A Case Study of Existing Peer-to-Peer Energy Trading Platforms: Calling for Integrated Platform Features
Abstract
:1. Introduction
- (1)
- What are the essential components that constitute an effective P2P energy trading platform, and how do they interrelate?
- (2)
- How do existing P2P energy trading platforms integrate these components to meet the challenges of sustainable energy demands?
- (3)
- What operational models can be abstracted from current P2P platforms, and how might they inform the development of future trading systems?
2. Literature Review
2.1. P2P Energy Trading: A Step toward an Integrative Definition
2.2. Research Objectives and Approaches to P2P Energy Trading Research
3. Case Studies
3.1. Case Study: Piclo
3.2. Case Study: Vandebron
3.3. Case Study: SunContract
3.4. Case Study: Vattenfall Powerpeers
3.5. Case Study: Power Ledger
3.6. Case Study: The Brooklyn Microgrid
3.7. Case Study: sonnenCommunity
3.8. Case Study: Brazilian Energy Communities
4. Key Components of P2P Energy Trading
5. Discussion
Dimension–Platform | Reference |
---|---|
Set-up | [22,30,91,101,102,103] |
Market mechanism | [16,35,76,77] |
Information mechanism | [42,93,95,97,104] |
Price mechanism | [12,13,43,87] |
Regulations | [42,84,99] |
Project | Country | Year | Grid Set-Up | Market Mechanism | Price Mechanism | Information System | Regulations |
---|---|---|---|---|---|---|---|
Piclo | UK | 2015 |
| Full market | Pay-as-bid-competed auction | Retail supplier platform + vendor platform | Private data protection |
Vandebron | Netherlands | 2014 |
| Full market | Pay-as-bid price match | Retail supplier platform | Not specific |
sonnenCommunity | Germany | 2016 | Electricity | Community-based market | Fixed rate | Vendor platform + community platform | No licensing requirement |
SunContract | Slovenia | 2018 |
| Full market | Pay as bid | Blockchain platform | Not specific |
Brooklyn Microgrid | USA | 2017 | Electricity | Full market | Pay as bid/fixed rate (e.g., hospital) | Community platform + blockchain platform | Not specific |
Power Ledger | Australia | 2016 | Electricity | Hybrid market | Pay as bid | Vendor platform + blockchain platform | Specific requirements for installation of power batteries |
Powerpeers | Netherlands | 2016 | Electricity | Hybrid market | Pay-as-bid price match | Blockchain platform | Not specific |
Brazilian Energy Communities | Brazil | 2021 |
| Community-based market | Local-economy-driven price match | Blockchain platform | Not specific |
6. Conclusions
7. Limitations and Prospects for Further Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Wu, J.; Long, C. Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework. Appl. Energy 2018, 222, 993–1022. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Long, C.; Cheng, M. Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia 2017, 105, 2563–2568. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Long, C.; Ming, W. State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading. Engineering 2020, 6, 739–753. [Google Scholar] [CrossRef]
- Bukar, A.L.; Hamza, M.F.; Ayub, S.; Abobaker, A.K.; Modu, B.; Mohseni, S.; Brent, A.C.; Ogbonnaya, C.; Mustapha, K.; Idakwo, H.O. Peer-to-peer electricity trading: A systematic review on current developments and perspectives. Renew. Energy Focus 2023, 44, 317–333. [Google Scholar] [CrossRef]
- Luo, Y.; Itaya, S.; Nakamura, S.; Davis, P. Autonomous cooperative energy trading between prosumers for microgrid systems. In Proceedings of the 39th Annual IEEE Conference on Local Computer Networks Workshops, Edmonton, AB, Canada, 8–11 September 2014; IEEE: New York, NY, USA, 2014; pp. 693–696. [Google Scholar]
