Sources and Magnitude of Heavy Metals in Sugarcane Plantation Soils with Different Agricultural Practices and Their Implications on Sustainable Waste-to-Foods Strategy in the Sugar–Ethanol Industry
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Sites
2.2. In-Depth Interviews
2.3. Field Sampling
2.4. Sample Preparation and Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Chemical and Physical Characteristics of the Sugarcane Plantation Soils
3.2. Accumulations of Heavy Metals in the Sugarcane Plantation Soils
3.3. Factors Associating Heavy Metal Accumulation in the Soils
3.3.1. Soil Texture
3.3.2. Soil Electroconductivity (EC)
3.3.3. Soil pH and Soil Organic Content
3.3.4. Soil Conservation Measures
3.4. Potential Sources of the Heavy Metals in the Sugarcane Plantation Soils
3.4.1. Parent Rock Materials
3.4.2. Addition of Sugarcane Filter Cake
3.4.3. Addition of Treated Vinasse from Molasses-Based Ethanol Distillery
3.4.4. Applications of Mineral Fertilizers and Agrochemicals
3.5. Bioconcentration Factor (BCF) of Heavy Metals from the Soils to the Sugarcane Leaves
3.6. Effects of Soil Heavy Metals on the Sugarcane Yield
3.7. Implications on Sustainability of Utilizing Wastes from Sugar–Ethanol Industry for Sugarcane Cultivation
3.8. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Office of the Cane and Sugar Board. Report on the Situation of Sugarcane Planting, Production Year 2021/2022. Available online: http://www.ocsb.go.th/upload/journal/fileupload/13813-1585.pdf (accessed on 26 February 2023).
- Office of Agricultural Economics. Export statistics. Available online: https://impexpth.oae.go.th/export (accessed on 26 February 2023).
- Preecha, R.J.M.; Srikongphet, K.; Ratchatawechkul, W. Step into the new context of Thai Cane and Sugar Industries. In Proceedings of the Bank of Thailand Symposium 2017, Centara Grand, Bangkok, Thailand, 18–19 September 2017. [Google Scholar]
- Office of National Higher Education Science Research and Innovation Policy Council. BCG in Action. Available online: https://www.nxpo.or.th/th/en/bcg-in-action/ (accessed on 19 February 2023).
- Sahu, O. Assessment of sugarcane industry: Suitability for production, consumption, and utilization. Ann. Agrar. Sci. 2018, 16, 389–395. [Google Scholar] [CrossRef]
- Christofoletti, C.A.; Escher, J.P.; Correia, J.E.; Marinho, J.F.U.; Fontanetti, C.S. Sugarcane vinasse: Environmental implications of its use. Waste Manag. 2013, 33, 2752–2761. [Google Scholar] [CrossRef] [PubMed]
- Raza, Q.-U.-A.; Bashir, M.A.; Rehim, A.; Sial, M.U.; Ali Raza, H.M.; Atif, H.M.; Brito, A.F.; Geng, Y. Sugarcane industrial byproducts as challenges to environmental safety and their remedies: A review. Water 2021, 13, 3495. [Google Scholar] [CrossRef]
- Wakamura, Y. Utilization of bagasse energy in Thailand. Mitig. Adapt. Strateg. Glob. Change 2003, 8, 253–260. [Google Scholar] [CrossRef]
- Dotaniya, M.; Datta, S.; Biswas, D.; Dotaniya, C.; Meena, B.; Rajendiran, S.; Regar, K.; Lata, M. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int. J. Recycl. Org. Waste Agric. 2016, 5, 185–194. [Google Scholar] [CrossRef]
- Hoarau, J.; Caro, Y.; Grondin, I.; Petit, T. Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review. J. Water Process Eng. 2018, 24, 11–25. [Google Scholar] [CrossRef]
- Murillo, J.M.; Cabrera, F.; López, R. Effect of beet vinasse on germination and seedling performance of ryegrass (Lolium multiflorum Lam cv Barwoltra). J. Sci. Food Agric. 1993, 61, 155–160. [Google Scholar] [CrossRef]
