Case Study-Based Integrated Assessment of Former Waste Disposal Sites Transformed to Green Space in Terms of Ecosystem Services and Land Assets Recovery
Abstract
:1. Introduction
2. Methodology
2.1. Case Studies of Revitalized Sites
2.2. Estimation of Ecosystem Services’ Recovery Potential
2.3. Valuation of Land Assets
3. Results and Discussion
3.1. Green Space Reclaimed from the World’s Largest Dump: Freshkills Park
3.2. From Dump to Olympic Dream: Sydney Olympic Park
3.3. Gorka Rogowska Landfill Transformation
3.4. Kudjape Landfill: Serving Society and Science
3.5. Integrating Recovery of Land Assets and Ecosystem Services
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Counts. Waste. Available online: https://www.theworldcounts.com/challenges/planet-earth/waste (accessed on 20 December 2022).
- The World Bank. Trends in Solid Waste Management. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 20 December 2022).
- Johansson, N.; Krook, J.; Eklund, M. Transforming dumps into gold mines. Experiences from Swedish case studies. Environ. Innov. Soc. 2012, 5, 33–48. [Google Scholar] [CrossRef]
- Burlakovs, J.; Kriipsalu, M.; Klavins, M.; Bhatnagar, A.; Vincevica-Gaile, Z.; Stenis, J.; Jani, Y.; Mykhaylenko, V.; Denafas, G.; Turkadze, T.; et al. Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization. Resour. Conserv. Recycl. 2016, 123, 73–84. [Google Scholar] [CrossRef]
- Jones, P.T.; Geysen, D.; Tielemans, Y.; Van Passel, S.; Pontikes, Y.; Blanpain, B.; Quaghebeur, M.; Hoekstra, N. Enhanced Landfill Mining in view of multiple resource recovery: A critical review. J. Clean. Prod. 2013, 55, 45–55. [Google Scholar] [CrossRef]
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off. J. Eur. Communities 1999, 182, 1–19. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01999L0031-20180704 (accessed on 30 January 2023).
- EURELCO. Data Launched on the Landfill Situation in the EU-28. Available online: https://eurelco.org/2018/09/30/data-launched-on-the-landfill-situation-in-the-eu-28/#:~:text=The%20figure%20for%20the%20total,the%20Landfill%20Directive%20(1999) (accessed on 20 December 2022).
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colón, J.; Ponsá, S.; Al-Mansour, F.; et al. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Hogland, W.; Marques, M.; Nimmermark, S. Landfill mining and waste characterization: A strategy for remediation of contaminated areas. J. Mater. Cycles Waste Manag. 2004, 6, 119–124. [Google Scholar] [CrossRef]
- Waste Atlas. Available online: http://www.atlas.d-waste.com/ (accessed on 20 December 2022).
- Facts and Figures on the European Union Economy. Available online: https://european-union.europa.eu/principles-countries-history/key-facts-and-figures/economy_en (accessed on 20 December 2022).
