Effects of Organic Fertilization on Biomass Production in Urochloa spp. Pastures and Soil Biological and Physical Properties in the Colombian Amazon Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Selection of Experimental Area
2.2. Organic Fertilizers
2.3. Treatments
2.4. Evaluation of Biomass Production and the Soil’s Biological and Physical Properties
2.5. Statistical Analysis
3. Results
3.1. Biomass Production
3.2. Soil Biological Properties Changes
3.3. Changes in Soil’s Physical Properties
3.4. Multivariate Analysis of Relationships between Studied Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torrijos, R. Cifras de Contexto Ganadero Caquetá 2022 by Rafael Torrijos—Issuu. Available online: https://issuu.com/rafaeltorrijos/docs/contexto_2022_imp (accessed on 31 May 2023).
- Armenteras, D.; Murcia, U.; González, T.M.; Barón, O.J.; Arias, J.E. Scenarios of Land Use and Land Cover Change for NW Amazonia: Impact on Forest Intactness. Glob. Ecol. Conserv. 2019, 17, e00567. [Google Scholar] [CrossRef]
- Hernández, Á.S. Agricultural Law and Development of Rural Areas: Food Challenges, Natural Resources and Climate Change; Wydawnictwo NAUKOWE UAM: Poznan, Poland, 2017. [Google Scholar]
- Jimenez, O.; Granados, L.; Oliva, J.; Quiroz, J.; Barrón, M. Calidad Nutritiva de Brachiaria Humidicola Con Fertilización Orgánica e Inorgánica En Suelos Ácidos. Available online: https://scielo.isciii.es/scielo.php?pid=S0004-05922010000400009&script=sci_arttext&tlng=en (accessed on 28 May 2023).
- Rodríguez-León, C.H.; Peña-Venegas, C.P.; Sterling, A.; Castro, D.; Mahecha-Virguez, L.K.; Virguez-Díaz, Y.R.; Silva-Olaya, A.M. Soil Quality Restoration during the Natural Succession of Abandoned Cattle Pastures in Deforested Landscapes in the Colombian Amazon. Agronomy 2021, 11, 2484. [Google Scholar] [CrossRef]
- Finch, S.; Samuel, A.; Lane, G.P. Lockhart and Wiseman’s Crop Husbandry Including Grassland; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Borges, J.A.; Barrios, M.; Escalona, O. Efecto de La Fertilización Orgánica e Inorgánica Sobre Variables Agroproductivas y Composición Química del Pasto Estrella (Cynodon Nlemfuensis). Zootec. Trop. 2012, 30, 17–25. [Google Scholar]
- Gastal, F.; Durand, J.L. Effects of Nitrogen and Water Supply on N and C Fluxes and Partitioning in Defoliated Swards. In Grassland Ecophysiology and Grazing Ecology; CABI: Wallingford, UK, 2000; pp. 15–39. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Rosik-Dulewska, C.; Wiśniewska, E. Possibilities of Coffee Spent Ground Use as a Slow Action Organo-Ineral Fertilizer. Rocz. Ochr. Srodowiska 2015, 17, 422–437. [Google Scholar]
- Díaz-Gutiérrez, J.P.; Quila-Bonoso, K.M.; Zambrano-Gavilanes, F.; Bravo-Zamora, R. Efectos de la fertilización orgánica en el cultivo de algodón (Gossypium hirsutum). Biotempo 2022, 19, 291–301. [Google Scholar] [CrossRef]
- Barnwal, P.; Devika, S.; Singh, S.; Behera, T.; Chourasia, A.; Pramanick, B.; Meena, V.S.; Rakshit, A. Soil Fertility Management in Organic Farming. In Advances in Organic Farming Agronomic Soil Management Practices; Elsevier: Amsterdam, The Netherlands, 2021; pp. 39–46. [Google Scholar] [CrossRef]
- Holdridge, L. Ecología Basada En Zonas de Vida; Agroamerica: Guatemala City, Guatemala, 1987. [Google Scholar]
- IDEAM—Ministerio de Ambiente. Vivienda y Desarrollo Territorial; IDEAM—Ministerio de Ambiente: Bogotá, Colombia, 2017. [Google Scholar]
- Tothill, J.; Hargreaves, J.; Jones, R.; McDonald, C. BOTANAL—A comprehensive sampling and computing procedure for estimating pasture yield and composition. 1. Field sampling. Trop. Agron. Tech. Memo. 1992, 78. [Google Scholar]
- Restrepo, J.; Hensel, J. Manual Práctico de Agricultura Orgánica y Panes de Piedra Contenido General. 2009; 436p. [Google Scholar]
- ISO 23611-5:2011(En); Soil Quality—Sampling of Soil Invertebrates—Part 5: Sampling and Extraction of Soil Macro-Invertebrates. ISO: Geneva, Switzerland, 2011. Available online: https://www.iso.org/obp/ui/#iso:std:iso:23611:-5:ed-1:v1:en (accessed on 1 June 2023).
