Assessment of the Impact of Industrial and Municipal Discharges on the Surface Water Body Status (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristic of Study Area
2.2. Sampling and Physicochemical Analyses
2.3. Classification Method of the Water Body Sections
3. Results and Discussion
3.1. Basic Physicochemical Indicators
3.2. Oxygen Conditions and Biogenic Substances Indicators
3.3. Indicators Characterizing Salinity
3.4. Priority Substances and Substances Particularly Harmful
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Communities 2000, L327, 1–73.
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document on Exemptions to the Environmental Objectives; European Commission: Brussels, Belgium, 2009; Volume 20, pp. 1–42. ISBN 978-92-79-11371-0. [Google Scholar]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Van Kats, N.; Dieperink, C.; van Rijswick, M.; Domis, L.D.S. Towards a Good Ecological Status? The Prospects for the Third Implementation Cycle of the EU Water Framework Directive in The Netherlands. Water 2022, 14, 486. [Google Scholar] [CrossRef]
- Regulation of the Minister of Infrastructure of 25 June 2021 on the Classification of Ecological Status, Ecological Potential and Chemical Status, and the Method of Classification of the State of Surface Water Bodies, as well as Environmental Quality Standards for Priority Substances (Journal of Laws 2021, Item 1475). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210001475/O/D20211475.pdf (accessed on 10 November 2022).
- Act of 20 July 2017 Water Law (Journal of Laws of 2021, Items 2233 as Amended). Available online: https://www.dziennikustaw.gov.pl/D2017000156601.pdf (accessed on 10 November 2022).
- Nocoń, W.; Barbusiński, K.; Nocoń, K.; Kernert, J. Analiza zmian ładunku metali śladowych transportowanych wraz z zawiesinami wzdłuż biegu rzeki. Ochr. Sr. 2013, 35, 33–38. [Google Scholar]
- Drąg, M. Water Management in the Klodnica Catchment in 2000–2010. Contemp. Trends Geosci. 2012, 1, 5–12. [Google Scholar] [CrossRef]
- Nocoń, W.; Nocoń, K. Płynące Wody Powierzchniowe Aglomeracji Górnośląskiej-Problemy i Wyzwania. LAB Lab. Apar. Bad. 2011, 16, 26–31. [Google Scholar]
- Magdziorz, A.; Lach, R. Analiza Możliwości Ograniczenia Zasolenia Bie-Rawki i Odry Przez Wody Kopalniane; Prace Naukowe GIG; Górnictwo i Środowisko/Główny Instytut Górnictwa: Katowice, Poland, 2002; Volume 2, pp. 69–88. [Google Scholar]
- Harat, A.; Grmela, A. Wpływ wód kopalnianych Górnośląskiego Zagłębia Węglowego na zmiany jakości wody w rzece Olza w latach 2000–2007. Monit. Sr. Przyr. 2008, 9, 57–62. [Google Scholar]
- Halabowski, D.; Lewin, I. Triggers for the Impoverishment of the Macroinvertebrate Communities in the Human-Impacted Rivers of Two Central European Ecoregions. Water Air Soil Pollut. 2021, 55, 1–22. [Google Scholar] [CrossRef]
- Matysik, M. Wpływ Zrzutów Wód Kopalnianych na Odpływ rzek Górnośląskiego Zagłębia Węglowego. (The Impact of Mine Water Discharge on the Runoff of the Rivers of the upper Silesian Coal Basin); Wydawnictwo UŚ: Katowice, Poland, 2018. [Google Scholar]
- Nocoń, W. Metale ciężkie w osadach dennych wybranych dopływów rzeki Kłodnicy. Inżynieria I Ochr. Sr. 2009, 12, 65–76. [Google Scholar]
