Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors
Abstract
:1. Introduction
2. Literature Review
2.1. Why Bioeconomy?
2.2. Bioeconomy Strategy
2.3. Bioeconomy and Agricultural Policy in the EU
2.4. Bioeconomy and Forestry Policy at EU Level
2.5. Bioeconomy and Fisheries Policy
2.6. Bioeconomy Policy and Food Security
2.7. Bioeconomy Policy, Bio-Based Industries and the Circular Economy
2.8. Bioeconomy and Climate Change and Energy Policies
2.9. Bioeconomy and Environmental Policy
3. Research Methodology
3.1. Sample Selection and Variables
3.2. Model and Method
4. Empirical Results
5. Discussion and Main Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swetha, T.A.; Mohanrasu, K.; Sudhakar, M.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. Acomprehensive review on techniques used in conversion of biomass into bioeconomy. Sustain. Energy Technol. Assess. 2022, 53, 102682. [Google Scholar]
- Hinderer, S.; Brändle, L.; Kuckertz, A. Transition to a Sustainable Bioeconomy. Sustainability 2021, 13, 8232. [Google Scholar] [CrossRef]
- Bugge, M.M.; Hansen, T.; Klitkou, A. What Is the Bioeconomy? A Review of the Literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Research and Innovation. A Bioeconomy Strategy for Europe: Working with Nature for a More Sustainable Way of Living, Publications Office. 2013. Available online: https://data.europa.eu/doi/10.2777/17708 (accessed on 14 August 2023).
- European Commission. The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 14 August 2023).
- Ronzon, T.; Iost, S.; Philippidis, G. Has the European Union entered a bioeconomy transition? Combining an output-based approach with a shift-share analysis. Env. Dev Sustain 2022, 24, 8195–8217. [Google Scholar] [CrossRef]
- Coenen, L.; Hansen, T.; Rekers, J.V. Innovation policy for grand challenges. An economic geography perspective. Geogr. Compass 2015, 9, 483–496. [Google Scholar] [CrossRef]
- Robert, N.; Giuntoli, J.; Araujo, R.; Avraamides, M.; Balzi, E.; Barredo, J.I.; Baruth, B.; Becker, W.; Borzacchiello, M.T.; Bulgheroni, C.; et al. Development of a bioeconomy monitoring framework for the European Union: An integrative and collaborative approach. New Biotechnol. 2020, 59, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Dietz, T.; Börner, J.; Förster, J.J.; Von Braun, J. Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies. Sustainability 2018, 10, 3190. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Research and Innovation. Bioeconomy: The European Way to Use Our Natural Resources: Action Plan 2018, Publications Office. 2019. Available online: https://data.europa.eu/doi/10.2777/79401 (accessed on 12 August 2023).
- Floortje, A.; Hekkert, M.P.; Negro, S.O. Transition policy and innovation policy: Friends or foes? Environ. Innov. Soc. Transit. 2011, 1, 125–129. [Google Scholar]
- Boschma, R.A. Constructing regional advantage and smart specialisation: Comparison of two European policy concepts. Sci. Reg. 2014, 13, 51–68. [Google Scholar] [CrossRef]
- Hansen, T. Substitution or overlap? The relations between geographical and non-spatial proximity dimensions in collaborative innovation projects. Reg. Stud. 2015, 49, 1672–1684. [Google Scholar] [CrossRef]
- Patermann, C.; Aguilar, A. The origins of the bioeconomy in the European Union. New Biotechnol. 2018, 40, 20–24. [Google Scholar] [CrossRef]
- Hlangwani, E.; Mpye, K.L.; Matsuro, L.; Dlamini, B. The use of technological innovation in bio-based industries to foster growth in the bioeconomy: A South African perspective. Sustain. Sci. Pract. Policy 2023, 19, 1. [Google Scholar] [CrossRef]
- Firoiu, D.; Ionescu, G.H.; Pîrvu, R.; Cismaș, L.M.; Tudor, S.; Patrichi, I.C. Dynamics of Implementation of SDG 7 Targets in EU Member States 5 Years after the Adoption of the Paris Agreement. Sustainability 2021, 13, 8284. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Research and Innovation. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment: Updated Bioeconomy Strategy, Publications Office. 2018. Available online: https://data.europa.eu/doi/10.2777/792130 (accessed on 14 August 2023).