- Hagiu, A.; Wright, J. Multi-sided platforms. Int. J. Ind. Organ. 2015, 43, 162–174. [Google Scholar] [CrossRef]
- Hepple, R.; Du, H.; Feng, H.; Shan, S.; Yang, S. Sustainability and carbon neutrality in UK’s district heating: A review and analysis. e-Prime Adv. Electr. Eng. Electron. Energy 2023, 4, 100133. [Google Scholar] [CrossRef]
- Nguyen, S.; Peng, W.; Sokolowski, P.; Alahakoon, D.; Yu, X. Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading. Appl. Energy 2018, 228, 2567–2580. [Google Scholar] [CrossRef]
- Alam, M.R.; St-Hilaire, M.; Kunz, T. An optimal P2P energy trading model for smart homes in the smart grid. Energy Effic. 2017, 10, 1475–1493. [Google Scholar] [CrossRef]
- Paudel, A.; Chaudhari, K.; Long, C.; Gooi, H.B. Peer-to-Peer Energy Trading in a Prosumer-Based Community Microgrid: A Game-Theoretic Model. IEEE Trans. Ind. Electron. 2018, 66, 6087–6097. [Google Scholar] [CrossRef]
- Luo, F.; Dong, Z.Y.; Liang, G.; Murata, J.; Xu, Z. A Distributed Electricity Trading System in Active Distribution Networks Based on Multi-Agent Coalition and Blockchain. IEEE Trans. Power Syst. 2018, 34, 4097–4108. [Google Scholar] [CrossRef]
- Esmat, A.; de Vos, M.; Ghiassi-Farrokhfal, Y.; Palensky, P.; Epema, D. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl. Energy 2021, 282, 116123. [Google Scholar] [CrossRef]
- Alam, M.R.; St-Hilaire, M.; Kunz, T. Peer-to-peer energy trading among smart homes. Appl. Energy 2019, 238, 1434–1443. [Google Scholar] [CrossRef]
- Aitzhan, N.Z.; Svetinovic, D. Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secur. Comput. 2016, 15, 840–852. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Zhou, Y.; Cheng, M.; Long, C. Peer-to-Peer energy trading in a Microgrid. Appl. Energy 2018, 220, 1–12. [Google Scholar] [CrossRef]
- Tushar, W.; Saha, T.K.; Yuen, C.; Liddell, P.; Bean, R.; Poor, H.V. Peer-to-Peer Energy Trading With Sustainable User Participation: A Game Theoretic Approach. IEEE Access 2018, 6, 62932–62943. [Google Scholar] [CrossRef]
- Thakur, S.; Hayes, B.P.; Breslin, J.G. Distributed double auction for peer to peer energy trade using blockchains. In Proceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 24–26 September 2018; IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Cui, S.; Wang, Y.-W.; Xiao, J.-W. Peer-to-Peer Energy Sharing Among Smart Energy Buildings by Distributed Transaction. IEEE Trans. Smart Grid 2019, 10, 6491–6501. [Google Scholar] [CrossRef]
- Calvillo, C.; Sánchez-Miralles, A.; Villar, J.; Martín, F. Optimal planning and operation of aggregated distributed energy resources with market participation. Appl. Energy 2016, 182, 340–357. [Google Scholar] [CrossRef]
- Pieroni, A.; Scarpato, N.; Di Nunzio, L.; Fallucchi, F.; Raso, M. Smarter City: Smart Energy Grid based on Blockchain Technology. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 298–306. [Google Scholar] [CrossRef]
- Khan, I.; Mahmood, A.; Javaid, N.; Razzaq, S.; Khan, R.; Ilahi, M. Home energy management systems in future smart grids. arXiv 2013, arXiv:1306.1137. [Google Scholar]
- Parag, Y.; Sovacool, B.K. Electricity market design for the prosumer era. Nat. Energy 2016, 1, 16032. [Google Scholar] [CrossRef]
- Park, C.; Yong, T. Comparative review and discussion on P2P electricity trading. Energy Procedia 2017, 128, 3–9. [Google Scholar] [CrossRef]
- Pilioura, T.; Athanasopoulos, G.; Tsalgatidou, A.; Liaskovitis, P.; Kolokouri, E. D7: New Business Opportunities Stemming from the Application of the P2P Approach. WORKPACKAGE: WP3—Models & Notations for P2P Applications Architectures. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=161d29ea4da9484b0c5acad08fff23e1b5692658 (accessed on 20 April 2020).
