Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor
Abstract
:1. Introduction
- Propose a SC-based VSG model for improving the frequency response speed.
- Calculate the stability region of the SC-based VSG model using bifurcation theory.
2. Nonlinear Dynamic Mathematical Model of the VSG with SC
2.1. VSG Control Strategy
2.2. SC-Based VSG Modeling
2.2.1. Virtual Damping
2.2.2. RPC
2.2.3. SC Model
3. Bifurcation Analysis
4. Simulation
- 0 s < t < 5 s, the system starts and operates normally;
- 5 s < t < 8 s, the system frequency drops 0.1 Hz;
- 8 s < t < 11 s, the system frequency rises 0.1 Hz;
- 11 s < t < 14 s, the system adds 255 W active power and 255 Var reactive power;
- 14 s < t < 17 s, the system reduces 100 W active power.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, L.; Zeng, S.; Liu, J.; Zhang, Z.; Yao, J. Control and Stability Analysis of the LCL-Type Grid-Connected Converter without Phase-Locked Loop under Weak Grid Conditions. Electronics 2022, 11, 3322. [Google Scholar] [CrossRef]
- Xie, L.; Huang, J.; Tan, E.; He, F.; Liu, Z. The Stability Criterion and Stability Analysis of Three-Phase Grid-Connected Rectifier System Based on Gerschgorin Circle Theorem. Electronics 2022, 11, 3270. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Yang, P.; Kou, S.; Sun, M. Research and Simulation of Hybrid AC/DC Microgrid. In Proceedings of the 2020 4th International Conference on HVDC (HVDC), Xi’an, China, 6–9 November 2020; pp. 1276–1280. [Google Scholar]
- Mao, M.; Hu, J.; Chang, L. Power Distribution Strategy & Real-time Simulation for VSG-controlled Parallel PV/Battery Microgrid Using RT-LAB. In Proceedings of the 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi’an, China, 3–6 June 2019; pp. 919–924. [Google Scholar]
- Li, S.; Gao, S.; Guo, C. Multi-objective optimal capacity allocation of hybrid energy storage. J. Power Supply 2018, 16, 174–180. (In Chinese) [Google Scholar]
- Li, D.; Zhu, Q.; Lin, S.; Bian, X.Y. A self-adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Trans. Energy Convers. 2016, 32, 397–398. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, F.; Xu, H.; Liu, F.; Li, M. An optimal coordination control strategy of micro-grid inverter and energy storage based on variable virtual inertia and damping of VSG. Chin. J. Electr. Eng. 2017, 3, 25–33. [Google Scholar]
- Li, X.; Chen, G. Improved Adaptive Inertia Control of VSG for Low Frequency Oscillation Suppression. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–5. [Google Scholar]
- Liu, J.; Yang, D.; Yao, W.; Fang, R.; Zhao, H.; Wang, B. PV-based virtual synchronous generator with variable inertia to enhance power system transient stability utilizing the energy storage system. Prot. Control Mod. Power Syst. 2017, 2, 429–437. [Google Scholar] [CrossRef]
- Lagorse, J.; Paire, D.; Miraoui, A. A multi-agent system for energy management of distributed power sources. Renew. Energy 2010, 35, 174–182. [Google Scholar] [CrossRef]
- Khaligh, A.; Rahimi, A.M.; Lee, Y.J.; Cao, J.; Emadi, A.; Andrews, S.D.; Robinson, C.; Finnerty, C. Digital control of an isolated active hybrid fuel cell/Li-ion battery power supply. IEEE Trans. Veh. Technol. 2007, 5, 3709–3721. [Google Scholar] [CrossRef]
- Hu, C.C.; Chang, K.H.; Lin, M.C.; Wu, Y.T. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Lett. 2006, 6, 2690–2692. [Google Scholar] [CrossRef]
- Şahİn, M.E.; Blaabjerg, F.; Sangwongwanİch, A. Modelling of supercapacitors based on simplified equivalent circuit. CPSS Trans. Power Electron. Appl. 2021, 6, 31–39. [Google Scholar] [CrossRef]
- Hu, C.C.; Chen, W.C.; Chang, K.H. How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitor. J. Electrochem. Soc. 2004, 151, A281–A282. [Google Scholar] [CrossRef]
- Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-Synchronization Stability of Converter-Based Resources—An Overview. IEEE Open J. Ind. Appl. 2020, 1, 115–134. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, X.; Liu, Y.; Zhuo, F. Modeling and stability issues of voltage-source converter dominated power systems: A review. CSEE J. Power Energy Syst. 2015, 8, 1530–1549. [Google Scholar]
- Lazaros, L.; Christos, V.; Ioannis, S. Antimonotonicity, Hysteresis and Coexisting Attractors in a Shinriki Circuit with a Physical Memristor as a Nonlinear Resistor. Electronics 2022, 11, 1920. [Google Scholar]
- Xia, J.; Mi, X. Bifurcation Analysis for Power System Voltage Stability Based on Singular Perturbation Method. In Proceedings of the 2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, Republic of Korea, 8–11 October 2007; pp. 1811–1814. [Google Scholar]
- Huang, M.; Peng, Y.; Tse, C.K.; Liu, Y.; Sun, J.; Zha, X. Bifurcation and Large-Signal Stability Analysis of Three-Phase Voltage Source Converter Under Grid Voltage Dips. IEEE Trans. Power Electron. 2017, 32, 8868–8879. [Google Scholar] [CrossRef]
- Xing, G.; Min, Y.; Chen, L.; Mao, H. Limit Induced Bifurcation of Grid-Connected VSC Caused by Current Limit. IEEE Trans. Power Syst. 2021, 36, 2717–2720. [Google Scholar] [CrossRef]
- Ma, J.; Qiu, Y.; Li, Y.; Zhang, W.; Song, Z.; Thorp, J.S. Research on the Impact of DFIG Virtual Inertia Control on Power System Small-Signal Stability Considering the Phase-Locked Loop. IEEE Trans. Power Syst. 2017, 32, 2094–2105. [Google Scholar] [CrossRef]
- Schiffer, J.; Aristidou, P.; Ortega, R. Online Estimation of Power System Inertia Using Dynamic Regressor Extension and Mixing. IEEE Trans. Power Syst. 2019, 34, 4993–5001. [Google Scholar] [CrossRef] [Green Version]
- Best, R.J.; Brogan, P.V.; Morrow, D.J. Power System Inertia Estimation Using HVDC Power Perturbations. IEEE Trans. Power Syst. 2021, 36, 1890–1899. [Google Scholar] [CrossRef]
- Wang, X.; Ding, L.; Ma, Z.; Azizipanah-Abarghooee, R.; Terzija, V. Perturbation-Based Sensitivity Analysis of Slow Coherency with Variable Power System Inertia. IEEE Trans. Power Syst. 2021, 36, 1121–1129. [Google Scholar] [CrossRef]
- Shi, K.; Song, W.; Ge, H.; Xu, P.; Yang, Y.; Blaabjerg, F. Transient Analysis of Microgrids with Parallel Synchronous Generators and Virtual Synchronous Generators. IEEE Trans. Energy Convers. 2020, 35, 95–105. [Google Scholar] [CrossRef]
- Khajehoddin, S.A.; Karimi-Ghartemani, M.; Ebrahimi, M. Grid-Supporting Inverters with Improved Dynamics. IEEE Trans. Ind. Electron. 2019, 66, 3655–3667. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
DC side voltage rating | Vdcn | 430 V |
DC side capacitor | Cdc | 880 μF |
Damping constant | D | 0.05 |
Grid frequency | f | 60 Hz |
Power factor | 0.68 |
Parameters | Symbols | Value |
---|---|---|
DC side voltage rating | Vdcn | 430 V |
DC side capacitor | Cdc | 750 μF |
Grid voltage | Vg | 169.71 V |
Grid frequency | f | 60 Hz |
Active power | Pin | 142.65 W |
Reactive power | Qn | 0.01 Var |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Zhi, Z.; Han, D.; Fan, Y. Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor. Sustainability 2023, 15, 1248. https://doi.org/10.3390/su15021248
Ma M, Zhi Z, Han D, Fan Y. Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor. Sustainability. 2023; 15(2):1248. https://doi.org/10.3390/su15021248
Chicago/Turabian StyleMa, Meiling, Zhiyuan Zhi, Dong Han, and Yushan Fan. 2023. "Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor" Sustainability 15, no. 2: 1248. https://doi.org/10.3390/su15021248
APA StyleMa, M., Zhi, Z., Han, D., & Fan, Y. (2023). Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor. Sustainability, 15(2), 1248. https://doi.org/10.3390/su15021248