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–382. [Google Scholar]
- Rodríguez, L.; Suárez Salazar, J.C.; Casanoves, F.; Ngo Bieng, M.A. Cacao Agroforestry Systems Improve Soil Fertility: Comparison of Soil Properties between Forest, Cacao Agroforestry Systems, and Pasture in the Colombian Amazon. Agric. Ecosyst. Environ. 2021, 314, 107349. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. Nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1-131.1; The Comprehensive R Archive Network: Vienna, Austria, 2018. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing v. 4.0.3; The Comprehensive R Archive Network: Vienna, Austria, 2020. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat 2020; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. [Google Scholar]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circular Visualization [R Package Circlize Version 0.4.15]. Bioinformatics 2022, 30, 2811–2812. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.-B.; Thioulouse, J. Ade4: Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences; R Package Version 1.7-16; The Comprehensive R Archive Network: Vienna, Austria, 2020. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1.0.7; The Comprehensive R Archive Network: Vienna, Austria, 2020. [Google Scholar]
- Ryals, R.; Silver, W.L. Effects of Organic Matter Amendments on Net Primary Productivity and Greenhouse Gas Emissions in Annual Grasslands. Ecol. Appl. 2013, 23, 46–59. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Radovich, T.J.K.; Nguyen, H.V.; Uyeda, J.; Arakaki, A.; Cadby, J.; Paull, R.; Sugano, J.; Teves, G. Use of Organic Fertilizers to Enhance Soil Fertility, Plant Growth, and Yield in a Tropical Environment. In Organic Fertilizers—From Basic Concepts to Applied Outcomes; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Peinetti, H.R.; Menezes, R.S.C.; Tiessen, H.; Perez Marin, A.M. Simulating Plant Productivity under Different Organic Fertilization Practices in a Maize/Native Pasture Rotation System in Semi-Arid NE Brazil. Comput. Electron. Agric. 2008, 62, 204–222. [Google Scholar] [CrossRef]
- Štýbnarová, M.; Mičová, P.; Fiala, K.; Karabcová, H.; Látal, O.; Pozdíšek, J. Effect of Organic Fertilizers on Botanical Composition of Grassland, Herbage Yield and Quality. Agriculture 2014, 60, 87–97. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-Term Incorporation of Organic Manures and Biofertilizers Influences Biochemical and Microbial Characteristics of Soils under an Annual Crop [Turmeric (Curcuma Longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.B.; Ali, A.; Prasad, M.; Yadav, A.; Shrivastav, P.; Goyal, D.; Dantu, P.K. Role of Organic Fertilizers in Improving Soil Fertility. In Contaminants in Agriculture: Sources, Impacts and Management; Springer: Cham, Switzerland, 2020; pp. 61–77. [Google Scholar]
- Shaji, H.; Chandran, V.; Mathew, L. Chapter 13—Organic Fertilizers as a Route to Controlled Release of Nutrients; Lewu, F.B., Volova, T., Thomas, S., Rakhimol, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 231–245. [Google Scholar]