- Bauwens, M. P2P and Human Evolution: Peer to peer as the premise of a new mode of civilization. Ens. Rascunho 2005, 1, 1–73. [Google Scholar]
- Muhsen, H.; Allahham, A.; Al-Halhouli, A.; Al-Mahmodi, M.; Alkhraibat, A.; Hamdan, M. Business Model of Peer-to-Peer Energy Trading: A Review of Literature. Sustainability 2022, 14, 1616. [Google Scholar] [CrossRef]
- Anastasi, G.; Conti, M.; Di Francesco, M.; Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw. 2009, 7, 537–568. [Google Scholar] [CrossRef]
- Vuran, M.C.; Akan, Ö.B.; Akyildiz, I.F. Spatio-temporal correlation: Theory and applications for wireless sensor networks. Comput. Netw. 2004, 45, 245–259. [Google Scholar] [CrossRef]
- Talia, D.; Trunfio, P. Toward a synergy between p2p and grids. IEEE Internet Comput. 2003, 7, 94–96. [Google Scholar] [CrossRef]
- Trunfio, P.; Talia, D.; Papadakis, H.; Fragopoulou, P.; Mordacchini, M.; Pennanen, M.; Popov, K.; Vlassov, V.; Haridi, S. Peer-to-Peer resource discovery in Grids: Models and systems. Futur. Gener. Comput. Syst. 2007, 23, 864–878. [Google Scholar] [CrossRef]
- Pallickara, S.; Fox, G. Naradabrokering: A distributed middleware framework and architecture for enabling durable peer-to-peer grids. In Proceedings of the ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing, Beijing, China, 9–13 December 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 41–61. [Google Scholar]
- Wu, Y.; Tan, X.; Qian, L.; Tsang, D.H.K.; Song, W.-Z.; Yu, L. Optimal Pricing and Energy Scheduling for Hybrid Energy Trading Market in Future Smart Grid. IEEE Trans. Ind. Informatics 2015, 11, 1585–1596. [Google Scholar] [CrossRef]
- Liu, T.; Tan, X.; Sun, B.; Wu, Y.; Guan, X.; Tsang, D.H.K. Energy management of cooperative microgrids with p2p energy sharing in distribution networks. In Proceedings of the 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), Miami, FL, USA, 2–5 November 2015; IEEE: New York, NY, USA, 2015; pp. 410–415. [Google Scholar]
- Capper, T.; Gorbatcheva, A.; Mustafa, M.A.; Bahloul, M.; Schwidtal, J.M.; Chitchyan, R.; Andoni, M.; Robu, V.; Montakhabi, M.; Scott, I.J.; et al. Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models. Renew. Sustain. Energy Rev. 2022, 162, 112403. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Li, J. Peer-to-peer (P2P) electricity trading in distribution systems of the future. Electr. J. 2019, 32, 2–6. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Yang, S.; Fiorito, F.; Sproul, A.; Prasad, D. Optimising Design Parameters of a Building-Integrated Photovoltaic Double-Skin Facade in Different Climate Zones in Australia. Buildings 2023, 13, 1096. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on blockchains. Energy 2020, 199, 117417. [Google Scholar] [CrossRef]
- Wilkins, D.J.; Chitchyan, R.; Levine, M. Peer-to-peer energy markets: Understanding the values of collective and community trading. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 20–25 April 2020; pp. 1–14. [Google Scholar]
- Wei, F.; Jing, Z.; Wu, P.Z.; Wu, Q. A Stackelberg game approach for multiple energies trading in integrated energy systems. Appl. Energy 2017, 200, 315–329. [Google Scholar] [CrossRef]
- Schneiders, A.; Shipworth, D. Energy Cooperatives: A Missing Piece of the Peer-to-Peer Energy Regulation Puzzle? Available online: https://ssrn.com/abstract=3252486 (accessed on 20 April 2020).