- Vanheusden, B. Recent development in European policy regarding brownfield remediation. Environ. Pract. 2009, 11, 256–262. [Google Scholar] [CrossRef]
- Minelgaitė, A.; Liobikienė, G. Waste problem in European Union and its influence on waste management behaviours. Sci. Total Environ. 2019, 667, 86–93. [Google Scholar] [CrossRef]
- Marques, A.C.; Teixeira, N.M. Assessment of municipal waste in a circular economy: Do European Union countries share identical performance? Clean. Waste Syst. 2022, 3, 100034. [Google Scholar] [CrossRef]
- Koda, E.; Osiński, P.; Podlasek, A.; Markiewicz, A.; Winkler, J.; Vaverková, M.D. Geoenvironmental approaches in an old municipal waste landfill reclamation process: Expectations vs reality. Soils Found. 2023, 63, 101273. [Google Scholar] [CrossRef]
- Burlakovs, J.; Kriipsalu, M.; Vincevica-Gaile, Z.; Grinfelde, I.; Grinberga, L. Material recovery and revitalisation of landfills: Multitasking approach striving to ‘beyond the zero waste’. SGEM Int. Multidiscip. Sci. GeoConf. 2021, 21, 285–292. [Google Scholar] [CrossRef]
- Kaartinen, T.; Sormunen, K.; Rintala, J. Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. J. Clean. Prod. 2013, 55, 56–66. [Google Scholar] [CrossRef]
- Johansson, N.; Krook, J.; Eklund, M.; Berglund, B. An integrated review of concepts and initiatives for mining the technosphere: Towards a new taxonomy. J. Clean. Prod. 2013, 55, 35–44. [Google Scholar] [CrossRef]
- Pehme, K.-M.; Kriipsalu, M. Full-scale project—From landfill to recreational area. Detritus 2018, 1, 174–179. [Google Scholar] [CrossRef]
- Shekdar, A.V. Sustainable solid waste management: An integrated approach for Asian countries. Waste Manag. 2009, 29, 1438–1448. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Moriguichi, Y. The circular economy: A new development strategy in China. J. Ind. Ecol. 2006, 10, 4–8. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2016, 143, 710–718. [Google Scholar] [CrossRef]
- Andersen, M.S. An introductory note on the environmental economics of the circular economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Martín Gómez, A.M.; González, F.A.; Bárcena, M.M. Smart eco-industrial parks: A circular economy implementation based on industrial metabolism. Resour. Conserv. Recycl. 2018, 135, 58–69. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Dong, L.; Fujita, M.; Dai, M.; Geng, Y.; Ren, J.; Wang, Y.; Ohnishi, S. Towards preventative eco-industrial development: An industrial and urban symbiosis case in one typical industrial city in China. J. Clean. Prod. 2016, 114, 387–400. [Google Scholar] [CrossRef]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Washbourne, C.-L.; Goddard, M.A.; Le Provost, G.; Manning, D.A.C.; Manning, P. Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders. Ecosyst. Serv. 2020, 42, 101074. [Google Scholar] [CrossRef]
- Gies, E. The Health Benefits of Parks: How Parks Keep Americans and Their Communities Fit and Healthy; The Trust for Public Land: San Francisco, CA, USA, 2006; 26p. [Google Scholar]
- De Sousa, C.A. Unearthing the benefits of brownfield to green space projects: An examination of project use and quality of life impacts. Local Environ. 2006, 11, 577–600. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E. The conceptual model of an eco-industrial park based upon ecological relationships. J. Clean. Prod. 2009, 17, 732–741. [Google Scholar] [CrossRef]
- Mowen, A.J.; Confer, J.J. The relationship between perceptions, distance, and socio-demographic characteristics upon public use of an urban park “in-fill”. J. Park Recreat. Adm. 2003, 21, 58–74. [Google Scholar]
- Zhang, L.; Klenosky, D.B. Residents’ perceptions and attitudes toward waste treatment facility sites and their possible conversion: A literature review. Urban For. Urban Green. 2016, 20, 32–42. [Google Scholar] [CrossRef]
- Hogland, W.; Burlakovs, J.; Mutafela, R.; Jani, Y. From glass dump to phytoremediation park. IOP Conf. Ser. Earth Environ. Sci. 2019, 390, 012007. [Google Scholar] [CrossRef]
- Klenosky, D.B.; Snyder, S.A.; Vogt, C.A.; Campbell, L.K. If we transform the landfill, will they come? Predicting visitation to Freshkills Park in New York City. Landsc. Urban Plan. 2017, 167, 315–324. [Google Scholar] [CrossRef]
- NYC GovParks. Freshkills Park. Available online: https://www.nycgovparks.org/park-features/freshkills-park/about-the-site (accessed on 20 December 2022).
- Freshkills Park. Students Learn About Water Quality at Freshkills Park. Available online: http://freshkillspark.org/blog/students-learn-about-water-quality-at-freshkills-park (accessed on 20 December 2022).