- European Commission. EU Bioeconomy Strategy Progress Report European Bioeconomy policy: Stocktaking and Future Developments. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022DC0283 (accessed on 14 August 2023).
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’Barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- Chihiro, W.; Naveed, N.; Neittaanmäki, P. Digitalized bioeconomy: Planned obsolescence-driven circular economy enabled by Co-Evolutionary coupling. Technol. Soc. 2019, 56, 8–30. [Google Scholar]
- European Commission; Directorate-General for Research and Innovation. How the Bioeconomy Contributes to the European Green Deal, Publications Office. 2020. Available online: https://data.europa.eu/doi/10.2777/67636 (accessed on 14 August 2023).
- Sikora, A. European Green Deal–legal and financial challenges of the climate change. ERA Forum 2021, 21, 681–697. [Google Scholar] [CrossRef]
- Becker, S. Supranational Entrepreneurship Through the Administrative Backdoor: The Commission, the Green Deal and the CAP 2023–2027. JCMS J. Common Mark. Stud. 2023, 1–17. [Google Scholar] [CrossRef]
- European Commission. The post-2020 Common Agricultural Policy: Environmental Benefits and Simplification. 2019. Available online: https://agriculture.ec.europa.eu/system/files/2021-01/cap-post-2020-environ-benefits-simplification_en_0.pdf (accessed on 14 August 2023).
- Papadopoulou, C.-I.; Loizou, E.; Melfou, K.; Chatzitheodoridis, F. The Knowledge Based Agricultural Bioeconomy: A Bibliometric Network Analysis. Energies 2021, 14, 6823. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C.; Zhu, T.; Tokgoz, S.; Bhandary, P. Water and food in the bioeconomy: Challenges and opportunities for development. Agric. Econ. 2013, 44, 139–150. [Google Scholar] [CrossRef]
- Cidón, C.F.; Figueiró, P.S.; Schreiber, D. Benefits of Organic Agriculture under the Perspective of the Bioeconomy: A Systematic Review. Sustainability 2021, 13, 6852. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Magazzino, C.; Valente, D.; Mirzaei, A.; Petrosillo, I. A new interval meta-goal programming for sustainable planning of agricultural water-land use nexus. Ecol. Model. 2023, 484, 110471. [Google Scholar] [CrossRef]
- European Commission. New EU Forest Strategy for 2030. 2021. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:0d918e07-e610-11eb-a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 14 August 2023).
- Kröger, M.; Raitio, K. Finnish forest policy in the era of bioeconomy: A pathway to sustainability? For. Policy Econ. 2017, 77, 6–15. [Google Scholar] [CrossRef]
- Vehola, A.; Malkamäki, A.; Kosenius, A.-K.; Hurmekoski, E.; Toppinen, A. Risk perception and political leaning explain the preferences of non-industrial private landowners for alternative climate change mitigation strategies in Finnish forests. Environ. Sci. Policy 2022, 137, 228–238. [Google Scholar] [CrossRef]
- Arnould, M.; Morel, L.; Fournier, M. Embedding non-industrial private forest owners in forest policy and bioeconomy issues using a Living Lab concept. For. Policy Econ. 2022, 139, 102716. [Google Scholar] [CrossRef]
- European Commission. On the Energy Transition of the EU Fisheries and Aquaculture Sector. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52023DC0100 (accessed on 14 August 2023).
- Cardinale, M.; Dörner, H.; Abella, A.; Andersen, J.L.; Casey, J.; Döring, R.; Kirkegaard, E.; Motova, A.; Anderson, J.; Simmonds, E.J.; et al. Rebuilding EU fish stocks and fisheries, a process under way? Mar. Policy 2013, 39, 43–52. [Google Scholar]
- Baudron, A.R.; Serpetti, N.; Fallon, N.G.; Heymans, J.J.; Fernandes, P.G. Can the common fisheries policy achieve good environmental status in exploited ecosystems: The west of Scotland demersal fisheries example. Fish. Res. 2019, 211, 217–230. [Google Scholar] [CrossRef]
- Prellezo, R.; Curtin, R. Confronting the implementation of marine ecosystem-based management within the Common Fisheries Policy reform. Ocean. Coast. Manag. 2015, 117, 43–51. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Quaas, M.; Matz-Lück, N. Status and rebuilding of European fisheries. Mar. Policy 2018, 93, 159–170. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 15 August 2023).