- Olkowska, E.; Kudłak, B.; Tsakovski, S.; Ruman, M.; Simeonov, V.; Polkowska, Z. Assessment of the water quality of Kłodnica River catchment using self-organizing maps. Sci. Total Environ. 2014, 476–477, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Łabaj, P.; Wysocka, M.; Janson, E.; Deska, M. Application of the Unified Stream Assessment Method to Determine the Direction of Revitalization of Heavily Transformed Urban Rivers. Water Resour. 2020, 47, 521–529. [Google Scholar] [CrossRef]
- Zgórska, A.; Bondaruk, J.; Dudziak, M. Impact of industrial discharges on aquatic ecosystems of Kłodnica River based on the results of bioassays battery. Ecol. Eng. Environ. Technol. 2019, 20, 15–23. [Google Scholar] [CrossRef]
- Zgórska, A.M.; Bondaruk, J.; Dudziak, M.; Hamerla, A. Impact of Industrial Discharge on Aquatic Ecosystems of the Kłodnica River with Reference to Water Framework Directive Objectives. Pol. J. Environ. Stud. 2020, 29, 2945–2953. [Google Scholar] [CrossRef]
- Wiesner-Sękala, M.; Hamerla, A.; Pierzchała, Ł. Environmental Risk Assessment Caused by Selected Pollutants to Aquatic Environment on the Example of the Klodnica River. Ecol. Eng. Environ. Technol. 2017, 18, 69–80. [Google Scholar] [CrossRef]
- Olkowska, E.; Ruman, M.; Drąg-Śmigalska, M.; Polkowska, Ż. Selected anionic and cationic surface active agents: Case study on the Kłodnica sediments. Limnol. Rev. 2017, 17, 11–21. [Google Scholar] [CrossRef]
- Regulation of the Council of Ministers of October 18, 2016 on Water Management Plan for Waters within the Odra River Basin (Journal of Laws 2016, Item 1967). Available online: https://www.dziennikustaw.gov.pl/D2016000196701.pdf (accessed on 10 November 2022).
- Główny Inspektorat Ochrony Środowiska. Available online: https://www.gios.gov.pl/pl/slaskie-dr-2020 (accessed on 10 November 2022).
- Masindi, V.; Akinwekomi, V.; Maree, J.; Muedi, K. Comparison of mine water neutralisation efficiencies of different alkaline generating agents. J. Environ. Chem. Eng. 2017, 5, 3903–3913. [Google Scholar] [CrossRef]
- Solik-Heliasz, E. Wody Geotermalne Regionu Górnośląskiego i ich Zasoby Energetyczne; Prace Naukowe Głównego Instytutu Górnictwa, Studia–Rozprawy–Monografie: Katowice, Poland, 2012. [Google Scholar]
- Gumińska, J.; Plewa, F.; Grodzicka, A.; Gumiński, A.; Rozmus, M.; Michalak, D. Economic Analysis of the Application of the Technological System for Removing Suspended Solids from Mine Drainage Waters. Energies 2021, 14, 8232. [Google Scholar] [CrossRef]
- Li, J.; Luo, G.; He, L.; Xu, J.; Lyu, J. Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Crit. Rev. Anal. Chem. 2018, 48, 47–65. [Google Scholar] [CrossRef]
- Dasgupta, M.; Yildiz, Y. Assessment of Biochemical Oxygen Demand as Indicator of Organic Load in Wastewaters of Morris County, New Jersey, USA. J. Environ. Anal. Toxicol. 2016, 6, 378. [Google Scholar] [CrossRef]
- Zhi, W.; Feng, D.; Tsai, W.-P.; Sterle, G.; Harpold, A.; Shen, C.; Li, L. From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale? Environ. Sci. Technol. 2021, 55, 2357–2368. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; Yuan, D.; Song, X. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency—European Union. Available online: https://www.eea.europa.eu/ims/nutrients-in-freshwater-in-europe (accessed on 10 November 2022).