- Yin, J.; Deng, C.-B.; Wang, X.-F.; Chen, G.-l.; Mihucz, V.G.; Xu, G.-P.; Deng, Q.-C. Effects of long-term application of vinasse on physicochemical properties, heavy metals content and microbial diversity in sugarcane field soil. Sugar Technol. 2019, 21, 62–70. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 1–21. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Su, C. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 2014, 3, 24. [Google Scholar]
- Baranowska, I.; Barchanska, H.; Pyrsz, A. Distribution of pesticides and heavy metals in trophic chain. Chemosphere 2005, 60, 1590–1599. [Google Scholar] [CrossRef] [PubMed]
- Peris, M.; Recatalá, L.; Micó, C.; Sánchez, R.; Sánchez, J. Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region. Water Air Soil Pollut. 2008, 192, 25–37. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.; Carlton-Smith, C.; Chambers, B. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Kobierski, M.; Jaskulska, I.; Jaskulski, D.; Debska, B. Effect of a tillage system on the chemical properties of sandy loam soils. J. Elem. 2020, 25, 1463–1473. [Google Scholar] [CrossRef]
- Intamo, P.; Suddhiprakarn, A.; Kheoruenromne, I.; Tawornpruek, S.; Gilkes, R. Geomorphic significance on distribution of heavy metals in soils affected by Pb-Zn mining in a limestone karst, western Thailand. Thai J. Agric. Sci. 2015, 48, 187–197. [Google Scholar]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Huang, S.-W.; Jin, J.-Y. Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ. Monit. Assess. 2008, 139, 317–327. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Hani, A.; Pazira, E. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environ. Monit. Assess. 2011, 176, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Doabi, S.A.; Karami, M.; Afyuni, M.; Yeganeh, M. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Wang, J.; Sun, L.; Xu, Z.; Tang, J.; Yan, J.; Zeng, X. Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotoxicol. Environ. Saf. 2019, 169, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Ur Rehman, M.; Ahmad, B.; Ali, I.; Younas, M.; Aslam, M.S.; Rahman, A.-u.; Taheri, E.; Fatehizadeh, A.; Rezakazemi, M. Assessment of heavy metals accumulation in agricultural soil, vegetables and associated health risks. PLoS ONE 2022, 17, e0267719. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Lu, Y.; Khan, H.; Ishtiaq, M.; Khan, S.; Waqas, M.; Wei, L.; Wang, T. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem. Toxicol. 2013, 58, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 2018, 255, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, U.; Salam, M.T.B.; Khan, A.S.; Rahman, M.M. Ecological risk of heavy metal in agricultural soil and transfer to rice grains. Discov. Mater. 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Akkajit, P.; DeSutter, T.; Tongcumpou, C. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization. Environ. Sci. Process Impacts 2013, 15, 947–954. [Google Scholar] [CrossRef]
- Land Development Department. Agri-Map Kanchanaburi. Available online: https://www.ldd.go.th/Agri-Map/Data/C/kri.pdf (accessed on 1 September 2023).
- Kanchanaburi Provincial Statistical Office. Kanchanaburi Provincial Statistical Report. 2022. Available online: https://kanchanaburi.nso.go.th/reports-publications/provincial-statistics-report.html (accessed on 1 September 2023).
- Department of Primary Industries and Mines. Information on Mining Concessions Nationwide. Available online: https://www1.dpim.go.th//mne/mn.php (accessed on 27 February 2023).