- Steiner, F. Frontiers in urban ecological design and planning research. Landsc. Urban Plan. 2014, 125, 304–311. [Google Scholar] [CrossRef]
- Davidson, M. The sustainable and entrepreneurial park? Contradictions and persistent antagonisms at Sydney’s Olympic Park. Urban Geogr. 2013, 34, 657–676. [Google Scholar] [CrossRef]
- Darcovich, K.; O’Meara, J. An Olympic legacy: Green and golden bell frog conservation at Sydney Olympic Park 1993–2006. Aust. Zool. 2008, 34, 236–248. [Google Scholar] [CrossRef]
- Davidson, M.; McNeill, D. The redevelopment of Olympic sites: Examining the legacy of Sydney Olympic park. Urban Stud. 2012, 49, 1625–1641. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, B.; Yang, J.; Xu, B. Olympic effects on reshaping urban greenspace of host cities. Landsc. Urban Plan. 2023, 230, 104615. [Google Scholar] [CrossRef]
- Długoński, A.; Dushkova, D. The hidden potential of informal urban greenspace: An example of two former landfills in post-socialist cities (central Poland). Sustainability 2021, 13, 3691. [Google Scholar] [CrossRef]
- Długoński, A. Recreational development of old landfill: The case study of Górka Rogowska landfill in Łódź city, Poland. Detritus 2018, 2, 155–162. [Google Scholar] [CrossRef]
- Łukaszkiewicz, J.; Fortuna-Antoszkiewicz, B.; Długoński, A.; Wiśniewski, P. From the heap to the park—Reclamation and adaptation of degraded urban areas for recreational functions in Poland. Sci. Rev. Eng. Environ. Sci. 2019, 28, 664–681. [Google Scholar] [CrossRef]
- Kaczala, F.; Mehdinejad, M.H.; Lääne, A.; Orupõld, K.; Bhatnagar, A.; Kriipsalu, M.; Hogland, W. Leaching characteristics of the fine fraction from an excavated landfill: Physico-chemical characterization. J. Mater. Cycles Waste Manag. 2017, 19, 294–304. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kaczala, F.; Burlakovs, J.; Kriipsalu, M.; Hogland, M.; Hogland, W. Hunting for valuables from landfills and assessing their market opportunities: A case study with Kudjape landfill in Estonia. Waste Manag. Res. 2017, 35, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Burlakovs, J.; Kaczala, F.; Vincevica-Gaile, Z.; Rudovica, V.; Orupõld, K.; Stapkevica, M.; Bhatnagar, A.; Kriipsalu, M.; Hogland, M.; Klavins, M.; et al. Mobility of metals and valorization of sorted fine fraction of waste after landfill excavation. Waste Biomass Valor. 2016, 7, 593–602. [Google Scholar] [CrossRef]
- Pehme, K.-M.; Tamm, T.; Orupõld, K.; Kriipsalu, M. A study on methane degradation layer extracted from landfill mining. Proc. Linnaeus Eco-Tech 2014, 1. [Google Scholar] [CrossRef]
- Calderón Márquez, A.J.; Cassettari Filho, P.C.; Rutkowski, E.W.; de Lima Isaac, R. Landfill mining as a strategic tool towards global sustainable development. J. Clean. Prod. 2019, 226, 1102–1115. [Google Scholar] [CrossRef]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef]
- CICES. Towards a Common Classification of Ecosystem Services. Available online: https://cices.eu/ (accessed on 20 December 2022).
- EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a3c806a6-9ab3-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 20 December 2022).
- Sukhdev, P.; Wittmer, H.; Miller, D. The Economics of Ecosystems and Biodiversity (TEEB): Challenges and Responses. In Nature in the Balance: The Economics of Biodiversity; Helm, D., Hepburn, C., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 135–150. [Google Scholar] [CrossRef]
- Ecosystems and Human Wellbeing. Synthesis. Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 20 December 2022).