- Hamerla, A.; Kończak, B. Impacts of nitrogen and phosphorus loads from various sources on the quality of surface water bodies in the context of climate change—Case study in Poland. Appl. Ecol. Environ. Res. 2021, 19, 1033–1048. [Google Scholar] [CrossRef]
- Sotiri, K.; Kishi, R.T.; Hilgert, S.; Scheer, M.B.; Gabriel, P.G.; Benatto, D.A.; Fuchs, S. Assessment of Phosphorus Input from Urban Areas in the Passaúna River and Reservoir. Water 2022, 14, 809. [Google Scholar] [CrossRef]
- Zessner, M.; Zoboli, O.; Hepp, G.; Kuderna, M.; Weinberger, C.; Gabriel, O. Shedding Light on Increasing Trends of Phosphorus Concentration in Upper Austrian Rivers. Water 2016, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, N.P.; Phillips, G.; Poikane, S.; Várbíró, G.; Bouraoui, F.; Malagó, A.; Lilli, M. River and lake nutrient targets that support ecological status: European scale gap analysis and strategies for the implementation of the Water Framework Directive. Sci. Total Environ. 2022, 813, 151898. [Google Scholar] [CrossRef]
- Sharma, Y.; Kaur, K.; Kumar, V. Analysis of pH and electrical conductivity of white ash discharge from textile industries in Barnala region (Punjab, India): Deteriorating to human health. J. Chem. Chem. Sci. 2017, 7, 72–80. [Google Scholar]
- Clements, W.H.; Kotalik, C. Effects of major ions on natural benthic communities: An experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. Freshw. Sci. 2016, 35, 126–138. [Google Scholar] [CrossRef]
- Qin, J.; Hu, Z.; Zhang, Q.; Xu, N.; Yang, Y. Toxic effects and mechanisms of Prymnesium parvum (Haptophyta) isolated from the Pearl River Estuary, China. Harmful Algae 2020, 96, 101844. [Google Scholar] [CrossRef]
- Feistel, R.; Wielgosz, R.; Bell, S.A.; Camões, M.F.; Cooper, J.R.; Dexter, P.; Dickson, A.G.; Fisicaro, P.; Harvey, A.H.; Heinonen, M.; et al. Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview. Metrologia 2015, 53, R1–R11. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Reimer, J.E.; Maas, C.M.; Galella, J.G.; Utz, R.M.; Duan, S.; Kryger, J.R.; Yaculak, A.M.; et al. Freshwater salinization syndrome: From emerging global problem to managing risks. Biogeochemistry 2021, 154, 255–292. [Google Scholar] [CrossRef]
- Jabłońska, B. Estimating the water pollution in Potok GoŁawiecki, Poland, based on selected water quality indicators. Arch. Environ. Prot. 2008, 34, 3–12. [Google Scholar]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.-J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Vila-Gispert, A.; Quintana, X.D.; Van Hoa, A.; Nguyen, T.P.; Vu, N.U. Effects of salinity on species composition of zooplankton on Hau River, Mekong Delta, Vietnam. Ann. Limnol.-Int. J. Limnol. 2020, 56, 20. [Google Scholar] [CrossRef]
- Castillo, A.M.; Sharpe, D.M.T.; Ghalambor, C.K.; De León, L.F. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: A quantitative review. Hydrobiologia 2018, 807, 1–17. [Google Scholar] [CrossRef]
- Hintz, W.D.; Relyea, R.A. Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters. Environ. Pollut. 2017, 223, 409–415. [Google Scholar] [CrossRef]
- Mazumder, B.; Wellen, C.; Kaltenecker, G.; Sorichetti, R.J.; Oswald, C.J. Trends and legacy of freshwater salinization: Untangling over 50 years of stream chloride monitoring. Environ. Res. Lett. 2021, 16, 095001. [Google Scholar] [CrossRef]
- Schuler, M.S.; Cañedo-Argüelles, M.; Hintz, W.D.; Dyack, B.; Birk, S.; Relyea, R.A. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180019. [Google Scholar] [CrossRef]
- Miltner, R. Assessing the Impacts of Chloride and Sulfate Ions on Macroinvertebrate Communities in Ohio Streams. Water 2021, 13, 1815. [Google Scholar] [CrossRef]
- Zak, D.; Hupfer, M.; Cabezas, A.; Jurasinski, G.; Audet, J.; Kleeberg, A.; McInnes, R.; Kristiansen, S.M.; Petersen, R.J.; Liu, H.; et al. Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Sci. Rev. 2020, 212, 103446. [Google Scholar] [CrossRef]
- Elphick, J.R.; Davies, M.; Gilron, G.; Canaria, E.C.; Lo, B.; Bailey, H.C. An aquatic toxicological evaluation of sulfate: The case for considering hardness as a modifying factor in setting water quality guidelines. Environ. Toxicol. Chem. 2011, 30, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Zgórska, A.; Trząski, L.; Wiesner, M. Environmental risk caused by high salinity mine water discharges from active and closed mines located in the Upper Silesian Coal Basin (Poland). In Proceedings of the IMWA, Leipzig, Germany, 11–15 July 2016; pp. 85–92. [Google Scholar]
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Communities 2013, L226, 1–17.