- Muscat, A.; de Olde, E.M.; Kovacic, Z.; de Boer, I.J.M.; Ripoll-Bosch, R. Food, energy or biomaterials? Policy coherence across agro-food and bioeconomy policy domains in the EU. Environ. Sci. Policy 2021, 123, 21–30. [Google Scholar] [CrossRef]
- Von Braun, J. Bioeconomy–The global trend and its implications for sustainability and food security. Glob. Food Secur. 2018, 19, 81–83. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Jörundsdóttir, H.Ó. Food in the bioeconomy. Trends Food Sci. Technol. 2019, 84, 4–6. [Google Scholar] [CrossRef]
- Hempel, C.; Hamm, U. How important is local food to organic-minded consumers? Appetite 2016, 96, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Schütte, G. What kind of innovation policy does the bioeconomy need? New Biotechnol. 2018, 40, 82–86. [Google Scholar] [CrossRef] [PubMed]
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five cornerstones of a global bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef]
- Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 2015, 6, 34–42. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Jordán, A.; Anaya-Romero, M.; Phillips, J.D.; Jones, L.; Zhang, Z.; Pereira, P.; Fleskens, L.; van der Ploeg, M.; et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- European Commission. A New Industrial Strategy for Europe. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0102 (accessed on 15 August 2023).
- Mengal, P.; Wubbolts, M.; Zika, E.; Ruiz, A.; Brigitta, D.; Pieniadz, A.; Black, S. Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe. New Biotechnol. 2018, 40, 31–39. [Google Scholar] [CrossRef]
- Harrahill, K.; Macken-Walsh, Á.; O’Neill, E. Prospects for the bioeconomy in achieving a Just Transition: Perspectives from Irish beef farmers on future pathways. J. Rural. Stud. 2023, 100, 103020. [Google Scholar] [CrossRef]
- Lokesh, K.; Ladu, L.; Summerton, L. Bridging the Gaps for a ‘Circular’ Bioeconomy: Selection Criteria, Bio-Based Value Chain and Stakeholder Mapping. Sustainability 2018, 10, 1695. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters, Resources. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Cojocaru, T.M.; Ionescu, G.H.; Firoiu, D.; Cismaș, L.M.; Oțil, M.D.; Toma, O. Reducing Inequalities within and among EU Countries—Assessing the Achievement of the 2030 Agenda for Sustainable Development Targets (SDG 10). Sustainability 2022, 14, 7706. [Google Scholar] [CrossRef]
- Aeschelmann, F.; Carus, M. Biobased building blocks and polymers in the world: Capacities, production, and applications–status quo and trends towards 2020. Ind. Biotechnol. 2015, 11, 154–159. [Google Scholar] [CrossRef]
- European Commission. ‘Fit for 55′: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550 (accessed on 14 August 2023).
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Joint Research Centre; Institute for Energy and Transport; Banja, M.; Scarlat, N.; Monforti-Ferrario, F.; Dallemand, J.-F. Renewable Energy Progress in EU 27 (2005–2020), Publications Office. 2014. Available online: https://data.europa.eu/doi/10.2790/13181 (accessed on 14 August 2023).
- Gulbrandsen, L.H.; Stenqvist, C. The limited effect of EU emissions trading on corporate climate strategies: Comparison of a Swedish and a Norwegian pulp and paper company. Energy Policy 2013, 56, 516–525. [Google Scholar] [CrossRef]
- Pätäri, S.; Tuppura, A.; Toppinen, A.; Korhonen, J. Global sustainability megaforces in shaping the future of the European pulp and paper industry towards a bioeconomy. For. Policy Econ. 2016, 66, 38–46. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a3c806a6-9ab3-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 14 August 2023).