- Wang, Z.; Fu, B.; Zhang, L.; Wu, X.; Li, Y. Ecosystem service assessments across cascade levels: Typology and an evidence map. Ecosyst. Serv. 2022, 57, 101472. [Google Scholar] [CrossRef]
- Erhard, M.; Banko, G.; Malak, D.M.; Santos-Martín, F. Mapping Ecosystem Types and Conditions. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft: Sofia, Bulgaria, 2017; pp. 75–80. [Google Scholar] [CrossRef]
- Campagne, C.S.; Roche, P.; Müller, F.; Burkhard, B. Ten years of ecosystem services matrix: Review of (r)evolution. One Ecosyst. 2020, 5, e51103. [Google Scholar] [CrossRef]
- Roche, P.K.; Campagne, S. Are expert-based ecosystem services scores related to biophysical quantitative estimates? Ecol. Indic. 2019, 106, 105421. [Google Scholar] [CrossRef]
- Vihervaara, P.; Mononen, L.; Santos, F.; Adamescu, M.; Cazacu, C.; Luque, S.; Geneletti, D.; Maes, J. Biophysical Quantification. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft: Sofia, Bulgaria, 2017; pp. 93–103. [Google Scholar] [CrossRef]
- Scholte, S.S.K.; van Teeffelen, A.J.A.; Verburg, P.H. Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods. Ecol. Econ. 2015, 114, 67–78. [Google Scholar] [CrossRef]
- Häyhä, T.; Franzese, P.P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecol. Model. 2014, 289, 124–132. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2017, 14, 681–695. [Google Scholar] [CrossRef]
- Wilker, J.; Rusche, K.; Benning, A.; MacDonald, M.A.; Blaen, P. Applying ecosystem benefit valuation to inform quarry restoration planning. Ecosyst. Serv. 2016, 20, 44–55. [Google Scholar] [CrossRef]
- Kolosz, B.W.; Athanasiadis, I.N.; Cadisch, G.; Dawson, T.P.; Giupponi, C.; Honzák, M.; Martinez-Lopez, J.; Marvuglia, A.; Mojtahed, V.; Ogutu, K.B.Z.; et al. Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land. Ecosyst. Serv. 2018, 33, 29–39. [Google Scholar] [CrossRef]
- Kumar, E.; Subramani, T.; Karunanidhi, D. Integrated approach of ecosystem services for mine reclamation in a clustered mining semi-urban region of South India. Urban Clim. 2022, 45, 101246. [Google Scholar] [CrossRef]
- Rawat, L.S.; Maikhuri, R.K.; Bahuguna, Y.M.; Jugran, A.K.; Maletha, A.; Jha, N.K.; Phondani, P.C.; Dhyani, D.; Pharswan, D.S.; Chamoli, S. Rejuvenating ecosystem services through reclaiming degraded land for sustainable societal development: Implications for conservation and human wellbeing. Land Use Policy 2022, 112, 105804. [Google Scholar] [CrossRef]
- Pueffel, C.; Haase, D.; Priess, J.A. Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosyst. Serv. 2018, 30, 73–85. [Google Scholar] [CrossRef]
- De Valck, J.; Beames, A.; Liekens, I.; Bettens, M.; Seuntjens, P.; Broekx, S. Valuing urban ecosystem services in sustainable brownfield redevelopment. Ecosyst. Serv. 2019, 35, 139–149. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Crompton, J.L. The Proximate Principle: The Impact of Parks, Open Space and Water Features on Residential Property Values and the Property Tax Base, 2nd ed.; National Recreation and Park Association: Ashburn, VA, USA, 2004; 203p. [Google Scholar]
- Nicholls, S.; Crompton, J.L. The impact of greenways on property values: Evidence from Austin, Texas. J. Leis. Res. 2005, 37, 321–341. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The significance of parks to physical activity and public health: A conceptual model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef]
- Harnik, P.; Welle, B. Measuring the Economic Value of a City Park System; The Trust of the Public Land: San Francisco, CA, USA, 2009; 28p. [Google Scholar]
- Pagourtzi, E.; Assimakopoulos, V.; Hatzichristos, T.; French, N. Real estate appraisal: A review of valuation methods. J. Prop. Invest. Financ. 2003, 21, 383–401. [Google Scholar] [CrossRef]
- Property Shark. Staten Island Real Estate Market Trends. Available online: https://www.propertyshark.com/mason/market-trends/residential/nyc/staten-island (accessed on 29 December 2022).
- Realtor. New York, NY Real Estate and Homes for Sale. Available online: https://www.realtor.com/realestateandhomes-search/New-York_NY (accessed on 29 December 2022).
- Open Agent. Sydney Property Market News. Available online: https://www.openagent.com.au/suburb-profiles/sydney-property-market (accessed on 29 December 2022).
- Real Estate. Real Estate and Property for Sale in Sydney Olympic Park. Available online: https://m.realestate.com.au/buy/in-sydney+olympic+park,+nsw+2127/list-1 (accessed on 29 December 2022).