- Rao, I.; Kerridge, P.C.; Macedo, M.C.; Miles, J.W.; Mass, B.l.; do Valle, C.B. Brachiaria: Biology, Agronomy, and Improvement; Miles, J.W., Maass, B.L., Valle, C.B., Eds.; CIAT: Cali, Colombia, 1996. [Google Scholar]
- Baptistella, J.L.C.; de Andrade, S.A.L.; Favarin, J.L.; Mazzafera, P. Urochloa in Tropical Agroecosystems. Front. Sustain. Food Syst. 2020, 4, 119. [Google Scholar] [CrossRef]
- Filser, J.; Faber, J.H.; Tiunov, A.V.; Brussaard, L.; Frouz, J.; De Deyn, G.; Uvarov, A.V.; Berg, M.P.; Lavelle, P.; Loreau, M.; et al. Soil Fauna: Key to New Carbon Models. Soil 2016, 2, 565–582. [Google Scholar] [CrossRef]
- Lal, R. Beyond Copenhagen: Mitigating Climate Change and Achieving Food Security through Soil Carbon Sequestration. Food Secur. 2010, 2, 169–177. [Google Scholar] [CrossRef]
- Gutierrez-Bermudez, C.; Mendieta, B.; Noguera, A. Trophic Composition of Edaphic Macrofauna in Animal Husbandry Systems in the Dry Corridor of Nicaragua. Pastos Forrajes 2020, 43, 30–37. [Google Scholar]
- Masin, C.E.; Cruz, M.S.; Rodríguez, A.R.; Demonte, M.J.; Vuizot, L.A.; Maitre, M.I.; Godoy, J.L.; Almada, M.S. Macrofauna Edáfica Asociada a Diferentes Ambientes de Un Vivero Forestal (Santa Fe, Argentina). Cienc. Suelo 2017, 35, 21–33. [Google Scholar]
- Noguera-Talavera, A.; Reyes-Sánchez, N.; Mendieta-Araica, B. Diversidad y Distribución de La Macrofauna Edáfica En Dos Sistemas de Manejo de Moringa Oleifera (Lam.): Relación Con Las Propiedades Del Suelo. Calera 2017, 17, 78–86. [Google Scholar] [CrossRef]
- López, G. Macrofauna y Microbiología Edáfica: Relación Con Servicios Ecosistémicos Y Físicoquímicos Del Suelo En Dos Con Café, San Ramón, Matagalpa, 2016. Ph.D. Thesis, Universidad Nacional Agraria, Lima, Peru, 2022. [Google Scholar]
- McGlynn, T.P.; Poirson, E.K. Ants Accelerate Litter Decomposition in a Costa Rican Lowland Tropical Rain Forest. J. Trop Ecol. 2012, 28, 437–443. [Google Scholar] [CrossRef]
- Hedde, M.; Blight, O.; Briones, M.J.I.; Bonfanti, J.; Brauman, A.; Brondani, M.; Calderón Sanou, I.; Clause, J.; Conti, E.; Cortet, J.; et al. A Common Framework for Developing Robust Soil Fauna Classifications. Geoderma 2022, 426, 116073. [Google Scholar] [CrossRef]
- Lavelle, P.; Mathieu, J.; Spain, A.; Brown, G.; Fragoso, C.; Lapied, E.; De Aquino, A.; Barois, I.; Barrios, E.; Barros, M.E.; et al. Soil Macroinvertebrate Communities: A World-Wide Assessment. Glob. Ecol. Biogeogr. 2022, 31, 1261–1276. [Google Scholar] [CrossRef]
- Wang, S.; Tan, Y.; Fan, H.; Ruan, H.; Zheng, A. Responses of Soil Microarthropods to Inorganic and Organic Fertilizers in a Poplar Plantation in a Coastal Area of Eastern China. Appl. Soil Ecol. 2015, 89, 69–75. [Google Scholar] [CrossRef]
- Watson-Zink, V. Making the Grade: Physiological Adaptations to Terrestrial Environments in Decapod Crabs. Arthropod Struct. Dev. 2021, 64, 101089. [Google Scholar] [CrossRef] [PubMed]
- Hati, K.; Bandyoopadhay, K. Soil-Plant-Atmosphere Continuum. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Encyclopedia of Earth Sciences; Springer: Dordrecht, The Netherlands, 2011; pp. 805–810. [Google Scholar]