- Zilberman, D.; Gordon, B.; Hochman, G.; Wesseler, J. Economics of Sustainable Development and the Bioeconomy. Appl. Econ. Perspect. Policy 2018, 40, 22–37. [Google Scholar] [CrossRef]
- Morales, D.; Dahlström, M. Smart specialization and participatory processes in green path renewal. Analysis of the forest-based bioeconomy in sparsely populated regions in the Nordics. Eur. Plan. Stud. 2023, 31, 1734–1753. [Google Scholar] [CrossRef]
- Capello, R.; Kroll, H. From Theory to Practice in Smart Specialization Strategy: Emerging Limits and Possible Future Trajectories. Eur. Plan. Stud. 2016, 2, 1393–1406. [Google Scholar] [CrossRef]
- Casula, M. Implementing the Transformative Innovation Policy in the European Union: How Does Transformative Change Occur in Member States? Eur. Plan. Stud. 2022, 30, 2178–2204. [Google Scholar] [CrossRef]
- Council of the European Union. Council Conclusions on the Opportunities of the Bioeconomy in the Light of Current Challenges with Special Emphasis on Rural Areas. 2023. Available online: https://data.consilium.europa.eu/doc/document/ST-8406-2023-INIT/en/pdf (accessed on 15 August 2023).
- Lasarte López, J.; Ronzon, T.; Piotrowski, S.; M’barek, R.; Carus, M.; Tamošiūnas, S. Jobs and Wealth in the EU Bioeconomy/JRC -Bioeconomics. European Commission, Joint Research Centre (JRC) [Dataset] PID. 2022. Available online: https://data.jrc.ec.europa.eu/dataset/7d7d5481-2d02-4b36-8e79-697b04fa4278 (accessed on 10 August 2023).
- Eurostat. Employment and activity by Sex and Age—Annual Data. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/LFSI_EMP_A__custom_7055117/default/table (accessed on 10 August 2023).
- Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis, 5th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jain, A.K.; Murty, N.M.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Punj, G.; Stewart, D.W. Cluster analysis in marketing research: Review and suggestions for application. J. Mark. Res. 1983, 20, 134–148. [Google Scholar]
- Harrigan, K.R. An application of clustering for strategic group analysis. Strat. Manag. J. 1985, 6, 55–73. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Weber, M.D.; Leemis, L.M.; Kincaid, R.K. Minimum Kolmogorov–Smirnov test statistic parameter estimates. J. Stat. Comput. Simul. 2006, 76, 195–206. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Psaradakis, Z.; Vávra, M. Normality tests for dependent data: Large-sample and bootstrap approaches. Commun. Stat. Simul. Comput. 2020, 49, 283–304. [Google Scholar] [CrossRef]
- Jung, Y.; Park, H.; Du, D.-Z.; Drake, B.L. A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering. J. Glob. Optim. 2003, 25, 91–111. [Google Scholar] [CrossRef]
- Salvador, S.; Chan, P. Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, 15–17 November 2004; pp. 576–584. [Google Scholar]
- Hájek, M.; Holecová, M.; Smolová, H.; Jeřábek, L.; Frébort, I. Current state and future directions of bioeconomy in the Czech Republic. New Biotechnol. 2021, 61, 1–8. [Google Scholar] [CrossRef]
- Woźniak, E.; Twardowski, T. The bioeconomy in Poland within the context of the European Union. New Biotechnol. 2018, 40, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Kobiałka, A.; Krukowski, A. Significance of Agriculture for Bioeconomy in the Member States of the European Union. Sustainability 2021, 13, 8709. [Google Scholar] [CrossRef]
- Robert, N.; Jonsson, R.; Chudy, R.; Camia, A. The EU Bioeconomy: Supporting an Employment Shift Downstream in the Wood-Based Value Chains? Sustainability 2020, 12, 758. [Google Scholar] [CrossRef]
- Ronzon, T.; Piotrowski, S.; Tamosiunas, S.; Dammer, L.; Carus, M.; M’barek, R. Developments of Economic Growth and Employment in Bioeconomy Sectors across the EU. Sustainability 2020, 12, 4507. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Kuosmanen, T.; Kuosmanen, N.; El-Meligi, A.; Ronzon, T.; Gurria, P.; Iost, S.; M’barek, R. How Big is the Bioeconomy? Reflections from an Economic Perspective, Publications Office. 2020. Available online: https://data.europa.eu/doi/10.2760/144526 (accessed on 15 August 2023).