- Diehl, P.; Kern, H. Geology, mineralogy, and geochemistry of some carbonate-hosted lead-zinc deposits in Kanchanaburi Province, Western Thailand. Econ. Geol. 1981, 76, 2128–2146. [Google Scholar] [CrossRef]
- Morley, C.K. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development. Tectonics 2009, 28. [Google Scholar] [CrossRef]
- Pananont, P.; Wechbunthung, B.; Putthapiban, P.; Wattanadilokkul, D. Seismic activities in Kanchanaburi: Past and present. Songklanakarin J. Sci. Technol. 2011, 33, 355–364. [Google Scholar]
- Choowong, M. Quaternary geology and sapphire deposits from the BO PHLOI gem field, Kanchanaburi Province, Western Thailand. J. Asian Earth Sci. 2002, 20, 119–125. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Zarcinas, B.A.; Pongsakul, P.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in Southeast Asia 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Koptsik, G. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review. Eurasian Soil Sci. 2014, 47, 923–939. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Fitz, W.J.; Wenzel, W.W. Arsenic transformations in the soil–rhizosphere–plant system: Fundamentals and potential application to phytoremediation. J. Biotechnol. 2002, 99, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, E.; Esteban, E.; Peñalosa, J.M. The fate of arsenic in soil-plant systems. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2012; pp. 1–37. [Google Scholar]
- Bia, G.; García, M.; Rueda, E.S.; Mors, R.; Mlewski, E.; Gomez, F.; Borgnino, L. Arsenic in natural carbonates: The role of the biogeochemical conditions in its solid speciation. Chem. Geol. 2021, 583, 120477. [Google Scholar] [CrossRef]
- Fontaine, H.; Kavinate, S.; Hoang, T.T.; Vachard, D. Permian limestone of peninsular and western Thailand in Khao Yoi, Cha-am and Thong Pha Phum areas. Nat. Hist. Bull. Siam Soc. 2012, 58, 39–47. [Google Scholar]
- Demir, A. Speciation, risk assessment and bioavailability of metals in the agricultural soils of the Göksu Delta, Turkey. Soil Sediment Contam. Int. J. 2021, 30, 292–313. [Google Scholar] [CrossRef]
- Verbeeck, M.; Hiemstra, T.; Thiry, Y.; Smolders, E. Soil organic matter reduces the sorption of arsenate and phosphate: A soil profile study and geochemical modelling. Eur. J. Soil Sci. 2017, 68, 678–688. [Google Scholar] [CrossRef]
- Dousova, B.; Buzek, F.; Herzogova, L.; Machovic, V.; Lhotka, M. Effect of organic matter on arsenic (V) and antimony (V) adsorption in soils. Eur. J. Soil Sci. 2015, 66, 74–82. [Google Scholar] [CrossRef]
- Liao, L.; Selim, H.; DeLaune, R. Mercury adsorption-desorption and transport in soils. J. Environ. Qual. 2009, 38, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.; Rinklebe, J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef] [PubMed]
- Konen, M.; Burras, C.; Sandor, J. Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in north central Iowa. Soil Sci. Soc. Am. J. 2003, 67, 1823–1830. [Google Scholar] [CrossRef]