- Tushar, W.; Saha, T.K.; Yuen, C.; Azim, M.I.; Morstyn, T.; Poor, H.V.; Niyato, D.; Bean, R. A coalition formation game framework for peer-to-peer energy trading. Appl. Energy 2020, 261, 114436. [Google Scholar] [CrossRef]
- Lüth, A.; Zepter, J.M.; del Granado, P.C.; Egging, R. Local electricity market designs for peer-to-peer trading: The role of battery flexibility. Appl. Energy 2018, 229, 1233–1243. [Google Scholar] [CrossRef]
- Tushar, W.; Yuen, C.; Saha, T.K.; Morstyn, T.; Chapman, A.C.; Alam, M.J.E.; Hanif, S.; Poor, H.V. Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges. Appl. Energy 2020, 282, 116131. [Google Scholar] [CrossRef]
- Tushar, W.; Nizami, S.; Azim, M.I.; Yuen, C.; Smith, D.B.; Saha, T.; Poor, H.V. Peer-to-Peer Energy Sharing: A Comprehensive Review. Found. Trends Electr. Energy Syst. 2023, 6, 1–82. [Google Scholar] [CrossRef]
- Tellis, W. Application of a Case Study Methodology. Qual. Rep. 1997, 3, 1–19. [Google Scholar]
- Open Utility. A Glimpse into the Future of Britain’s Energy Economy. 2016. Available online: https://piclo.energy/publications/piclo-trial-report.pdf (accessed on 20 April 2020).
- Open Utility. Local Grid Charging-Exploring the Incentivisation of Local Energy. Western Power Distribution Innovation 2018. Available online: https://piclo.energy/publications/open-utility-local-grid-charging-white-paper.pdf (accessed on 20 April 2020).
- Passey, R.; Haghdadi, N.; Bruce, A.; MacGill, I. Designing more cost reflective electricity network tariffs with demand charges. Energy Policy 2017, 109, 642–649. [Google Scholar] [CrossRef]
- ESP Consulting. Disintermediation Detailed Case Studies. Ofgem, 2018. Available online: https://www.ofgem.gov.uk/system/files/docs/2018/07/retail_research_-_case_studies_on_supply_disintermediation.pdf (accessed on 22 April 2020).
- Van der Burg, L.; Runkel, M. Phase-Out 2020: Monitoring Europe’s Fossil Fuel Subsidies; Briefing Paper; ODI: London, UK, 2017. [Google Scholar]
- Alfen. Alfen Delivers Smart Charging Stations for Innovative Blockchain Project Vandebron; Alfen: Almere, The Netherlands, 2017. [Google Scholar]
- Vanderbron. White Paper of Vanderbron. 2017. Available online: https://vandebron.nl (accessed on 20 April 2020).
- Lee, J.; Cho, Y. Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea. Energy Policy 2019, 136, 111050. [Google Scholar] [CrossRef]
- SunContract. An Energy Trading Platform that Utilises Blockchain Technology to Create a New Disruptive Model for Buying and Selling Electricity; White Paper; SunContract: Ljubljana, Slovenia, 2017. [Google Scholar]
- SunContract. Increased Savings for Energy Customers (no. 2020); SunContract: Ljubljana, Slovenia, 2018. [Google Scholar]
- Cointelegraph. The World’s First Peer-to-Peer Energy Trading Platform, SunContract, Launched (Cointelegraph); Cointelegraph: New York, NY, USA, 2018. [Google Scholar]
- Vattenfall. Power Climate Smarter Living-Vattenfall Annual and Sustainability Report. Vattenfall AB, Stockholm, 2016. Available online: https://group.vattenfall.com/siteassets/corporate/investors/annual-reports/2016/vattenfall_annual_and_sustainability_report_2016_eng.pdf?_t_id=b2TLlXNn3F4Oq7BHIgt0Og%3d%3d&_t_uuid=28zGLVO8SdOMXrhzkLl6pA&_t_q=powerpeers&_t_tags=language%3aen%2csiteid%3aec6448d4-f3c8-47b9-b9c4-42845a8acf13%2candquerymatch&_t_hit.id=Corporate_Web_Cms_ContentTypes_Media_PdfFile/_9172ec4a-03d3-4221-af4c-afdc38dd3f20&_t_hit.pos=2 (accessed on 21 April 2020).
