The Modeling and Simulation of Waste Recovery Processes Applied to the Orange Juice Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Simulation
2.1.1. Components
2.1.2. D-Limonene Production
2.1.3. Pectin Production
2.1.4. Biogas Production
2.1.5. Energy Production
2.2. Performance Evaluation Metrics
2.2.1. Environmental Metrics
2.2.2. Economic Metrics
3. Results and Discussion
3.1. D-Limonene
3.2. Pectin
3.3. Biomethane
3.4. Energy
3.5. Environmental Assessment
3.6. Economic Assessment
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/w66343603/8910m906m/f4754035x/citrus.pdf (accessed on 4 August 2023).
- CITRUSBR. Available online: https://www.facebook.com/CitrusBR/photos/3650681681696116 (accessed on 27 July 2023).
- John, I.; Muthukumar, K.; Arunagiri, A. A review on the potential of citrus waste for D-Limonene, pectin, and bioethanol production. Int. J. Green Energy 2017, 14, 599–612. [Google Scholar] [CrossRef]
- Putnik, P.; Kovačević, D.B.; Jambrak, A.R.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef] [PubMed]
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Ángel Siles López, J.; Li, Q.; Thompson, I.P. Biorefinery of waste orange peel. Crit. Rev. Biotechnol. 2010, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization. Bioresour. Technol. 2016, 214, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Volpe, M.; Panno, D.; Volpe, R.; Messineo, A. Upgrade of citrus waste as a biofuel via slow pyrolysis. J. Anal. Appl. Pyrolysis 2015, 115, 66–76. [Google Scholar] [CrossRef]
- Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason. Sonochem. 2015, 24, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Ferreira-Leitão, V.; Gottschalk, L.M.F.; Ferrara, M.A.; Nepomuceno, A.L.; Molinari, H.B.C.; Bon, E.P.S. Biomass Residues in Brazil: Availability and Potential Uses. Waste Biomass-Valorization 2010, 1, 65–76. [Google Scholar] [CrossRef]
- Pourbafrani, M.; McKechnie, J.; MacLean, H.L.; Saville, B.A. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste. Environ. Res. Lett. 2013, 8, 015007. [Google Scholar] [CrossRef]
- Baht, R. Sustainability challenges in the valorization of agri-food wastes and by-products. In Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges; Bhat, R., Ed.; Academic Press: London, UK, 2021; pp. 1–27. [Google Scholar] [CrossRef]
- Pourbafrani, M.; Forgács, G.; Horváth, I.S.; Niklasson, C.; Taherzadeh, M.J. Production of biofuels, limonene and pectin from citrus wastes. Bioresour. Technol. 2010, 101, 4246–4250. [Google Scholar] [CrossRef]
- Cerón-Salazar, I.; Cardona-Alzate, C. Evaluación del proceso integral para la obtención de aceite esencial y pectina a partir de la cáscara de naranja. Ing. Cienc. 2011, 7, 65–86. [Google Scholar]
- Dávila, J.A.; Rosenberg, M.; Cardona, C.A. Techno-economic and Environmental Assessment of p-Cymene and Pectin Production from Orange Peel. Waste Biomass-Valorization 2015, 6, 253–261. [Google Scholar] [CrossRef]
- Lohrasbi, M.; Pourbafrani, M.; Niklasson, C.; Taherzadeh, M.J. Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour. Technol. 2010, 101, 7382–7388. [Google Scholar] [CrossRef]
- Murali, R.; Karthikeyan, A.; Saravanan, R. Protective Effects ofd-Limonene on Lipid Peroxidation and Antioxidant Enzymes in Streptozotocin-Induced Diabetic Rats. Basic Clin. Pharmacol. Toxicol. 2012, 112, 175–181. [Google Scholar] [CrossRef]
- Tan, X.; Chua, K.; Ram, M.R.; Kuppusamy, U. Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes. Food Chem. 2016, 196, 242–250. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Chemical Composition of Mandarin (C. reticulata L.), Grapefruit (C. paradisi L.), Lemon (C. limon L.) and Orange (C. sinensis L.) Essential Oils. J. Essent. Oil Bear. Plants 2009, 12, 236–243. [Google Scholar] [CrossRef]
- Pfaltzgraff, L.A. The Study and Development of an Integrated and Additive-Free Waste Orange Peel Biorefinery. Ph.D. Thesis, University of York, York, UK, 2014. [Google Scholar]
- Wooley, R.J.; Putsche, V. Technical Report: Development of an ASPEN PLUS Physical Property Database for Biofuels Components. Available online: https://www.nrel.gov/docs/legosti/old/20685.pdf (accessed on 22 October 2018).