- Gabrielyan, A.V.; Shahnazaryan, G.A.; Minasyan, S.H. Distribution and Identification of Sources of Heavy Metals in the Voghji River Basin Impacted by Mining Activities (Armenia). J. Chem. 2018, 2018, 7172426. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Li, H.; Zhang, Y.; Ding, H.; Gao, Y.; Xing, Y. Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. J. Soils Sediments 2018, 18, 624–639. [Google Scholar] [CrossRef]
- Setiawan, A.A.; Budianta, D.; Suheryanto, S.; Priadi, D.P. Review: Pollution due to Coal Mining Activity and its Impact on Environment. Sriwij. J. Environ. 2018, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Singh, W.B.A.; Sharma, A.; Verma, R.K.; Chopade, R.L.; Pandit, P.P.; Nagar, V.; Aseri, V.; Choudhary, S.K.; Awasthi, G.; Awasthi, K.K.; et al. Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms. Khoj Interdiscipilnary J. Res. 2021, 7, 188–195. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Ciszewski, D. Transport i Akumulacja Metali Ciężkich w Rzekach. Zanieczyszczenie Osadów Metalami Ciężkimi—Transport, Akumulacja, Remobilizacja, Remediacja; Wydawnictwo AGH: Kraków, Poland, 2015; pp. 63–86. [Google Scholar]
- WFD-UKTAG. River & Lake Assessment Method, Specific Pollutants (Metals), Metal Bioavailability Assessment Tool (M-BAT); Water Framework Directive–United Kingdom Advisory Group: Cambridge, UK, 2014; ISBN 978-1-906934-57-6. [Google Scholar]
- Rüdel, H.; Muñiz, C.D.; Garelick, H.; Kandile, N.G.; Miller, B.W.; Munoz, L.P.; Peijnenburg, W.J.G.M.; Purchase, D.; Shevah, Y.; Van Sprang, P.; et al. Consideration of the bioavailability of metal/metalloid species in freshwaters: Experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. Environ. Sci. Pollut. Res. 2015, 22, 7405–7421. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, S.; Buchmeier, G.; Claus, E.; Duester, L.; Heininger, P.; Körner, A.; Mayer, P.; Paschke, A.; Rauert, C.; Reifferscheid, G.; et al. Bioaccumulation in aquatic systems: Methodological approaches, monitoring and assessment. Environ. Sci. Eur. 2015, 27, 5. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, L. Discussion on Application of Biotic Ligand Model—The Tool to Predict Bioavailability of Metals. Appl. Mech. Mater. 2015, 713–715, 2649–2652. [Google Scholar] [CrossRef]
- Brix, K.V.; Tear, L.; Santore, R.C.; Croteau, K.; DeForest, D.K. Comparative Performance of Multiple Linear Regression and Biotic Ligand Models for Estimating the Bioavailability of Copper in Freshwater. Environ. Toxicol. Chem. 2021, 40, 1649–1661. [Google Scholar] [CrossRef]
- Paller, M.H.; Harmon, S.M.; Knox, A.S.; Kuhne, W.W.; Halverson, N.V. Assessing effects of dissolved organic carbon and water hardness on metal toxicity to Ceriodaphnia dubia using diffusive gradients in thin films (DGT). Sci. Total Environ. 2019, 697, 134107. [Google Scholar] [CrossRef] [PubMed]
- Hommen, U.; Rüdel, H. Sensitivity analysis of existing concepts for application of biotic ligand models (BLM) for the derivation and application of environmental quality standards for metals and evaluation of the approaches with appropriate monitoring data sets from German waters. FKZ 2012, 363, 352. [Google Scholar]
- Halabowski, D.; Bielańska-Grajner, I.; Lewin, I. Effect of underground salty mine water on the rotifer communities in the Bolina River (Upper Silesia, Southern Poland). Knowl. Manag. Aquat. Ecosyst. 2019, 420, 1–9. [Google Scholar] [CrossRef] [Green Version]
Water Class | Physicochemical Elements | Chemical Elements | Biological Elements | Other |
---|---|---|---|---|