- Lavado, R.S.; Porcelli, C.A.; Alvarez, R. Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil Tillage Res. 2001, 62, 55–60. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- Wu, W.; Qu, S.; Nel, W.; Ji, J. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China. Chemosphere 2021, 262, 127897. [Google Scholar] [CrossRef]
- Fito, J.; Tefera, N.; Van Hulle, S.W. Sugarcane biorefineries wastewater: Bioremediation technologies for environmental sustainability. Chem. Biol. Technol. Agric. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Fito, J.; Tefera, N.; Kloos, H.; Van Hulle, S.W. Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment. Sugar Technol. 2019, 21, 265–277. [Google Scholar] [CrossRef]
- Rajkishore, S.; Vignesh, N. Distillery spentwash in the context of crop production-a review. Bioscan 2012, 7, 369–375. [Google Scholar]
- Mahimairaja, S.; Bolan, N. Problems and prospects of agricultural use of distillery spentwash in India. Magnesium 2004, 1715, 2100. [Google Scholar]
- Wang, J.; Yu, D.; Wang, Y.; Du, X.; Li, G.; Li, B.; Zhao, Y.; Wei, Y.; Xu, S. Source analysis of heavy metal pollution in agricultural soil irrigated with sewage in Wuqing, Tianjin. Sci. Rep. 2021, 11, 17816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zou, D.; Zeng, X.; Li, L.; Wang, A.; Liu, F.; Wang, H.; Zeng, Q.; Xiao, Z. Effect of the direct use of biomass in agricultural soil on heavy metals—Activation or immobilization? Environ. Pollut. 2021, 272, 115989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, M.; Li, C. Soil heavy metal contamination assessment in the Hun-Taizi River watershed, China. Sci. Rep. 2020, 10, 8730. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Li, M.; Hu, W.; Huang, B.; Zhao, Y. Environmental capacity of heavy metals in intensive agricultural soils: Insights from geochemical baselines and source apportionment. Sci. Total Environ. 2022, 819, 153078. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Donahoe, R.J. The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci. Total Environ. 2008, 405, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, J.; Gong, Y.; Liu, Q.; Yang, S.; Ma, J.; Zhao, L.; Hou, H. Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere 2020, 244, 125516. [Google Scholar] [CrossRef]
- Heijerick, D.G.; Van Sprang, P.A.; Van Hyfte, A.D. Ambient copper concentrations in agricultural and natural European soils: An overview. Environ. Toxicol. Chem. Int. J. 2006, 25, 858–864. [Google Scholar] [CrossRef]
- Vavoulidou, E.; Avramides, E.; Papadopoulos, P.; Dimirkou, A.; Charoulis, A.; Konstantinidou-Doltsinis, S. Copper content in agricultural soils related to cropping systems in different regions of Greece. Commun. Soil Sci. Plant Anal. 2005, 36, 759–773. [Google Scholar] [CrossRef]
- Kladsomboon, S.; Jaiyen, C.; Choprathumma, C.; Tusai, T.; Apilux, A. Heavy metals contamination in soil, surface water, crops, and resident blood in Uthai District, Phra Nakhon Si Ayutthaya, Thailand. Environ. Geochem. Health 2020, 42, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 1–9. [Google Scholar] [CrossRef]