- Du, S.; Ma, Z.; Chen, J.; Xue, L.; Tang, C.; Shareef, T.M.E.; Siddique, K.H.M. Effects of Organic Fertilizer Proportion on the Distribution of Soil Aggregates and Their Associated Organic Carbon in a Field Mulched with Gravel. Sci. Rep. 2022, 12, 11513. [Google Scholar] [CrossRef] [PubMed]
- García, Y.; Ramírez, W.; Sánchez, S. Indicadores de La Calidad de Los Suelos: Una Nueva Manera de Evaluar Este Recurso. Pastos Forrajes 2012, 35, 125–138. [Google Scholar]
- Villanueva, C.; Ibrahim, M. Evaluacion_del_impacto. Agroforestería Américas 2019, 9, 35–36. [Google Scholar]
- Ramírez, J.; Fernandez, Y.; González, P. Influencia de La Fertilización En Las Propiedades Físico-Químicas de Un Suelo Dedicado a La Producción de Semilla de Megathyrsus Maximus. Pastos Forrajes 2015, 38, 393–402. [Google Scholar]
- Salazar-Calvo, C.; González-Venegas, J.P.; Corrales-Valverde, D.; Lacayo-Vega, J.; Carrillo-Montoya, K.; Montero-González, H. Comparación de Dos Metodos Para La Determinación de La Densidad Aparente Del Suelo. Alcances Tecnológicos 2020, 13, 5–12. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana, R. Hydrological and Erosive Consequences of Farmland Abandonment in Europe, with Special Reference to the Mediterranean Region—A Review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- González-Salas, U.; Gallegos-Robles, M.Á.; Vázquez-Vazquez, C.; Luis García-Hernandez, J.; Fortis-Hernández, M.; Shesareli Mendoza-Retana, S. Productividad de Genotipos de Maíz Forrajero Bajo Fertilización Orgánica y Propiedades Físico-Químicas Del Suelo. Rev. Mex. Cienc. Agríc. Agrícolas 2018, 9, 4331–4341. [Google Scholar] [CrossRef]
- del Montenegro, A.C.E.; Filella, J.B.; Valdivia, N.A.G. Estudio Comparativo Macrofauna Del Suelo En Sistema Agroforestal, Potrero Tradicional y Bosque Latifoliado En Microcuenca Del Trópico Seco, Tomabú, Nicaragua. Rev. Científica FAREM-Estelí 2017, 22, 39–49. [Google Scholar] [CrossRef]
Organic Fertilizers | N-Total (g kg−1) | K (g kg−1) | Ca (g kg−1) | Mg (g kg−1) | P-Total (g kg−1) | B (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Cu (mg kg−1) | Zn (mg kg−1) | CE (mS) | pH (null) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solid | BB | 5.88 | 3.56 | 4.06 | 1.84 | 2.05 | 3.61 | 14,361.9 | 204.0 | 18.4 | 126.4 | --- | --- |
Liquid | SB | 0.383 | 0.0008 | 0.0008 | 0.0002 | 0.080 | 3.10 | 34.92 | 13.73 | 1.14 | 7.39 | 3200 | 7.46 |
CUB | 2.75 | 0.0099 | 0.00008 | 0.00015 | 0.026 | 1.50 | 2.03 | 0 | 0 | 1.22 | 13,000 | 7.43 | |
SLB | 0.8945 | 0.0025 | 0.0029 | 0.0010 | 0.213 | 847.72 | 958.17 | 1648.38 | 290.16 | 2881.33 | 16,600 | 3.91 |
Variation Source | Taxonomic Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Araneae | p-Value | Coleoptera | p-Value | Haplotaxida | p-Value | Hymenoptera | p-Value | Isoptera | p-Value | ||
Moment | Initial | 0.15 ± 0.10 a | 0.3198 | 5.33 ± 2.42 a | 0.0144 | 36.44 ± 7.10 a | 0.8250 | 154.37 ± 152.55 a | 0.5451 | 0.15 ± 1.27 b | 0.0158 |
Final | 0.00 ± 0.10 a | 2.37 ± 2.42 b | 32.30 ± 7.10 a | 242.81 ± 152.55 a | 2.67 ± 1.27 a | ||||||
Soil depth (cm) | 0–10 | 0.22 ± 0.13 a | 0.3736 | 7.56 ± 2.57 a | 0.0028 | 93.33 ± 13.39 a | <0.0001 | 312.67 ± 159.93 a | 0.0007 | 3.78 ± 1.43 a | 0.0231 |
10–20 | 0.00 ± 0.13 a | 2.67 ± 2.57 b | 9.33 ± 6.75 b | 194.89 ± 159.93 ab | 0.44 ± 1.43 b | ||||||