Class 1 | temperature, dissolved oxygen, pH | total organic carbon, total nitrogen, volatile phenols–phenolic index, petroleum hydrocarbons–oil index, anthracene, benzo (b) fluoranthene, benzo (k) fluoranthene, Benzo (g, h, i) terylene | ||
Class >1 | hydromorphological observations | |||
Class 2 | biochemical oxygen demand (BOD), Kjeldahl nitrogen, nitrate, barium, boron, zinc, copper | |||
Class >2 | Conductivity at 20 °C | dissolved substances, sulphates, chlorides, ammonium nitrogen, nitrite, phosphate phosphorus (V), total phosphorus | ||
Class 4 | phytobenthos |
Priority Substances | Cadmium and Its Compounds | Fluoranthene | Lead and Its Compounds | Nickel and Its Compounds | Benzo(a)piren | |||||
---|---|---|---|---|---|---|---|---|---|---|
Value [average (av), maximum (max)] | av | max | av | max | av | max | av | max | av | max |
Concentration [µg/L] | 0.29 | 0.94 | 0.0127 | 0.0205 | 1.3 | 2.5 | 4.6 | 12.8 | 0.00223 | 0.00492 |
No. of Measurement Point | Location of Measurement Point |
---|---|
1 | Below the source section of the Kłodnica river. |
2 | The Kłodnica river above the mouth of the Ślepiotka stream and below the discharge point of the coal mine “Wujek” and the wastewater treatment plant “Panewniki”. |
3 | The Kłodnica river below the mouths of the Ślepiotka stream. |
4 | The Kłodnica river above the mouth of the Jamna stream. |
5 | The Kłodnica river below the mouths of the Jamna stream. |
6 | The Kłodnica river below the discharge point of the coal mine “Halemba”. |
7 | The Kłodnica river below the discharge point of the wastewater treatment plant “Halemba Centrum”, at the closure point of waterbody Kłodnica to Promnej (bez). |
Analysed Parameter | Measurement Method | International Standards | The Range of Measurements |
---|---|---|---|
Cu2+ | ICP-MS (inductively coupled plasma mass spectrometry) | PN-EN ISO 17294-2:2006 | 2–2000 μg/L |
Ni2+ | ICP-MS (inductively coupled plasma mass spectrometry) | PN-EN ISO 17294-2:2006 | 2–2000 μg/L |
Pb2+ | ICP-MS (inductively coupled plasma mass spectrometry) | PN-EN ISO 17294-2:2006 | 1–2000 μg/L |
Cd2+ | ICP-MS (inductively coupled plasma mass spectrometry) | PN-EN ISO 17294-2:2006 | 0.05–2000 μg/L |
Zn2+ | ICP-MS (inductively coupled plasma mass spectrometry) | PN-EN ISO 17294-2:2006 | 2–2000 μg/L |
Hg2+ | CV-AAS (cold vapor atomic absorption spectroscopy) | PN-EN 1483:2007 PN-EN 12338:2001 US EPA 7473 | 0.05–10,000 μg/L |
Ca2+ | ICP-OES (inductively coupled plasma optical emission spectrometry) | PN-EN ISO 11885:2009 | 0.02–20,000 mg/L |
Mg2+ | ICP-OES (inductively coupled plasma optical emission spectrometry) | PN-EN ISO 11885:2009 | 0.012–12,200 mg/L |
Cl− | IC (ion chromatography) | PN-EN ISO 10304:2009 | 0.28–177,300 mg/L |
SO42− | IC (ion chromatography) | PN-EN ISO 10304:2009 | 0.10–10,000 mg/L |
Total suspended solids (TSS) | weight | PN-EN 872:2007 + Apl:2007 | 2–10,000 mg/L |
Chemical oxygen demand COD-Cr (COD) | spectrophotometric | PN-ISO 15705-2005 | 10–200,000 mgO2/L |
Biochemical oxygen demand (BOD) | electrochemical | PN-EN 1899-1:2002 PN-EN 1899-2:2002 | without dilution: 0.5–6 mg/L O2 after dilution: 3–6000 mg/L O2 |
Total Nitrogen (TN) | High Temperature Combustion and Infrared Detection(IR)/chemiluminescent | PN-EN 12260:2004 | 0.5–2500 mgN/L |
Total Phosphorus (TP) | ICP-OES (inductively coupled plasma optical emission spectrometry) | PN-EN ISO 11885:2009 | 0.01–5000 mg/L PO4 0.0003–158 mmol(r)/L 0.003–1630 mg/L P 0.007–3740 mg/L P2O5 |
Total hardness (TH) | from calculations based on the Ca and Mg, alkalinity measurements | - | - |
Measurement Point | Temp. [°C] | TSS [mg/L] | pH |
---|---|---|---|
1—Below the source section of the Kłodnica river. | 13.0 | 10.90 | 6.93 |