- Gratka. Real Estate Portal of Poland. Available online: https://gratka.pl/nieruchomosci/mieszkania/lodz (accessed on 29 December 2022).
- Nieruchomosci. Real Estate Portal of Poland. Available online: https://lodz.nieruchomosci-online.pl/mieszkania,sprzedaz/ (accessed on 29 December 2022).
- Kinnisvaraportaal. Real Estate Portal of Estonia. Available online: https://www.kv.ee/en/search?deal_type=1&county=11 (accessed on 29 December 2022).
- Oudes, D.; Stremke, S. Climate adaptation, urban regeneration and brownfield reclamation: A literature review on landscape quality in large-scale transformation projects. Landsc. Res. 2020, 45, 905–919. [Google Scholar] [CrossRef]
- Smithsonian Magazine. The Transformation of Freshkills Park from Landfill to Landscape. Available online: https://www.smithsonianmag.com/arts-culture/the-transformation-of-freshkills-park-from-landfill-to-landscape-75931143/ (accessed on 20 December 2022).
- Bloomberg. The Wild Comeback of New York’s Legendary Landfill. Available online: https://www.bloomberg.com/news/articles/2017-02-17/freshkills-park-once-a-legendary-landfill-now-a-haven (accessed on 30 January 2023).
- Gupta, A.K.; Negi, M.; Nandy, S.; Kumar, M.; Singh, V.; Valente, D.; Petrosillo, I.; Pandey, R. Mapping socio-environmental vulnerability to climate change in different altitude zones in the Indian Himalayas. Ecol. Indic. 2020, 109, 105787. [Google Scholar] [CrossRef]
- CNN. A Landfill in Their Backyard. Available online: https://edition.cnn.com/interactive/2020/09/us/september-11-cancer-rates-fresh-kills/ (accessed on 20 December 2022).
- Punter, J. Urban design in central Sydney 1945–2002: Laissez-Faire and discretionary traditions in the accidental city. Prog. Plan. 2005, 63, 11–160. [Google Scholar] [CrossRef]
- Myer, A.; Chaffee, C. Life-cycle analysis for design of the Sydney Olympic Stadium. Renew. Energy 1997, 10, 169–172. [Google Scholar] [CrossRef]
- Carvalho, C.; Oliveira, A.; Caeiro, E.; Miralto, O.; Parrinha, M.; Sampaio, A.; Silva, C.; Mira, A.; Sagueiro, P.A. Insect pollination services in actively and spontaneously restored quarries converge differently to natural reference ecosystem. J. Environ. Manag. 2022, 318, 115450. [Google Scholar] [CrossRef]
- Van der Zee, D.J.; Achterkamp, M.C.; de Visser, B.J. Assessing the market opportunities of landfill mining. Waste Manag. 2004, 24, 795–804. [Google Scholar] [CrossRef]
- Pecina, V.; Juřička, D.; Galiová, M.V.; Kynický, J.; Baláková, L.; Brtnický, M. Polluted brownfield site converted into a public urban park: A place providing ecosystem services or a hidden health threat? J. Environ. Manag. 2021, 291, 112669. [Google Scholar] [CrossRef]
- Della Spina, L. Urban Regeneration Strategies According to Circular Economy: A Multi-Criteria Decision Aiding Approach. In New Metropolitan Perspectives (NMP). Lecture Notes in Networks and Systems; Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J., Eds.; Springer: Cham, Switzerland, 2022; Volume 482, pp. 676–689. [Google Scholar] [CrossRef]
- Lee, H.S.; Corgel, J.; Shin, S. Estimating net operating income growth for modeling U.S. apartment property capitalization rates. J. Real Estate Portf. Manag. 2014, 20, 67–78. [Google Scholar] [CrossRef]
- Clayton, J.; Ling, D.C.; Naranjo, A. Commercial real estate valuation: Fundamentals versus investor sentiment. J. Real Estate Financ. Econ. 2009, 38, 5–37. [Google Scholar] [CrossRef]
- Biddau, G.M.; Marotta, A.; Sanna, G. Abandoned landscape project design. City Territ. Archit. 2020, 7, 10. [Google Scholar] [CrossRef]
- Schädler, S.; Morio, M.; Bartke, S.; Rohr-Zänker, R.; Finkel, M. Designing sustainable and economically attractive brownfield revitalization options using an integrated assessment model. J. Environ. Manag. 2011, 92, 827–837. [Google Scholar] [CrossRef] [PubMed]