- Pandey, B.; Suthar, S.; Singh, V. Accumulation and health risk of heavy metals in sugarcane irrigated with industrial effluent in some rural areas of Uttarakhand, India. Process Saf. Environ. Prot. 2016, 102, 655–666. [Google Scholar] [CrossRef]
- Tripathi, S.; Sharma, P.; Singh, K.; Purchase, D.; Chandra, R. Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste. Environ. Technol. Innov. 2021, 22, 101434. [Google Scholar] [CrossRef]
- Tamez, C.; Morelius, E.; Hernandez-Viezcas, J.; Peralta-Videa, J.; Gardea-Torresdey, J. Biochemical and physiological effects of copper compounds/nanoparticles on sugarcane (Saccharum officinarum). Sci. Total Environ. 2019, 649, 554–562. [Google Scholar] [CrossRef]
- Jain, R.; Srivastava, S.; Solomon, S.; Shrivastava, A.; Chandra, A. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol. Plant. 2010, 32, 979–986. [Google Scholar] [CrossRef]
Type of Fertilizer | Mineral Fertilizers | Vinasse from Molasses-Based Distilleries | Filter Cake from Sugar Mills | Typical Range in Agricultural Soils (Su, 2014 [16]) | National Soil Standard for Agriculture ** | Background Soil in Thailand (Zarcinas et al., 2004 [41]) |
---|---|---|---|---|---|---|
Mean ± Standard Deviation (Median) | Min–Max (Mean) | |||||
Number of Observations | 102 | 11 | 18 | |||
pH | 7.42 ± 0.89 (7.79) | 7.05 ± 0.87 (6.98) | 7.59 ± 0.68 (7.91) | |||
EC, μS cm−1 | 69.83 ± 71.10 (54.5) | 78.32 ± 53.58 (55) | 73.76 ± 47.21 (58.5) | |||
Color Value | 3 * | 3 * | 3 * | |||
Color Chroma | 1 * | 2 * | 1 * | |||
Soil Texture | Clay * | Clay * | Sandy Clay * | |||
Soil As, mg/kg | 48.7 ± 33.0 (44.0) | 37.3 ± 26.9 (47.7) | 59.6 ± 28.6 (60.2) | 0.78–92.7 (21.19) | <25 | 30 |
Soil Fe, mg/kg | 35,291 ± 21,477 (32,314) | 29,691 ± 21,766 (42,344) | 39,252 ± 22,444 (30,165) | |||
Soil Mn, mg/kg | 1384 ± 1166 (1075) | 1254 ± 849 (1479) | 1233 ± 749 (1046) | <19,640 | ||
Soil Zn, mg/kg | 77.1 ± 52.2 (64.7) | 93.8 ± 64.4 (104.8) | 66.0 ± 41.5 (60.5) | 4.65–427.8 (117.35) | 70 | |
Soil Cu, mg/kg | 26.1 ± 18.2 (22.2) | 28.2 ± 20.5 (36.2) | 23.9 ± 10.8 (21.5) | 1.20–107.65 (38.03) | <35,040 | 45 |
Soil Cr, mg/kg | 72.3 ± 66.8 (59.9) | 51.5 ± 23.3 (58.2) | 79.2 ± 42.1 (73.4) | 1.23–87.73 (46.69) | <212 | 80 |
Soil Pb, mg/kg | 51.0 ± 66.8 (34.6) | 23.1 ± 16.3 (31.7) | 28.8 ± 18.6 (22.8) | 0.95–213.93 (51.19) | <800 | 55 |
Soil Cd, mg/kg | 0.67 ± 0.67 (0.49) | 0.58 ± 0.55 (0.80) | 0.72 ± 0.57 (0.48) | 0.05–13.50 (1.5) | <762 | 0.15 |
Soil Hg, μg/kg | 18.1 ± 33.3 (10.6) | 15.4 ± 8.2 (13.5) | 14.1 ± 9.7 (14.9) | 50–730 (280) | <263,000 | 100 |
EC | Color Value | Chroma | Clay Fraction | As | Fe | Mn | Zn | Cu | Cr | Pb | Cd | Hg | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 0.38 a | −0.23 a | −0.22 b | 0.12 | 0.21 b | 0.03 | 0.26 a | 0.01 | 0.04 | 0.02 | 0.11 | −0.04 | −0.09 |