- Solheim, A.L.; Tolvanen, A.; Skarbøvik, E.; Kløve, B.; Collentine, D.; Kronvang, B.; Blicher-Mathiesen, G.; Hashemi, F.; Juutinen, A.; Hellsten, S.; et al. Land-use change in a Nordic future towards bioeconomy: A methodological framework to compare and merge stakeholder and expert opinions on qualitative scenarios. CATENA 2023, 228, 107100. [Google Scholar] [CrossRef]
- Scordato, L.; Bugge, M.M.; Hansen, T.; Tanner, A.; Wicken, O. Walking the talk? Innovation policy approaches to unleash the transformative potentials of the Nordic bioeconomy. Sci. Public Policy 2022, 49, 324–346. [Google Scholar] [CrossRef]
- Margeirsson, S.; Bjarnadottir, A.B. Designing a future-proof bioeconomy–Icelandic case study. EFB Bioeconomy J. 2023, 3, 100045. [Google Scholar] [CrossRef]
- Bălan, E.M.; Cismaș, L.M. The Central and Eastern European Countries: A Cluster Analysis from a Bioeconomy Perspective. Timis. J. Econ. Bus. 2022, 15, 35–50. [Google Scholar] [CrossRef]
- Kirs, M.; Karo, E.; Ukrainski, K. Transformative change and policy-making: The case of bioeconomy policies in the EU frontrunners and lessons for latecomers. Innov. Eur. J. Soc. Sci. Res. 2022, 35, 514–546. [Google Scholar] [CrossRef]
- Szarka, N.; Kittler, R. Bioeconomy Networks in Europe. In The Bioeconomy System; Thrän, D., Moesenfechtel, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Liobikiene, G.; Chen, X.; Streimikiene, D.; Balezentis, T. The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach. Land Use Policy 2020, 91, 104375. [Google Scholar] [CrossRef]
- Sørensen, J.F.L.; Jørgensen, H.P. Rural Development Potential in the Bioeconomy in Developed Countries: The Case of Biogas Production in Denmark. Sustainability 2022, 14, 11077. [Google Scholar] [CrossRef]
- Czyżewski, A.; Grzyb, A.; Matuszczak, A.; Michałowska, M. Factors for Bioeconomy Development in EU Countries with Different Overall Levels of Economic Development. Energies 2021, 14, 3182. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Morone, P. A New Socio-economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- Morone, P.; D’Adamo, I.; Cianfroni, I. Inter-connected challenges: An overview of bioeconomy in Europe. Environ. Res. Lett. 2022, 17, 114031. [Google Scholar] [CrossRef]
- Ronzon, T.; Iost, S.; Philippidis, G. An output-based measurement of EU bioeconomy services: Marrying statistics with policy insight. Struct. Chang. Econ. Dyn. 2022, 60, 290–301. [Google Scholar] [CrossRef] [PubMed]
Variable | U.M. | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std. Dev. | Min | Max | Mean | Std. Dev. | ||
Bioeconomy employees | % | 4.08 | 36.31 | 11.33 | 7.5740 | 3.33 | 29.02 | 10.27 | 6.2302 |
Value added per employee | k€ | 4.08 | 94.37 | 38.19 | 26.6993 | 6.02 | 109.75 | 44.44 | 30.0183 |
Turnover per employee | k€ | 13.47 | 382.15 | 139.72 | 104.6572 | 18.86 | 419.05 | 153.79 | 110.9421 |
Variable | 2015 | 2020 | ||||
---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | |
Bioeconomy employees | 0.248 | 27 | 0.000 | 0.216 | 27 | 0.002 |
Value added | 0.190 | 27 | 0.013 | 0.188 | 27 | 0.015 |
Turnover | 0.188 | 27 | 0.015 | 0.181 | 27 | 0.024 |
Variable | 2015 | 2020 | ||||
---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | |
Bioeconomy employees | 0.797 | 27 | 0.100 | 0.837 | 27 | 0.051 |
Value added | 0.910 | 27 | 0.083 | 0.903 | 27 | 0.116 |
Turnover | 0.896 | 27 | 0.071 | 0.899 | 27 | 0.093 |
Statistic a | df1 | df2 | Sig. | ||
---|---|---|---|---|---|
Bioeconomy employees | Welch | 6.594 | 2 | 15.208 | 0.009 |
Brown–Forsythe | 12.461 | 2 | 18.490 | 0.000 | |
Value added per employee | Welch | 111.631 | 2 | 11.532 | 0.000 |
Brown–Forsythe | 149.219 | 2 | 11.687 | 0.000 | |
Turnover per employee | Welch | 96.110 | 2 | 9.605 | 0.000 |
Brown–Forsythe | 111.866 | 2 | 10.288 | 0.000 |
Statistic a | df1 | df2 | Sig. | ||
---|---|---|---|---|---|
Bioeconomy employees | Welch | 4.313 | 3 | 6.356 | 0.047 |
Brown–Forsythe | 10.949 | 3 | 20.848 | 0.000 | |
Value added per employee | Welch | 188.472 | 3 | 5.205 | 0.000 |
Brown–Forsythe | 206.269 | 3 | 13.614 | 0.000 | |
Turnover per employee | Welch | 74.995 | 3 | 3.869 | 0.001 |
Brown–Forsythe | 92.351 | 3 | 3.533 | 0.001 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
Bioeconomy employees | Between groups | 461.628 | 2 | 230.814 | 5.379 | 0.012 |
Within groups | 1029.891 | 24 | 42.912 | |||
Total | 1491.519 | 26 | ||||
Value added per employee | Between groups | 17,035.050 | 2 | 8517.525 | 136.356 | 0.000 |
Within groups | 1499.163 | 24 | 62.465 | |||
Total | 18,534.213 | 26 | ||||
Turnover per employee | Between groups | 261,843.768 | 2 | 130,921.884 | 136.986 | 0.000 |
Within groups | 22,937.541 | 24 | 955.731 | |||
Total | 284,781.309 | 26 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
Bioeconomy employees | Between groups | 309.428 | 3 | 103.143 | 3.390 | 0.035 |
Within groups | 699.776 | 23 | 30.425 | |||
Total | 1009.204 | 26 | ||||
Value added per employee | Between groups | 22,144.946 | 3 | 7381.649 | 132.274 | 0.000 |
Within groups | 1283.528 | 23 | 55.806 | |||
Total | 23,428.474 | 26 | ||||
Turnover per employee | Between groups | 300,563.755 | 3 | 100187.918 | 118.487 | 0.000 |
Within groups | 19,447.864 | 23 | 845.559 | |||
Total | 320,011.619 | 26 |
Cluster | Country | Bioeconomy Employees | Value Added per Employee | Turnover per Employee |
---|---|---|---|---|
Cluster_1_2015 | Austria | 8.69 | 46.99 | 158.88 |
Germany | 5.31 | 47.65 | 199.10 | |
Spain | 7.43 | 45.65 | 155.50 | |
France | 6.12 | 56.42 | 214.09 | |
Italy | 8.63 | 46.24 | 159.52 | |
Luxembourg | 4.08 | 48.88 | 166.18 | |
Cluster_2_2015 | Belgium | 8.57 | 66.87 | 256.17 |
Denmark | 9.05 | 94.37 | 299.03 | |
Finland | 4.93 | 74.73 | 319.25 | |
Ireland | 5.72 | 81.78 | 271.42 | |
Netherlands | 4.62 | 83.41 | 382.15 | |
Sweden | 7.27 | 73.52 | 288.00 | |
Cluster_3_2015 | Bulgaria | 28.50 | 4.42 | 15.91 |
Cyprus | 8.73 | 26.32 | 82.26 | |
Czech Republic | 8.03 | 22.30 | 82.85 | |
Estonia | 10.91 | 24.19 | 95.27 | |