No. | Name (Location) | Size | General Characterization | Current Use | Reference |
---|---|---|---|---|---|
1. | Freshkills Park (New York, Staten Island, USA) | Large: 931 ha | Operation time: more than 53 years until 2001, starting as a dump and ending as a legal landfill; 136 million metric tons of solid waste disposed | Partly open area—green space for recreation, social events and memorial | [36,37,38,39] |
2. | Sydney Olympic Park (Sydney, Australia) | Large: 600 ha | Operation time from 1950 to 2001; the area encloses five contaminated landfill sites of various toxicity levels containing around 100 million tons of waste; dumping involved soils contaminated with toxic waste from Newington Armory, waste rich in dioxins from Union Carbide (Dow Chemical), coal plant operation residuals as well as household waste | Open green space area with recreation function and residential space, a place for cultural, social and sports events | [40,41,42,43,44] |
3. | Gorka Rogowska former landfill site (Lodz, Poland) | Medium: 27 ha | Around 50 years of various intensity dumping of construction waste as the majority with stochastic dumping of mixed household waste in minor amounts | Open green space for recreation with walking trail, picnic places, landscape viewpoints and dog walking area | [45,46,47] |
4. | Kudjape former landfill site (Saaremaa Island, Estonia) | Medium: 7 ha | Landfill operation time from 1970 to 2009; household waste dumping with the admixture of industrial and fishing industry waste; 200,000 m3 of waste disposed | Open green space for recreation and active leisure | [48,49,50,51,52] |
No. | Methodological Approach | Estimation Example | Relevance of Benefits’ Criteria | ||
---|---|---|---|---|---|
Economic | Social | Environmental | |||
1. | Biophysical assessment | ||||
1.1. | Indirect measurements | Expert-based estimation, proxy-based methods | M | M | M |
1.2. | Direct measurements | Field observations, experiments, monitoring data, surveys and questionnaires | M | M | M |
1.3. | Model-based methods | Process-based, trait-based, connectivity models | L | L | M |
1.4. | Integrated evaluation | Integrated valuation of ecosystem services and trade-offs (InVEST), artificial intelligence for environment and sustainability (ARIES) | M | M | M |
2. | Socio-cultural assessment | ||||
2.1. | Qualitative survey methods | Photo-based analysis, Geographic Information Systems (GIS) tools | M | M | M |
2.2. | Scenario planning | Management plan analysis | M | M | M |
3. | Economic assessment | ||||
3.1. | Market-based methods | Direct market pricing method, total economic value | M | M | M |
3.2. | Productivity income and damage assessment | Factor income/production function, damage costs avoided method | L | L | L |
3.3. | Replacement and restoration costs | Replacement costs, mitigation and restoration cost (MRC) method | M | L | M |
3.4. | General preference-based evaluation | Contingent valuation method (willingness to pay), benefits transfer method, hedonic pricing method | M | M | M |
No. | Attributed Parameter | Case Study | |||
---|---|---|---|---|---|
Freshkills Park | Sydney Olympic Park | Gorka Rogowska | Kudjape | ||
1. | Biophysical assessment | ||||
1.1. | Indirect measurements | N | N | N | N |
1.2. | Direct measurements | A | A | N | N |
1.3. | Model-based evaluation | N | N | N | N |
1.4. | Integrated evaluation | A | A | A | A |
2. | Sociocultural assessment | ||||
2.1. | Qualitative surveys | A | A | A | A |
2.2. | Scenario planning | A | A | A | A |
3. | Economic assessment | ||||