EC | −0.14 | −0.22 b | 0.39 a | 0.42 a | 0.32 a | 0.35 a | 0.39 a | 0.36 a | 0.09 | 0.27 a | 0.30 a | 0.21 b | |
Color Value | 0.40 a | −0.16 | −0.26 a | 0.02 | −0.21 b | 0.02 | 0.06 | −0.06 | −0.02 | −0.01 | −0.15 | ||
Chroma | −0.09 | −0.14 | −0.06 | −0.17 | −0.13 | −0.13 | −0.14 | −0.10 | −0.02 | −0.28 a | |||
Clay fraction | 0.54 a | 0.53 a | 0.44 a | 0.45 a | 0.42 a | 0.39 a | 0.41 a | 0.41 a | 0.18 b | ||||
As | 0.78 a | 0.73 a | 0.61 a | 0.68 a | 0.66 a | 0.59 a | 0.77 a | 0.26 a | |||||
Fe | 0.68 a | 0.78 a | 0.82 a | 0.73 a | 0.79 a | 0.85 a | 0.25 a | ||||||
Mn | 0.63 a | 0.72 a | 0.51 a | 0.68 a | 0.64 a | 0.22 b | |||||||
Zn | 0.72 a | 0.46 a | 0.72 a | 0.73 a | 0.42 a | ||||||||
Cu | 0.56 a | 0.75 a | 0.83 a | 0.32 a | |||||||||
Cr | 0.53 a | 0.63 a | 0.17 | ||||||||||
Pb | 0.74 a | 0.17 | |||||||||||
Cd | 0.22 b |
Soil Properties | Factor Loading | Specific Variances | ||||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | ||
pH | 0.10 | 0.06 | 0.02 | −0.52 | −0.07 | 0.71 |
EC | −0.01 | 0.08 | 0.46 | −0.10 | 0.07 | 0.77 |
Color Value | −0.02 | −0.03 | 0.06 | 0.75 | −0.18 | 0.40 |
Color Chroma | 0.11 | 0.07 | −0.21 | 0.57 | −0.11 | 0.60 |
Clay fraction | 0.25 | 0.31 | 0.37 | −0.27 | −0.01 | 0.63 |
Soil As | 0.69 | 0.53 | 0.16 | −0.18 | 0.22 | 0.13 |
Soil Fe | 0.55 | 0.68 | 0.46 | 0.04 | −0.01 | 0.03 |
Soil Mn | 0.81 | 0.23 | 0.07 | −0.24 | −0.33 | 0.11 |
Soil Zn | 0.60 | 0.08 | 0.66 | 0.10 | 0.20 | 0.15 |
Soil Cu | 0.55 | 0.27 | 0.50 | 0.01 | 0.04 | 0.37 |
Soil Cr | 0.27 | 0.72 | 0.10 | 0.00 | −0.03 | 0.40 |
Soil Pb | 0.75 | 0.16 | 0.03 | 0.01 | 0.06 | 0.41 |
Soil Cd | 0.80 | 0.43 | 0.21 | 0.10 | 0.35 | 0.005 |
Soil Hg | 0.05 | 0.00 | 0.10 | −0.17 | 0.24 | 0.90 |
Fertilizations | Average factor scores | |||||
Mineral Fertilizers (n = 95) | 0.045 | −0.029 | −0.019 | 0.001 | −0.047 | |
Vinasse (n = 10) | 0.179 | −0.739 | 0.560 | 0.523 | −0.136 | |
Sugarcane Filter Cake (n = 17) | −0.310 | 0.651 | −0.316 | −0.298 | 0.291 |
As | Fe | Mn | Zn | Cu | Cr | Pb | Cd | Hg | |
---|---|---|---|---|---|---|---|---|---|
mg/kg | μg/kg | ||||||||
Bagasse | 5.26 | 2060 | 89 | 18.16 | 3.27 | 6.65 | 2.68 | 0.20 | 4.17 |
Ash | 38.86 | 24,159 | 1063 | 136.04 | 29.81 | 56.07 | 19.97 | 0.49 | 10.82 |
Filter Cake | 49.46 | 34,955 | 1566 | 138.85 | 42.02 | 79.98 | 29.53 | 0.69 | 15.26 |
Organic Fertilizer Standards * | <50 | <500 | <300 | <500 | <5 | <2000 |
Soil Cu, mg kg−1 | Amount of Herbicides Applied, kg ha−1 yr−1 | |||
---|---|---|---|---|
0–3.12 | 3.12–6.25 | 6.25–12.5 | >12.5 | |
<11.4 | 11 | 6 | 3 | 3 |
11.4–17.9 | 7 | 8 | 7 | 3 |
17.9–26.8 | 11 | 6 | 3 | 3 |
26.8–38.6 | 5 | 3 | 5 | 12 |
>38.6 | 9 | 3 | 8 | 3 |
Clay Content Level | As | Fe | Mn | Zn | Cu | Cr | Hg | Pb | Cd |
---|---|---|---|---|---|---|---|---|---|
1 (n = 3–14) | 1.04 ± 0.77 (0.81) * | 0.013 ± 0.009 (0.012) | 0.29 ± 0.22 (0.24) | 0.78 ± 0.28 (0.77) | 2.67 ± 4.09 (1.12) | 0.15 ± 0.16 (0.12) | 10.25 ± 11.90 (6.41) | Very low ** | Very low ** |
