
Hangzhou | 15.908 | 1 | 17.692 | 1 | 20.353 | 1 | 22.944 | 1 |
Suzhou | 10.278 | 2 | 8.623 | 3 | 5.482 | 3 | 4.924 | 3 |
Nanjing | 6.93 | 3 | 8.729 | 2 | 10.903 | 2 | 10.781 | 2 |
Nantong | 5.314 | 4 | 4.876 | 4 | 3.932 | 4 | 3.474 | 4 |
Wuxi | 3.212 | 5 | 2.029 | 6 | 2.216 | 6 | 2.662 | 5 |
Chuzhou | 1.957 | 7 | 1.894 | 7 | 1.995 | 8 | 1.862 | 8 |
Changzhou | 1.408 | 8 | 0.98 | 10 | 1.104 | 9 | 1.329 | 9 |
Hefei | 1.371 | 9 | 1.41 | 8 | 2.017 | 7 | 1.91 | 7 |
Shanghai | 2.509 | 6 | 2.151 | 5 | 2.378 | 5 | 2.638 | 6 |
Yangzhou | 0.905 | 10 | 1.274 | 9 | 0.871 | 10 | 1.203 | 10 |
Yancheng | 0.494 | 13 | 0.48 | 12 | 0.603 | 12 | 0.787 | 11 |
Wuhu | 0.576 | 11 | 0.362 | 13 | 0.083 | 22 | 0.206 | 20 |
Taizhou | 0.235 | 18 | 0.215 | 21 | 0.329 | 16 | 0.393 | 14 |
Maanshan | 0.518 | 12 | 0.226 | 20 | 0.7 | 11 | 0.359 | 15 |
Jinhua | 0.416 | 15 | 0.335 | 15 | 0.34 | 14 | 0.321 | 17 |
Shaoxing | 0.346 | 16 | 0.272 | 17 | 0.34 | 14 | 0.463 | 13 |
Chizhou | 0.443 | 14 | 0.492 | 11 | 0.581 | 13 | 0.5 | 12 |
Xuancheng | 0.34 | 17 | 0.34 | 14 | 0.083 | 22 | 0.206 | 20 |
Anqing | 0.048 | 24 | 0.042 | 25 | 0.083 | 22 | 0.103 | 22 |
Huzhou | 0.206 | 19 | 0.292 | 16 | 0.194 | 18 | 0.214 | 19 |
Ningbo | 0.143 | 21 | 0.272 | 17 | 0.143 | 19 | 0.246 | 18 |
Jiaxing | 0.137 | 22 | 0.074 | 24 | 0.131 | 20 | 0.048 | 24 |
Tongling | 0.103 | 23 | 0.265 | 19 | 0.042 | 25 | 0.103 | 22 |
Zhenjiang | 0.202 | 20 | 0.215 | 21 | 0.296 | 17 | 0.323 | 16 |
Zhoushan | 0 | 25 | 0 | 26 | 0 | 26 | 0 | 25 |
Taizhou2 | 0 | 25 | 0.125 | 23 | 0.131 | 20 | 0 | 25 |
2005 | Block 1 | Shanghai, Suzhou, Shaoxing, Jinhua, Zhoushan, Ningbo, Jiaxing, Huzhou, Hangzhou, Taizhou2 |
Block 2 | Taizhou, Zhenjiang, Yancheng, Changzhou, Nantong, Wuxi | |
Block 3 | Yangzhou, Nanjing, Maanshan, Chuzhou | |
Block 4 | Hefei, Wuhu, Tongling, Anqing, Chizhou, Xuancheng | |
2008 | Block 1 | Shanghai, Suzhou, Shaoxing, Jinhua, Zhoushan, Ningbo, Jiaxing, Huzhou, Hangzhou, Taizhou2 |
Block 2 | Taizhou, Zhenjiang, Yancheng, Changzhou, Nantong, Wuxi | |
Block 3 | Yangzhou, Nanjing | |
Block 4 | Hefei, Wuhu, Maanshan, Tongling, Anqing, Chuzhou, Chizhou, Xuancheng | |
2011 | Block 1 | Shanghai, Suzhou, Shaoxing, Jinhua, Zhoushan, Ningbo, Jiaxing, Huzhou, Hangzhou, Taizhou2 |
Block 2 | Taizhou, Zhenjiang, Yancheng, Changzhou, Nantong, Wuxi | |
Block 3 | Yangzhou, Nanjing, Chuzhou | |
Block 4 | Hefei, Wuhu, Tongling, Anqing, Chizhou, Maanshan, Xuancheng | |
2014 | Block 1 | Shanghai, Shaoxing, Jinhua, Zhoushan, Ningbo, Jiaxing, Huzhou, Hangzhou, Taizhou2 |
Block 2 | Taizhou, Zhenjiang, Yancheng, Changzhou, Nantong, Wuxi, Suzhou, Yangzhou | |
Block 3 | Nanjing, Chuzhou, Hefei, Maanshan | |
Block 4 | Wuhu, Tongling, Anqing, Chizhou, Xuancheng |
Block | Number of Receiving Relations | Number of Relations Issued | Expected Internal Relationship Ratio(%) | Proportion of Actual Internal Relation(%) | Block Properties | ||
---|---|---|---|---|---|---|---|
Intra Block | Out of Block | Intra Block | Out of Block | ||||
First Block | 46 | 26 | 46 | 32 | 0.32 | 0.59 | Net spillover block |
Second Block | 48 | 44 | 48 | 26 | 0.28 | 0.65 | Net beneficial block |
Third Block | 12 | 30 | 12 | 26 | 0.12 | 0.32 | Bidirectional spillover block |