2—The Kłodnica river above the mouth of the Ślepiotka stream and below the discharge point of the coal mine “Wujek” and the waste water treatment plant “Panewniki”. | 16.5 | 10.48 | 7.67 |
3—The Kłodnica river below the mouths of the Ślepiotka stream. | 15.8 | 9.24 | 7.71 |
4—The Kłodnica river above the mouth of the Jamna stream. | 16.0 | 21.00 | 7.92 |
5—The Kłodnica river below the mouths of the Jamna stream. | 16.1 | 34.00 | 7.77 |
6—The Kłodnica river below the discharge point of the coal mine “Halemba”. | 18.6 | 33.00 | 7.95 |
7—The Kłodnica river below the discharge point of the waste water treatment plant “Halemba Centrum”, at the closure point of waterbody Kłodnica to Promnej (bez). | 18.2 | 38.20 | 7.68 |
Class I | maximum potential | ||
Class II | good potential | ||
Failure to meet the limits of Class II | potential below good |
Measurement Point | BOD [mg O2/L] | COD-Cr [mg O2/L] | DO [mg O2/L] | TN [mg N/L] | TP [mg P/L] |
---|---|---|---|---|---|
1—Below the source section of the Kłodnica river. | 1.18 | 30.00 | 5.55 | 0.90 | 0.01 |
2—The Kłodnica river above the mouth of the Ślepiotka stream and below the discharge point of the coal mine “Wujek” and the waste water treatment plant “Panewniki”. | 2.33 | 24.33 | 8.62 | 5.17 | 0.45 |
3—The Kłodnica river below the mouths of the Ślepiotka stream. | 2.57 | 20.67 | 8.81 | 3.37 | 0.35 |
4—The Kłodnica river above the mouth of the Jamna stream. | 2.23 | 22.00 | 7.83 | 2.80 | 0.20 |
5—The Kłodnica river below the mouths of the Jamna stream. | 3.90 | 31.00 | 8.69 | 6.30 | 0.23 |
6—The Kłodnica river below the discharge point of the coal mine “Halemba”. | 2.87 | 22.67 | 8.40 | 3.60 | 0.10 |
7—The Kłodnica river below the discharge point of the waste water treatment plant “Halemba Centrum”, at the closure point of waterbody Kłodnica to Promnej (bez). | 4.03 | 31.67 | 8.60 | 4.20 | 0.20 |
Class I | maximum potential | ||||
Class II | good potential | ||||
Failure to meet the limits of Class II | potential below good |
Measurement Point | Ca [mg/L] | Mg [mg/L] | Conductivity [μS/cm] | TDS [mg/L] | TH [mg CaCO3/L] | SO4 [mg/L] | Cl [mg/L] |
---|---|---|---|---|---|---|---|
1—Below the source section of the Kłodnica river. | 41.53 | 4.89 | 347.83 | 247.70 | 105.00 | 61.00 | 15.75 |
2—The Kłodnica river above the mouth of the Ślepiotka stream and below the discharge point of the coal mine “Wujek” and the waste water treatment plant “Panewniki”. | 107.08 | 43.30 | 5656.00 | 4654.50 | 393.50 | 234.20 | 1732.40 |
3—The Kłodnica river below the mouths of the Ślepiotka stream. | 98.80 | 41.15 | 5360.00 | 4692.50 | 380.50 | 218.80 | 1585.40 |
4—The Kłodnica river above the mouth of the Jamna stream. | 115.68 | 23.63 | 7178.00 | 5247.00 | 504.50 | 300.20 | 2298.00 |
5—The Kłodnica river below the mouths of the Jamna stream. | 115.48 | 60.15 | 4353.00 | 2669.50 | 509.50 | 319.20 | 1318.00 |
6—The Kłodnica river below the discharge point of the coal mine “Halemba”. | 143.80 | 88.55 | 8438.00 | 6940.00 | 684.00 | 532.80 | 2404.00 |
7—The Kłodnica river below the discharge point of the waste water treatment plant “Halemba Centrum”, at the closure point of the waterbody Kłodnica to Promnej (bez). | 124.25 | 62.40 | 6160.00 | 4844.00 | 524.50 | 418.20 | 1642.00 |
Class I | maximum potential | ||||||
Class II | good potential | ||||||
Failure to meet the limits of Class II | potential below good |
Measurement Point | Hg [μg/L] | Cd [μg/L] | Ni [μg/L] | Pb [μg/L] |
---|---|---|---|---|
1—Below the source section of the Kłodnica river. | 0.03 | 3.35 | 6.93 | 1.73 |
2—The Kłodnica river above the mouth of the Ślepiotka stream and below the discharge point of the coal mine “Wujek” and the waste water treatment plant “Panewniki”. | 0.03 | 0.12 | 4.54 | 0.79 |