- Vattenfall. Fossil-Free Living within One Generation-Annual and Sustainablity Report 2018. Stockholm, 2018. Available online: https://group.vattenfall.com/siteassets/corporate/investors/annual-reports/2018/vattenfall_annual_and_sustainability_report_2018_eng.pdf?_t_id=b2TLlXNn3F4Oq7BHIgt0Og%3d%3d&_t_uuid=28zGLVO8SdOMXrhzkLl6pA&_t_q=powerpeers&_t_tags=language%3aen%2csiteid%3aec6448d4-f3c8-47b9-b9c4-42845a8acf13%2candquerymatch&_t_hit.id=Corporate_Web_Cms_ContentTypes_Media_PdfFile/_f1809a3f-fae6-4f71-b8b6-5689e697bcc4&_t_hit.pos=9 (accessed on 21 April 2020).
- Havers, A. Powerpeers. Vattenfall. 2016. Available online: https://group.vattenfall.com/press-and-media/news--press-releases/newsroom/2016/power-from-your-neighbours (accessed on 21 April 2020).
- Power Ledger. Where Power Meets Blockchain. In Power Ledger—A New Decentralised Energy Marketplace. 2017. Available online: https://powerledger.io/ (accessed on 21 April 2020).
- Power Ledger. Power Ledger White Paper. Available online: https://www.powerledger.io/wp-content/uploads/2019/05/power-ledger-whitepaper.pdf (accessed on 21 April 2020).
- Goranovic, A.; Meisel, M.; Fotiadis, L.; Wilker, S.; Treytl, A.; Sauter, T. Blockchain applications in microgrids an overview of current projects and concepts. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; IEEE: New York, NY, USA, 2017; pp. 6153–6158. [Google Scholar]
- Huillet, M. Power Ledger Rolls Out Blockchain-Based Solar Energy Trading in Western Australia; Cointelegraph Media: New York, NY, USA, 2020. [Google Scholar]
- Kim, G.; Park, J.; Ryou, J. A study on utilization of blockchain for electricity trading in microgrid. In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–17 January 2018; IEEE: New York, NY, USA, 2018; pp. 743–746. [Google Scholar]
- Brooklyn Microgrid. Available online: http://brooklynmicrogrid.com/ (accessed on 21 April 2020).
- Zia, M.F.; Benbouzid, M.; Elbouchikhi, E.; Muyeen, S.; Techato, K.; Guerrero, J.M. Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. IEEE Access 2020, 8, 19410–19432. [Google Scholar] [CrossRef]
- Sonnenbatterie. What Is the SonnenCommunity? Available online: https://sonnengroup.com/sonnencommunity/ (accessed on 21 April 2020).
- Xia, Y.; Xu, Q.; Chen, L.; Du, P. The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review. Appl. Energy 2022, 327, 120085. [Google Scholar] [CrossRef]
- Mejdalani, A.N.; Chueca, J.E.; Soto DD, L.; Ji, Y.; Hallack MC, M. Implementing Net Metering Policies in Latin America and the Caribbean: Design, Incentives and Best Practices; Inter-American Development Bank: Washington, DC, USA, 2018. [Google Scholar]
- Vásquez-Léon, M.; Burke, B.J.; Finan, T.J. Cooperatives, Grassroots Development, and Social Change: Experiences from Rural Latin America; University of Arizona Press: Tucson, AZ, USA, 2017. [Google Scholar]
- Da Costa, R.P.; Almeida, C.F.M.; Udaeta, M.E.M.; Municio, A.L.; Nascimento, V.T.; Laurindo, F.J.B. Energy Commercialization Proposition into a P2P Framework in Micro-grids for Brazilian Energy Communities. In Proceedings of the 2022 IEEE International Conference on Power Systems and Electrical Technology (PSET), Aalborg, Denmark, 13–15 October 2022; IEEE: New York, NY, USA, 2022; pp. 280–289. [Google Scholar]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Hochstetler, R.L.; Born, P.H. Community energy design models in Brazil: From niches to mainstream. In Energy Communities; Elsevier: Amsterdam, The Netherlands, 2022; pp. 317–338. [Google Scholar]