- Marsiglia-Lopez, D.; Ramirez-Uribe, M.; Gonzalez-Delgado, A.; Ojeda-Delgado, K.; Sanchez-Tuiran, E. Computer-aided economic evaluation of pectin extraction from cocoa pod husk (Theobroma cacao L.). Contemp. Eng. Sci. 2017, 10, 1493–1500. [Google Scholar] [CrossRef]
- Casas-Orozco, D.; Villa, A.L.; Bustamante, F.; González, L.-M. Process development and simulation of pectin extraction from orange peels. Food Bioprod. Process. 2015, 96, 86–98. [Google Scholar] [CrossRef]
- Al-Rubaye, H.; Karambelkar, S.; Shivashankaraiah, M.M.; Smith, J.D. Process Simulation of Two-Stage Anaerobic Digestion for Methane Production. Biofuels 2017, 10, 181–191. [Google Scholar] [CrossRef]
- Zema, D.A.; Fòlino, A.; Zappia, G.; Calabrò, P.S.; Tamburino, V.; Zimbone, S.M. Anaerobic digestion of orange peel in a semi-continuous pilot plant: An environmentally sound way of citrus waste management in agro-ecosystems. Sci. Total. Environ. 2018, 630, 401–408. [Google Scholar] [CrossRef]
- Negro, V.; Ruggeri, B.; Fino, D.; Tonini, D. Life cycle assessment of orange peel waste management. Resour. Conserv. Recycl. 2017, 127, 148–158. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Bruno, J.C.; Coronas, A. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 2010, 14, 2841–2851. [Google Scholar] [CrossRef]
- Baruah, D. Modeling of biomass gasification: A review. Renew. Sustain. Energy Rev. 2014, 39, 806–815. [Google Scholar] [CrossRef]
- Darmawan, A.; Hardi, F.; Yoshikawa, K.; Aziz, M.; Tokimatsu, K. Enhanced Process Integration of Entrained Flow Gasification and Combined Cycle: Modeling and Simulation Using Aspen Plus. Energy Procedia 2017, 105, 303–308. [Google Scholar] [CrossRef]
- Prestipino, M.; Chiodo, V.; Maisano, S.; Zafarana, G.; Urbani, F.; Galvagno, A. Hydrogen rich syngas production by air-steam gasification of citrus peel residues from citrus juice manufacturing: Experimental and simulation activities. Int. J. Hydrogen Energy 2017, 42, 26816–26827. [Google Scholar] [CrossRef]
- Arabkhalaj, A.; Ghassemi, H.; Markadeh, R.S. Thermodynamic evaluation of integrated gasification combined cycle: Comparison between high-ash and low-ash coals. Int. J. Energy Res. 2016, 40, 1638–1651. [Google Scholar] [CrossRef]
- Sánchez, L.E. Avaliação de Impacto Ambiental: Conceitos e Métodos, 3rd ed.; Oficina de Textos: São Paulo, Brazil, 2006. [Google Scholar]
- Salami, S.C.S. Avaliação dos Aspectos e Impactos Ambientais dos Laboratórios da Universidade Tecnológica Federal do Paraná, Campus Campo Mourão, Como Ferramenta para a Elaboração de um Modelo de Sistema de Gestão. Bachelor’s Thesis, Universidade Tecnológica Federal do Paraná, Campo Mourão, Brazil, 2013. [Google Scholar]
- Oliveira, J.M.d.S.M.; Silva, R.G. Aspectos e Impactos Ambientais de um Laboratório de Biologia. HOLOS 2016, 8, 368. [Google Scholar] [CrossRef]
- Potrich, A.L.; Teixeira, C.E.; Finotti, A.R. Avaliação de impactos ambientais como ferramenta de gestão ambiental aplicada aos resíduos sólidos do setor de pintura de uma indústria automotiva. Estud. Tecnol. Eng. 2007, 3, 162–175. [Google Scholar]
- Seiffert, M.E.B. Environmental impact evaluation using a cooperative model for implementing EMS (ISO 14001) in small and medium-sized enterprises. J. Clean. Prod. 2008, 16, 1447–1461. [Google Scholar] [CrossRef]
- Ultra International B.V. Available online: https://ultranl.com/products/orange-oil-brazil/ (accessed on 29 July 2019).