3—The Kłodnica river below the mouths of the Ślepiotka stream. | 0.03 | 0.18 | 4.54 | 0.83 |
4—The Kłodnica river above the mouth of the Jamna stream. | 0.03 | 0.37 | 5.42 | 0.86 |
5—The Kłodnica river below the mouths of the Jamna stream. | 0.03 | 0.26 | 5.06 | 0.78 |
6—The Kłodnica river below the discharge point of the coal mine “Halemba”. | 0.03 | 0.21 | 5.68 | 0.71 |
7—The Kłodnica river below the discharge point of the waste water treatment plant “Halemba Centrum”, at the closure point of waterbody Kłodnica to Promnej (bez). | 0.03 | 0.37 | 4.66 | 1.57 |
Good chemical status | not exceeding the AA-EQS value | |||
Chemical status below good | failure to meet the AA-EQS value |
Measurement Point | Hg [μg/L] | Cd [μg/L] | Ni [μg/L] | Pb [μg/L] |
---|---|---|---|---|
1—Below the source section of the Kłodnica river. | 0.03 | 9.30 | 10.00 | 3.00 |
2—The Kłodnica river above the mouth of the Ślepiotka stream and below the discharge point of the coal mine “Wujek” and the waste water treatment plant “Panewniki”. | 0.03 | 0.20 | 5.60 | 1.25 |
3—The Kłodnica river below the mouths of the Ślepiotka stream. | 0.03 | 0.27 | 6.30 | 1.25 |
4—The Kłodnica river above the mouth of the Jamna stream. | 0.03 | 0.42 | 7.00 | 1.50 |
5—The Kłodnica river below the mouths of the Jamna stream. | 0.03 | 0.44 | 6.40 | 1.20 |
6—The Kłodnica river below the discharge point of the coal mine “Halemba”. | 0.03 | 0.36 | 6.50 | 1.25 |
7—The Kłodnica river below the discharge point of the waste water treatment plant “Halemba Centrum”, at the closure point of waterbody Kłodnica to Promnej (bez). | 0.03 | 1.10 | 5.80 | 4.00 |
Good chemical status | not exceeding the MAC-EQS value | |||
Chemical status below good | failure to meet the MAC-EQS value |
Measurement Point | Zn [μg/L] | Cu [μg/L] |
---|---|---|
1—Below the source section of the Kłodnica river. | 442.5 | 3.28 |
2—The Kłodnica river above the mouth of the Ślepiotka stream and below the discharge point of the coal mine “Wujek” and the waste water treatment plant “Panewniki”. | 54.8 | 2.72 |
3—The Kłodnica river below the mouths of the Ślepiotka stream. | 70.2 | 2.72 |
4—The Kłodnica river above the mouth of the Jamna stream. | 89.0 | 2.88 |
5—The Kłodnica river below the mouths of the Jamna stream. | 83.0 | 3.12 |
6—The Kłodnica river below the discharge point of the coal mine “Halemba”. | 75.2 | 3.38 |
7—The Kłodnica river below the discharge point of the waste water treatment plant “Halemba Centrum”, at the closure point of waterbody Kłodnica to Promnej (bez). | 54.8 | 2.94 |
Class I and II | maximum potential | |
Failure to meet the requirements of class I and II | potential below good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiesner-Sękala, M.; Kończak, B. Assessment of the Impact of Industrial and Municipal Discharges on the Surface Water Body Status (Poland). Sustainability 2023, 15, 997. https://doi.org/10.3390/su15020997
Wiesner-Sękala M, Kończak B. Assessment of the Impact of Industrial and Municipal Discharges on the Surface Water Body Status (Poland). Sustainability. 2023; 15(2):997. https://doi.org/10.3390/su15020997
Chicago/Turabian StyleWiesner-Sękala, Marta, and Beata Kończak. 2023. "Assessment of the Impact of Industrial and Municipal Discharges on the Surface Water Body Status (Poland)" Sustainability 15, no. 2: 997. https://doi.org/10.3390/su15020997
APA StyleWiesner-Sękala, M., & Kończak, B. (2023). Assessment of the Impact of Industrial and Municipal Discharges on the Surface Water Body Status (Poland). Sustainability, 15(2), 997. https://doi.org/10.3390/su15020997