- Block, C.; Neumann, D.; Weinhardt, C. A market mechanism for energy allocation in micro-chp grids. In Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), Waikoloa, HI, USA, 7–10 January 2008; IEEE: New York, NY, USA, 2008; p. 172. [Google Scholar]
- Duan, R.; Deconinck, G. Future electricity market interoperability of a multi-agent model of the Smart Grid. In Proceedings of the 2010 International Conference on Networking, Sensing and Control (ICNSC), Chicago, IL, USA, 10–12 April 2010; IEEE: New York, NY, USA, 2010; pp. 625–630. [Google Scholar]
- Sorin, E.; Bobo, L.; Pinson, P. Consensus-Based Approach to Peer-to-Peer Electricity Markets With Product Differentiation. IEEE Trans. Power Syst. 2018, 34, 994–1004. [Google Scholar] [CrossRef]
- Alvaro-Hermana, R.; Fraile-Ardanuy, J.; Zufiria, P.J.; Knapen, L.; Janssens, D. Peer to Peer Energy Trading with Electric Vehicles. IEEE Intell. Transp. Syst. Mag. 2016, 8, 33–44. [Google Scholar] [CrossRef]
- Morstyn, T.; Teytelboym, A.; Mcculloch, M.D. Bilateral Contract Networks for Peer-to-Peer Energy Trading. IEEE Trans. Smart Grid 2018, 10, 2026–2035. [Google Scholar] [CrossRef]
- Moret, F.; Pinson, P. Energy Collectives: A Community and Fairness Based Approach to Future Electricity Markets. IEEE Trans. Power Syst. 2018, 34, 3994–4004. [Google Scholar] [CrossRef]
- Ilic, D.; Da Silva, P.G.; Karnouskos, S.; Griesemer, M. An energy market for trading electricity in smart grid neighbourhoods. In Proceedings of the 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST), Campione d’Italia, Italy, 18–20 June 2012; IEEE: New York, NY, USA, 2012; pp. 1–6. [Google Scholar]
- Tushar, W.; Chai, B.; Yuen, C.; Huang, S.; Smith, D.B.; Poor, H.V.; Yang, Z. Energy Storage Sharing in Smart Grid: A Modified Auction-Based Approach. IEEE Trans. Smart Grid 2016, 7, 1462–1475. [Google Scholar] [CrossRef]
- Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [Google Scholar] [CrossRef]
- Federico, G.; Rahman, D. Bidding in an Electricity Pay-as-Bid Auction. J. Regul. Econ. 2003, 24, 175–211. [Google Scholar] [CrossRef]
- Haghighat, H.; Seifi, H.; Kian, A.R. Pay-as-bid versus marginal pricing: The role of suppliers strategic behavior. Int. J. Electr. Power Energy Syst. 2012, 42, 350–358. [Google Scholar] [CrossRef]
- Grünewald, P.; McKenna, E.; Thomson, M. Keep it simple: Time-of-use tariffs in high-wind scenarios. IET Renew. Power Gener. 2015, 9, 176–183. [Google Scholar] [CrossRef]
- Papadaskalopoulos, D.; Strbac, G.; Mancarella, P.; Aunedi, M.; Stanojevic, V. Decentralized Participation of Flexible Demand in Electricity Markets—Part II: Application with Electric Vehicles and Heat Pump Systems. IEEE Trans. Power Syst. 2013, 28, 3667–3674. [Google Scholar] [CrossRef]
- Leong, C.H.; Gu, C.; Li, F. Auction Mechanism for P2P Local Energy Trading considering Physical Constraints. Energy Procedia 2019, 158, 6613–6618. [Google Scholar] [CrossRef]
- Schleicher-Tappeser, R. How renewables will change electricity markets in the next five years. Energy Policy 2012, 48, 64–75. [Google Scholar] [CrossRef]
- Morstyn, T.; Farrell, N.; Darby, J.; McCulloch, D. Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants. Nat. Energy 2018, 3, 94. [Google Scholar] [CrossRef]
- Joskow, P.L. Why Do We Need Electricity Retailers?; Or, Can You Get it Cheaper Wholesale? MIT Center for Energy and Environmental Policy Research: Cambridge, MA, USA, 2000. [Google Scholar]
- Guerrero, J.; Chapman, A.; Verbic, G. A study of energy trading in a low-voltage network: Centralised and distributed approaches. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 19–22 November 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Smith, A.; Hargreaves, T.; Hielscher, S.; Martiskainen, M.; Seyfang, G. Making the most of community energies: Three perspectives on grassroots innovation. Environ. Plan. A Econ. Space 2016, 48, 407–432. [Google Scholar] [CrossRef]