Greece | 18.56 | 16.94 | 49.61 | |
Croatia | 15.83 | 13.09 | 43.76 | |
Hungary | 8.27 | 22.91 | 78.34 | |
Lithuania | 16.97 | 13.64 | 48.20 | |
Latvia | 15.32 | 14.38 | 52.23 | |
Malta | 4.46 | 35.59 | 106.76 | |
Poland | 17.01 | 10.92 | 45.08 | |
Portugal | 16.64 | 15.31 | 54.36 | |
Romania | 36.31 | 4.08 | 13.47 | |
Slovenia | 13.15 | 19.81 | 61.15 | |
Slovakia | 6.64 | 20.77 | 73.92 |
Cluster | Country | Bioeconomy Employees | Value Added per Employee | Turnover per Employee |
---|---|---|---|---|
Cluster_1_2020 | Austria | 8.09 | 58.84 | 202.13 |
Germany | 5.42 | 60.00 | 222.49 | |
Spain | 7.48 | 48.58 | 163.05 | |
France | 6.55 | 58.44 | 215.66 | |
Italy | 8.64 | 47.97 | 162.78 | |
Luxembourg | 3.53 | 49.41 | 167.98 | |
Cluster_2_2020 | Finland | 7.81 | 75.71 | 260.89 |
Ireland | 8.91 | 91.39 | 293.30 | |
Netherlands | 4.97 | 80.90 | 327.02 | |
Sweden | 5.53 | 86.03 | 296.68 | |
Cluster_3_2020 | Bulgaria | 25.61 | 6.02 | 19.36 |
Cyprus | 8.48 | 29.33 | 88.00 | |
Czech Republic | 7.63 | 27.95 | 96.27 | |
Estonia | 9.92 | 31.24 | 124.96 | |
Greece | 18.22 | 18.02 | 52.38 | |
Croatia | 12.56 | 18.21 | 52.66 | |
Hungary | 8.36 | 25.83 | 83.87 | |
Lithuania | 13.50 | 24.12 | 74.10 | |
Latvia | 14.73 | 22.47 | 67.42 | |
Malta | 3.33 | 35.80 | 107.40 | |
Poland | 15.33 | 15.83 | 60.95 | |
Portugal | 14.05 | 18.84 | 64.91 | |
Romania | 29.02 | 6.67 | 18.86 | |
Slovenia | 12.22 | 25.91 | 70.81 | |
Slovakia | 6.39 | 22.05 | 80.22 | |
Cluster_4_2020 | Belgium | 4.73 | 109.75 | 419.05 |
Denmark | 6.35 | 104.63 | 358.99 |
Cluster | Bioeconomy Employees | Value Added per Employee | Turnover per Employee |
---|---|---|---|
Cluster_1_2015 | 6.71 | 48.64 | 175.54 |
Cluster_2_2015 | 6.69 | 79.12 | 302.67 |
Cluster_3_2015 | 15.02 | 17.65 | 60.21 |
EU-27 2015 | 11.32 | 38.19 | 139.72 |
Cluster_1_2020 | 6.62 | 53.87 | 189.02 |
Cluster_2_2020 | 6.81 | 83.51 | 294.48 |
Cluster_3_2020 | 13.29 | 21.89 | 70.81 |
Cluster_4_2020 | 5.54 | 107.19 | 389.02 |
EU-27 2020 | 10.27 | 44.44 | 153.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firoiu, D.; Ionescu, G.H.; Cojocaru, T.M.; Niculescu, M.; Cimpoeru, M.N.; Călin, O.A. Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors. Sustainability 2023, 15, 14128. https://doi.org/10.3390/su151914128
Firoiu D, Ionescu GH, Cojocaru TM, Niculescu M, Cimpoeru MN, Călin OA. Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors. Sustainability. 2023; 15(19):14128. https://doi.org/10.3390/su151914128
Chicago/Turabian StyleFiroiu, Daniela, George H. Ionescu, Teodor Marian Cojocaru, Mariana Niculescu, Maria Nache Cimpoeru, and Oana Alexandra Călin. 2023. "Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors" Sustainability 15, no. 19: 14128. https://doi.org/10.3390/su151914128
APA StyleFiroiu, D., Ionescu, G. H., Cojocaru, T. M., Niculescu, M., Cimpoeru, M. N., & Călin, O. A. (2023). Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors. Sustainability, 15(19), 14128. https://doi.org/10.3390/su151914128