- Aliba. Available online: https://portuguese.alibaba.com/g/orange-d-limonene.html?src=sem_ggl&cmpgn=236969195&adgrp=19537176635&fditm=&tgt=dsa-19959388920&locintrst=&locphyscl=1001773&mtchtyp=b&ntwrk=g&device=c&dvcmdl=&creative=160710790250&plcmnt=&plcmntcat=&p1=&p2=&aceid=&positi (accessed on 29 July 2019).
- Pharmacompass. Available online: https://www.pharmacompass.com/price/pectin (accessed on 29 July 2019).
- Chembid. Available online: https://www.chembid.com/en/results/3/?q=pectin&filterCurrency=usd (accessed on 29 July 2019).
- Alibaba. Available online: https://www.alibaba.com/showroom/pectin+price+1kg.html?fsb=y&IndexArea=product_en&CatId=&SearchText=pectin+price+1kg&isGalleryList=G (accessed on 29 July 2019).
- Globalpetrolprices. Brazil Electricity Prices. Available online: https://www.globalpetrolprices.com/Brazil/electricity_prices/ (accessed on 29 July 2019).
- Milanez, A.Y.; Guimarães, D.D.; Maia, G.B.S.; Souza, J.A.P.; Lemos, M.L.F. Biogás de resíduos agroindustriais: Panorama e perspectivas. BNDES Setorial 2018, 47, 221–276. [Google Scholar]
- Cutrale. Available online: https://www.cutrale.com.br/farelo.xhtml (accessed on 29 July 2019).
- MFRural. Available online: https://www.mfrural.com.br/produtos/2-182/nutricao-animal-polpa-citrica (accessed on 29 July 2019).
- Galvagno, A.; Prestipino, M.; Zafarana, G.; Chiodo, V. Analysis of an Integrated Agro-waste Gasification and 120kW SOFC CHP System: Modeling and Experimental Investigation. Energy Procedia 2016, 101, 528–535. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Chacón-Pérez, Y.; Cardona-Alzate, C.A. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 2018, 33, 52–62. [Google Scholar] [CrossRef]
- The Oxford Institute for Energy Studies. Available online: https://www.oxfordenergy.org/publications/biogas-significant-contribution-decarbonising-gas-markets/ (accessed on 29 July 2019).
- Tetra Pak. Available online: https://orangebook.tetrapak.com/chapter/fruit-processing (accessed on 22 October 2018).
- Caparra, P.; Foti, F.; Scerra, M.; Sinatra, M.; Scerra, V. Solar-dried citrus pulp as an alternative energy source in lamb diets: Effects on growth and carcass and meat quality. Small Rumin. Res. 2007, 68, 303–311. [Google Scholar] [CrossRef]
- Feedipedia. Available online: https://www.feedipedia.org/search/node/orange (accessed on 8 August 2019).