Fourth Block | 15 | 6 | 15 | 22 | 0.16 | 0.41 | Brokers block |
Year | Subgroup | Density Matric | Image Matric | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | ||
2005 | 1 | 0.689 | 0.367 | 0.125 | 0 | 1 | 0 | 0 | 0 |
2 | 0.3 | 0.9 | 0.458 | 0 | 0 | 1 | 1 | 0 | |
3 | 0.2 | 0.708 | 0.917 | 0.292 | 0 | 1 | 1 | 0 | |
4 | 0.167 | 0.083 | 0.667 | 0.767 | 0 | 0 | 1 | 1 | |
2008 | 1 | 0.733 | 0.367 | 0.3 | 0 | 1 | 0 | 0 | 0 |
2 | 0.317 | 0.9 | 0.917 | 0 | 0 | 1 | 1 | 0 | |
3 | 0.25 | 0.917 | 1 | 0.313 | 0 | 1 | 1 | 0 | |
4 | 0.15 | 0.146 | 0.75 | 0.75 | 0 | 0 | 1 | 1 | |
2011 | 1 | 0.7 | 0.367 | 0.2 | 0 | 1 | 0 | 0 | 0 |
2 | 0.3 | 0.9 | 0.611 | 0.024 | 0 | 1 | 1 | 0 | |
3 | 0.2 | 0.778 | 1 | 0.333 | 0 | 1 | 1 | 0 | |
4 | 0.129 | 0.071 | 0.714 | 0.762 | 0 | 0 | 1 | 1 | |
2014 | 1 | 0.639 | 0.389 | 0.111 | 0 | 1 | 1 | 0 | 0 |
2 | 0.222 | 0.857 | 0.313 | 0 | 0 | 1 | 0 | 0 | |
3 | 0.139 | 0.469 | 1 | 0.3 | 0 | 1 | 1 | 0 | |
4 | 0.111 | 0.025 | 0.8 | 0.75 | 0 | 0 | 1 | 1 |
Obs.Value | Sig. | Average | Std.Dev | Min. | Max. | p ≥ 0 | p ≤ 0 | |
---|---|---|---|---|---|---|---|---|
AGG | 0.105 | 0.054 | 0.001 | 0.061 | −0.202 | 0.297 | 0.054 | 0.955 |
ER | 0.054 | 0.196 | 0.001 | 0.06 | −0.202 | 0.284 | 0.196 | 0.83 |
FDI | 0.132 | 0.017 | 0 | 0.055 | −0.162 | 0.278 | 0.017 | 0.987 |
GEO | 0.494 | 0 | 0.001 | 0.047 | −0.16 | 0.234 | 0 | 1 |
INF | −0.094 | 0.036 | 0 | 0.054 | −0.158 | 0.225 | 0.974 | 0.036 |
TI | −0.068 | 0.164 | 0.001 | 0.066 | −0.213 | 0.26 | 0.862 | 0.164 |
2011 | AGG | ER | FDI | geo | INF | TI | |
---|---|---|---|---|---|---|---|
2011 | 1 | ||||||
AGG | 0.105 * | 1 | |||||
ER | 0.054 | 0.015 | 1 | ||||
FDI | 0.132 ** | 0.352 *** | −0.006 | 1 | |||
GEO | 0.494 *** | 0.02 | −0.021 | 0.047 | 1 | ||
INF | −0.094 ** | 0.093 * | −0.067 | 0.123 ** | −0.03 | 1 | |
TI | −0.068 | 0.031 | 0.146 ** | −0.023 | −0.004 | 0.081 * | 1 |
Independent | Un-Stdized | Stdized | Significance | p ≥ 0 | p ≤ 0 |
---|---|---|---|---|---|
Coefficient | Coefficient | ||||
Intercept | 0.229 | 0 | |||
AGG | 0.070 | 0.072 | 0.090 | 0.090 | 0.910 |
ER | 0.065 | 0.068 | 0.083 | 0.083 | 0.917 |
FDI | 0.090 | 0.093 | 0.036 | 0.036 | 0.964 |
GEO | 0.617 | 0.486 | 0 | 0 | 1 |
INF | −0.084 | −0.087 | 0.025 | 0.975 | 0.025 |
TI | −0.069 | −0.069 | 0.105 | 0.896 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, P. Spatial Correlation Network of Energy Consumption and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration. Sustainability 2023, 15, 3650. https://doi.org/10.3390/su15043650
Wang H, Liu P. Spatial Correlation Network of Energy Consumption and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration. Sustainability. 2023; 15(4):3650. https://doi.org/10.3390/su15043650
Chicago/Turabian StyleWang, Huiping, and Peiling Liu. 2023. "Spatial Correlation Network of Energy Consumption and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration" Sustainability 15, no. 4: 3650. https://doi.org/10.3390/su15043650
APA StyleWang, H., & Liu, P. (2023). Spatial Correlation Network of Energy Consumption and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration. Sustainability, 15(4), 3650. https://doi.org/10.3390/su15043650