- Seyfang, G.; Hielscher, S.; Hargreaves, T.; Martiskainen, M.; Smith, A. A grassroots sustainable energy niche? Reflections on community energy in the UK. Environ. Innov. Soc. Transit. 2014, 13, 21–44. [Google Scholar] [CrossRef]
- Walker, G.; Devine-Wright, P. Community renewable energy: What should it mean? Energy Policy 2008, 36, 497–500. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J.; Yu, R.; Ye, D.; Deng, Q.; Zhang, Y. Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2018, 14, 3690–3700. [Google Scholar] [CrossRef]
- Alam, M.T.; Li, H.; Patidar, A. Bitcoin for smart trading in smart grid. In Proceedings of the 21st IEEE International Workshop on Local and Metropolitan Area Networks, Beijing, China, 22–24 April 2015. [Google Scholar]
- European Commission. Study on the Effective Integration of Distributed Energy Resources for Providing Flexibility to the Electricity System; Ecofys: Brussels, Belgium, 2015. [Google Scholar]
- Condon, F.; Franco, P.; Martínez, J.M.; Eltamaly, A.M.; Kim, Y.-C.; Ahmed, M.A. EnergyAuction: IoT-Blockchain Architecture for Local Peer-to-Peer Energy Trading in a Microgrid. Sustainability 2023, 15, 13203. [Google Scholar] [CrossRef]
- Lamparter, S.; Becher, S.; Fischer, J.-G. An agent-based market platform for smart grids. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Industry Track, Toronto, ON, Canada, 10–14 May 2010; pp. 1689–1696. [Google Scholar]
- Tushar, W.; Saha, T.K.; Yuen, C.; Smith, D.; Poor, H.V. Peer-to-Peer Trading in Electricity Networks: An Overview. IEEE Trans. Smart Grid 2020, 11, 3185–3200. [Google Scholar] [CrossRef]
- Anoh, K.; Maharjan, S.; Ikpehai, A.; Zhang, Y.; Adebisi, B. Energy Peer-to-Peer Trading in Virtual Microgrids in Smart Grids: A Game-Theoretic Approach. IEEE Trans. Smart Grid 2019, 11, 1264–1275. [Google Scholar] [CrossRef]
- Ketter, W.; Erasmus University; Peters, M.; Collins, J.; Gupta, A.; University of Minnesota. A Multiagent Competitive Gaming Platform to Address Societal Challenges. MIS Q. 2016, 40, 447–460. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid Policy-Based Reinforcement Learning of Adaptive Energy Management for the Energy Transmission-Constrained Island Group. IEEE Trans. Ind. Inform. 2023, 19, 10751–10762. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Q.; Yang, L.; Li, Y. Event-Triggered Distributed Hybrid Control Scheme for the Integrated Energy System. IEEE Trans. Ind. Inform. 2021, 18, 835–846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, S.; Yang, S.; Becerra, V.; Deng, J.; Li, H. A Case Study of Existing Peer-to-Peer Energy Trading Platforms: Calling for Integrated Platform Features. Sustainability 2023, 15, 16284. https://doi.org/10.3390/su152316284
Shan S, Yang S, Becerra V, Deng J, Li H. A Case Study of Existing Peer-to-Peer Energy Trading Platforms: Calling for Integrated Platform Features. Sustainability. 2023; 15(23):16284. https://doi.org/10.3390/su152316284
Chicago/Turabian StyleShan, Shan, Siliang Yang, Victor Becerra, Jiamei Deng, and Honglei Li. 2023. "A Case Study of Existing Peer-to-Peer Energy Trading Platforms: Calling for Integrated Platform Features" Sustainability 15, no. 23: 16284. https://doi.org/10.3390/su152316284
APA StyleShan, S., Yang, S., Becerra, V., Deng, J., & Li, H. (2023). A Case Study of Existing Peer-to-Peer Energy Trading Platforms: Calling for Integrated Platform Features. Sustainability, 15(23), 16284. https://doi.org/10.3390/su152316284