20–30 | 0.00 ± 0.13 a | 2.67 ± 2.57 b | 0.44 ± 0.44 b | 88.22 ± 159.93 b | 0.44 ± 1.43 b | ||||||
Moment | Litobiomorfos | p-value | Orthoptera | p-value | Spirobolida | p-value | Zoraptera | p-value | Others | p-value | |
Initial | 0.00 ± 0.10 a | 0.3198 | 0.15 ± 0.15 a | 0.9898 | 0.00 ± 0.21 a | 0.3198 | 0.00 ± 0.10 a | 0.3198 | 1.93 ± 1.22 a | 0.2373 | |
Final | 0.15 ± 0.10 a | 0.15 ± 0.15 a | 0.30 ± 0.21 a | 0.15 ± 0.10 a | 0.74 ± 1.22 a | ||||||
Soil depth (cm) | 0–10 | 0.22 ± 0.13 a | 0.3735 | 0.44 ± 0.17 a | 0.1099 | 0.44 ± 0.26 a | 0.3736 | 0.00 ± 0.13 a | 0.3735 | 2.89 ± 1.28 a | 0.0335 |
10–20 | 0.00 ± 0.13 a | 0.00 ± 0.17 a | 0.00 ± 0.26 a | 0.00 ± 0.13 a | 0.67 ± 1.28 b | ||||||
20–30 | 0.00 ± 0.13 a | 0.00 ± 0.17 a | 0.00 ± 0.26 a | 0.22 ± 0.13 a | 0.44 ± 1.28 b |
Effects | Treatment | Macroinvertebrates | ||||
---|---|---|---|---|---|---|
Total Density | p-Value | Richness | p-Value | |||
Time | Initial | T1 | 200.30 ± 180.65 b | 0.0300 | 0.89 ± 0.16 abc | 0.0353 |
T2 | 202.07 ± 180.65 b | 0.96 ± 0.16 abc | ||||
T3 | 205.04 ± 180.65 b | 0.93 ± 0.16 abc | ||||
T4 | 169.48 ± 180.65 b | 0.81 ± 0.16 bc | ||||
Final | T1 | 171.85 ± 180.65 b | 0.56 ± 0.16 c | |||
T2 | 238.22 ± 180.65 b | 1.19 ± 0.16 ab | ||||
T3 | 192.59 ± 180.65 b | 1.30 ± 0.16 a | ||||
T4 | 539.26 ± 180.65 a | 1.26 ± 0.16 a | ||||
Soil depth (cm) | 0–10 | 4.62 ± 0.48 a | <0.0001 | 1.45 ± 0.04 a | <0.0001 | |
10–20 | 2.97 ± 0.48 b | 1.10 ± 0.04 b | ||||
20–30 | 1.52 ± 0.48 c | 0.90 ± 0.04 c |
Treatment | Soil Depth (cm) | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–10 | 10–20 | 20–30 | |||||||||||
Mean | S.E. | Mean | S.E. | Mean | S.E. | ||||||||
T1 | 1.45 | ± | 0.14 | f | 1.53 | ± | 0.14 | de | 1.58 | ± | 0.14 | bcd | 0.0187 |
T2 | 1.55 | ± | 0.14 | cde | 1.60 | ± | 0.14 | ab | 1.65 | ± | 0.14 | a | |
T3 | 1.53 | ± | 0.14 | de | 1.59 | ± | 0.14 | abc | 1.62 | ± | 0.14 | ab | |
T4 | 1.51 | ± | 0.14 | e | 1.64 | ± | 0.14 | a | 1.65 | ± | 0.14 | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, F.; Ríos, P.; Sterling, A. Effects of Organic Fertilization on Biomass Production in Urochloa spp. Pastures and Soil Biological and Physical Properties in the Colombian Amazon Region. Sustainability 2023, 15, 15217. https://doi.org/10.3390/su152115217
Alvarez F, Ríos P, Sterling A. Effects of Organic Fertilization on Biomass Production in Urochloa spp. Pastures and Soil Biological and Physical Properties in the Colombian Amazon Region. Sustainability. 2023; 15(21):15217. https://doi.org/10.3390/su152115217
Chicago/Turabian StyleAlvarez, Faver, Paula Ríos, and Armando Sterling. 2023. "Effects of Organic Fertilization on Biomass Production in Urochloa spp. Pastures and Soil Biological and Physical Properties in the Colombian Amazon Region" Sustainability 15, no. 21: 15217. https://doi.org/10.3390/su152115217
APA StyleAlvarez, F., Ríos, P., & Sterling, A. (2023). Effects of Organic Fertilization on Biomass Production in Urochloa spp. Pastures and Soil Biological and Physical Properties in the Colombian Amazon Region. Sustainability, 15(21), 15217. https://doi.org/10.3390/su152115217