Composition | (%) w/w |
---|---|
Water | 79.9 |
Pectin | 6.15 |
Cellulose | 6.10 |
Hemicellulose | 3.30 |
Lignin | 2.37 |
Ash | 2.37 |
Limonene | 1.50 |
Octanal | 8.48 × 10−3 |
B-pinene | 7.17 × 10−3 |
A-pinene | 5.36 × 10−3 |
Terpineol | 3.55 × 10−3 |
Decanal | 3.07 × 10−3 |
Octanol | 8.59 × 10−4 |
Nonanol | 4.86 × 10−4 |
G-terpin | 4.48 × 10−4 |
Dodecanal | 4.11 × 10−4 |
Undecanal | 3.74 × 10−4 |
Nonanal | 3.36 × 10−4 |
Step | Acronym | Block | Temperature (°C) | Pressure (Bar) | References |
---|---|---|---|---|---|
Preheating | B1 | Heater | 90 | 1.00 | [15,16] |
Extraction | A1 | RadFrac | - | 1.00 | [15,16] |
Cooling | L1 | Heater | 80 | 1.00 | [15,16] |
Decantation | L2 | Decanter | 80 | 1.00 | [15,16] |
Step | Acronym | Block | Temperature (°C) | Pressure (Bar) | References |
---|---|---|---|---|---|
Preheating | B1 | Heater | 90 | 1.00 | [15,16] |
Extraction | A1 | RadFrac | - | 1.00 | [15,16] |
Acid Hydrolysis | A2 | Rstoic | 150 | 1.00 | [14] |
Filtration | A3 | Filter | - | - | [15] |
Cooling | P1 | Heater | 35 | 1.00 | [15] |
Decantation | P2 | Decanter | 35 | 1.00 | [15] |
Precipitation | P3 | Rstoic | 30 | 1.00 | [14] |
Filtration | P4 | Filter | - | - | [16] |
Drying | P5 | Flash2 | 45 | 1.00 | [24] |
Overheating | P6 | Heater | 70 | 1.00 | [15,16] |
Separation | P7 | RadFrac | - | 1.00 | [15,16] |
Cooling | P8 | Heater | 30 | 1.00 | [15,16] |
Etapa | Acronym | Block | Temperature (°C) | Pressure (Bar) | References |
---|---|---|---|---|---|
Cooling | G1 | Heater | 25 | 1.00 | [26,27] |
Ash separation | G2 | Spe | - | - | [26,27] |
Solid dilution | G2 | Mixer | - | - | [26,27] |
Biomass decomposition | G2 | Rstoic | 25 | 1.00 | [26,27] |
Reaction simulation | G2 | Rgibbs | 25 | 1.00 | [26,27] |
Biogas separation | G2 | Flash2 | 25 | 1.00 | [26,27] |
Steps | Acronym | Block | Temperature (°C) | Pressure (Bar) | References |
---|---|---|---|---|---|
Ash separation | E1 | Spe | - | - | [30,31] |
Biomass decomposition | E1 | Spe | - | - | [30] |
Oxygen addition | E1 | RStoic | 150 | 1.00 | [30,31] |
Gasification | E1 | Mixer | - | - | [30,31] |
Multistage air compression | E2 | Rgibbs | 1100 | 40.0 | [32] |
Combustion | E3 | Compr | - | 11.4 | [32] |
Gas expansion | E4 | Rgibbs | 1127 | 20.0 | [31] |
Water heating | E5 | Compr | - | 1.74 | [32] |
Vapor compression | E6 | HeatX | 247 | - | [32] |
Cooling | E7 | Compr | - | 7.00 | [32] |
Pumping | E8 | Heater | 90 | 2.00 | [30,32] |
Product | Price | References |
---|---|---|
D-limonene | 15 USD/kg | [38,39] |
Pectin | 21 USD/kg | [40,41,42] |
Energy | 0.19 USD/kWh | [43] |
Biomethane | 0.07 USD/kWh | [44] |
Feed | 0.11 USD/kg | [45,46] |
Stage | Component | |||||
---|---|---|---|---|---|---|
(% mol) | ||||||
H2 | CO | CH4 | CO2 | H2O | N2 | |
Synthesis gas | 40.08 | 52.95 | 0.85 | 2.41 | 3.72 | - |
Combustion gas | 0.83 | 0.00 | 0.00 | 24.69 | 19.15 | 55.33 |
Worksheet for the Identification and Assessment of Environmental Aspects and Impacts | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Product | Stage | Environmental Aspect | Flowrate (kg/s) | Energy Consumption (MW) | Environmental Impact | Severity | Coverage | Frequency | Result | Impact Importance |
D-limonene | Extraction | Energy consumption | - | 255 | Physical and biotic environmental alterations | 2 | 2 | 2 | 8 | M |