3.1. | Market-based as total economic value | A | A | A | A |
3.2. | Productivity income and damage estimation | N | N | N | N |
3.3. | Replacement and restoration costs | A | A | A | A |
3.4. | General or subjective preferences | N | N | A | A |
No. | Parameter | Unit | Case Study | |||
---|---|---|---|---|---|---|
Freshkills Park | Sydney Olympic Park | Gorka Rogowska | Kudjape | |||
1. | Real estate property value estimation | |||||
1.1. | Vicinity real estate value | EUR/m2 | 4000 | 4000 | 1000 | 2000 |
1.2. | Attributed real estate aerial benefit estimation at 10% of the total area | ha | 93.1 | 60.0 | 2.7 | 0.7 |
1.3. | Approximation of residential space on attributed real estate aerial | m2/ha | 93,000 | 60,000 | 2700 | 700 |
1.4. | Annual (rounded up) property tax | % | 1 | 1 | 0.5 | 0.5 |
1.5. | Estimated total residential space value | EUR | 372,000,000 | 240,000,000 | 2,700,000 | 1,400,000 |
1.6. | Annual real estate tax benefit | EUR/year | 3,700,000 | 2,400,000 | 135,000 | 70,000 |
2. | Touristic attractiveness value estimation | |||||
2.1. | Annual number of visitors in the closest touristic area | persons/year | 5,000,000 (New York) | 10,000,000 (Sydney) | 350,000 (Lodz) | 350,000 (Saaremaa) |
2.2. | Assumed number (at 5%) of visitors in the developed recreational area | persons/year | 250,000 | 500,000 | 17,000 | 17,000 |
2.3. | Average spending by one tourist daily | EUR/day/person | 200 | 80 | 20 | 80 |
2.4. | Assumed benefit (at 5%) from touristic spending improvement due to the site improvement | EUR/day/person | 10 | 4 | 1 | 4 |
2.5. | Annual total touristic spending | EUR/year | 2,500,000 | 2,000,000 | 17,000 | 680,000 |
2.6. | Annual touristic tax benefit (at 10%) | EUR/year | 250,000 | 200,000 | 1700 | 6800 |
2.7. | Approximate annual profit for local businesses (at 35%) | EUR/year | ~800,000 | ~600,000 | ~10,000 | ~100,000 |
3. | Direct use value estimation | |||||
3.1. | Estimated direct use value | EUR/year | 1,250,000 | 2,500,000 | 680,000 | 680,000 |
3.2. | Assumed number (at 10%) of residents with active lifestyle using a developed recreational area | persons/year | 100,000 | 100,000 | 5000 | 1500 |
3.3. | Assumed health and welfare benefit of an active lifestyle (on average as EUR 200 per person) | EUR/year | 2,000,000 | 2,000,000 | 1,000,000 | 1,500,000 |
3.4. | Annual minimum of total benefits (excluding ecosystem services and social cohesion) | EUR/year | ~8,000,000 | ~8,000,000 | ~2,000,000 | ~2,400,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincevica-Gaile, Z.; Burlakovs, J.; Fonteina-Kazeka, M.; Wdowin, M.; Hanc, E.; Rudovica, V.; Krievans, M.; Grinfelde, I.; Siltumens, K.; Kriipsalu, M.; et al. Case Study-Based Integrated Assessment of Former Waste Disposal Sites Transformed to Green Space in Terms of Ecosystem Services and Land Assets Recovery. Sustainability 2023, 15, 3256. https://doi.org/10.3390/su15043256
Vincevica-Gaile Z, Burlakovs J, Fonteina-Kazeka M, Wdowin M, Hanc E, Rudovica V, Krievans M, Grinfelde I, Siltumens K, Kriipsalu M, et al. Case Study-Based Integrated Assessment of Former Waste Disposal Sites Transformed to Green Space in Terms of Ecosystem Services and Land Assets Recovery. Sustainability. 2023; 15(4):3256. https://doi.org/10.3390/su15043256
Chicago/Turabian StyleVincevica-Gaile, Zane, Juris Burlakovs, Maija Fonteina-Kazeka, Magdalena Wdowin, Emil Hanc, Vita Rudovica, Maris Krievans, Inga Grinfelde, Kristaps Siltumens, Mait Kriipsalu, and et al. 2023. "Case Study-Based Integrated Assessment of Former Waste Disposal Sites Transformed to Green Space in Terms of Ecosystem Services and Land Assets Recovery" Sustainability 15, no. 4: 3256. https://doi.org/10.3390/su15043256