2 (n = 2–6) | 0.73 ± 0.45 (0.76) | 0.007 ± 0.003 (0.007) | 0.17 ± 0.07 (0.16) | 0.49 ± 0.00 (0.49) | 0.90 ± 0.53 (0.71) | 0.06 ± 0.05 (0.03) | 25.55 ± 35.67 (25.55) | ||
3 (n = 7–23) | 0.47 ± 0.37 (0.39) | 0.011 ± 0.011 (0.006) | 0.27 ± 0.63 (0.09) | 0.57 ± 0.62 (0.32) | 1.33 ± 2.08 (0.50) | 0.16 ± 0.27 (0.06) | 5.03 ± 10.22 (1.44) | ||
4 (n = 3–18) | 0.40 ± 0.24 (0.34) | 0.013 ± 0.021 (0.007) | 0.11 ± 0.09 (0.08) | 0.83 ± 0.87 (0.57) | 0.60 ± 0.40 (0.56) | 0.06 ± 0.04 (0.06) | 35.72 ± 59.44 (1.87) | ||
5 (n = 13–64) | 0.35 ± 0.63 (0.22) | 0.008 ± 0.009 (0.004) | 0.08 ± 0.07 (0.06) | 0.37 ± 0.24 (0.32) | 0.86 ± 1.57 (0.35) | 0.11 ± 0.19 (0.06) | 2.32 ± 4.61 (0.41) |
BCF from Soils to Plants (Cane Leaves) | |||||||||
---|---|---|---|---|---|---|---|---|---|
As | Fe | Mn | Zn | Cu | Cr | Hg | |||
Soil pH | −0.11 | −0.11 | −0.29 a | −0.09 | −0.05 | 0.08 | 0.15 | ||
Soil EC | −0.36 a | −0.21 b | −0.35 a | −0.27 | −0.34 a | 0.10 | 0.15 | ||
Color Value | 0.17 | 0.12 | 0.21 b | 0.04 | 0.06 | 0.12 | 0.10 | ||
Chroma | 0.13 | −0.01 | 0.20 b | 0.05 | 0.10 | 0.00 | 0.12 | ||
Clay Content | −0.50 a | −0.34 a | −0.45 a | −0.31 b | −0.31 a | −0.11 | −0.27 | ||
Cane Yield | −0.04 | −0.09 | −0.10 | −0.41 a | −0.06 | 0.17 | −0.11 | ||
Soil Heavy Metals | |||||||||
As | Fe | Mn | Zn | Cu | Cr | Hg | Pb | Cd | |
Cane Yield | 0.09 | 0.28 a | 0.19 b | 0.34 a | 0.27 a | 0.09 | −0.05 | 0.42 a | 0.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bridhikitti, A.; Kaewsuk, J.; Karaket, N.; Somchat, K.; Friend, R.; Sallach, B.; Chong, J.P.J.; Redeker, K.R. Sources and Magnitude of Heavy Metals in Sugarcane Plantation Soils with Different Agricultural Practices and Their Implications on Sustainable Waste-to-Foods Strategy in the Sugar–Ethanol Industry. Sustainability 2023, 15, 14816. https://doi.org/10.3390/su152014816
Bridhikitti A, Kaewsuk J, Karaket N, Somchat K, Friend R, Sallach B, Chong JPJ, Redeker KR. Sources and Magnitude of Heavy Metals in Sugarcane Plantation Soils with Different Agricultural Practices and Their Implications on Sustainable Waste-to-Foods Strategy in the Sugar–Ethanol Industry. Sustainability. 2023; 15(20):14816. https://doi.org/10.3390/su152014816
Chicago/Turabian StyleBridhikitti, Arika, Jutamas Kaewsuk, Netiya Karaket, Kittipong Somchat, Richard Friend, Brett Sallach, James P. J. Chong, and Kelly R. Redeker. 2023. "Sources and Magnitude of Heavy Metals in Sugarcane Plantation Soils with Different Agricultural Practices and Their Implications on Sustainable Waste-to-Foods Strategy in the Sugar–Ethanol Industry" Sustainability 15, no. 20: 14816. https://doi.org/10.3390/su152014816
APA StyleBridhikitti, A., Kaewsuk, J., Karaket, N., Somchat, K., Friend, R., Sallach, B., Chong, J. P. J., & Redeker, K. R. (2023). Sources and Magnitude of Heavy Metals in Sugarcane Plantation Soils with Different Agricultural Practices and Their Implications on Sustainable Waste-to-Foods Strategy in the Sugar–Ethanol Industry. Sustainability, 15(20), 14816. https://doi.org/10.3390/su152014816