Acid hydrolysis | Consumption of raw materials | 5.15 | - | Environment acidification | 2 | 2 | 2 | 8 | M | |
(sulfuric acid, hazardous chemical) | - | 390 | Physical and biotic environmental alterations | 3 | 2 | 2 | 10 | C | ||
Pectin | Precipitation | Energy consumption | 0.27 | - | Soil and/or aquatic environmental contamination | 1 | 2 | 2 | 6 | M |
Raw material (ethanol) consumption | - | 32.3 | Physical and biotic environmental alterations | 1 | 2 | 2 | 6 | M | ||
Drying | Energy consumption | 2.94 | - | Physical and biotic environmental alterations | 2 | 2 | 2 | 8 | M | |
Air consumption | 3.26 | - | Global warming | 2 | 3 | 2 | 10 | C | ||
Stream heating | Greenhouse gas emission | - | 5.60 | Physical and biotic environmental alterations | 1 | 2 | 2 | 6 | M | |
Ethanol distillation | Energy consumption | - | 78.6 | Physical and biotic environmental alterations | 1 | 2 | 2 | 6 | M | |
Energy consumption | 19.5 | - | Environmental acidification | 3 | 2 | 2 | 10 | C | ||
Generation of liquid effluents | - | 123 | Physical and biotic environmental alterations | 1 | 2 | 2 | 6 | M | ||
Biomethane | Anaerobic digestion | Energy consumption | 21.0 | - | Global warming | 3 | 3 | 2 | 12 | C |
Greenhouse gas emission | 4.51 | - | Surface and groundwater quality alterations | 1 | 2 | 2 | 6 | M | ||
Gasification | Generation of liquid effluents | 0.99 | - | Physical and biotic environmental alterations | 1 | 2 | 2 | 6 | M | |
Energy | Air compression | Air consumption | - | 7.00 | Physical and biotic environmental alterations | 1 | 2 | 2 | 6 | M |
Energy consumption | 21.1 | - | Physical and biotic environmental alterations | 3 | 2 | 2 | 10 | C | ||
Combustion | Air consumption | 28.5 | - | Global warming | 2 | 3 | 2 | 10 | C | |
Water pumping | Greenhouse gas emission | - | 0.02 | Physical and biotic environmental alterations | 1 | 2 | 2 | 6 | M | |
Animal feed | - | Energy consumption | 111 | - | Physical and biotic environmental alterations; Global warming | 3 | 3 | 2 | 12 | C |
Dimensions | Dimension | |||
---|---|---|---|---|
Economic | Environmental | |||
Revenue (mi USD/Year) | Rank | Environmental Significance | Rank | |
D-limonene | 644 | 2 | 8 | 1 |
Pectin | 2776 | 1 | 70 | 5 |
Biomethane | 27.7 | 5 | 24 | 3 |
Electricity | 35.5 | 4 | 38 | 4 |
Animal feed | 107 | 3 | 12 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, L.L.; Cunha, I.L.C.; Teixeira, C.E.; Kulay, L.; dos Santos, M.T. The Modeling and Simulation of Waste Recovery Processes Applied to the Orange Juice Industry. Sustainability 2023, 15, 15225. https://doi.org/10.3390/su152115225
Suzuki LL, Cunha ILC, Teixeira CE, Kulay L, dos Santos MT. The Modeling and Simulation of Waste Recovery Processes Applied to the Orange Juice Industry. Sustainability. 2023; 15(21):15225. https://doi.org/10.3390/su152115225
Chicago/Turabian StyleSuzuki, Lorrayne Lins, Isadora Luiza Clímaco Cunha, Cláudia Echevenguá Teixeira, Luiz Kulay, and Moisés Teles dos Santos. 2023. "The Modeling and Simulation of Waste Recovery Processes Applied to the Orange Juice Industry" Sustainability 15, no. 21: 15225. https://doi.org/10.3390/su152115225
APA StyleSuzuki, L. L., Cunha, I. L. C., Teixeira, C. E., Kulay, L., & dos Santos, M. T. (2023). The Modeling and Simulation of Waste Recovery Processes Applied to the Orange Juice Industry. Sustainability, 15(21), 15225. https://doi.org/10.3390/su152115225