Advancing the Application of a Multidimensional Sustainable Urban Waste Management Model in a Circular Economy in Mexico City
Abstract
:1. Introduction
- (a)
- The interconnectedness between various elements of waste management, including waste, resources, infrastructure, users, suppliers, and decision-makers, using flows and stocks;
- (b)
- The relationships between key elements of the waste management sector and components of the socio-ecological system, such as participation, institutions, processes, technology, pollutants, and the flow of matter and energy;
- (c)
- The interrelationships between decision-makers, suppliers, and users, aiming to promote comprehensive and collaborative action for sustainable waste management.
2. Evolution of Waste Management in Cities
3. Materials and Methods
4. Results
4.1. Analysis of Semantical Concepts
4.2. Relations of Semantic Concepts (Semantic Network)
4.3. Interactions between Codes and Clusters (Co-Occurrences)
4.4. Delineating a First Approach to a Multidimensional Sustainable Waste Management Model for Cities
- Strengthening the relationship between sustainability and waste management, in particular the links between processes and materials of waste and the economic and environmental issues of the socio-ecological system;
- Generate better relationship between social and technological concepts that tend to be mostly dissociated with other elements of the socio-ecological system of waste management;
- Create stronger links between the waste management cluster and the social and political aspects;
- Improve the relationships between the sustainability cluster and the technology and infrastructure aspects.
5. Discussion
5.1. Scenarios Analyzed with the mD-SWM4CDMX Dynamic Model
5.2. Discussion of mD-SWM4CDMX Scenarios
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Variables and Equations of the mD-SWM4CDMX Model
References
- Lacoste, E.; Chalmin, P. From Waste to Resource: 2006 World Waste Survey; Ciclope/Veolia: Paris, France, 2016. [Google Scholar]
- Hoornweg, D.; Bhada-Tata, P. What a Waste. A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Ostrom, E. A general framework for analyzing sustainability of socio-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Dongo, K.; Kone, A.; Tiembre, I.; Biemi, J.; Tanner, M.; Zinsstag, J.; Cisse, G. Exposition environnementale à des déchets contenant du mercaptan, des hydricarbures aromatiques et de l’hydrogène sulfuré (Abidjan). Environ. Risques St. 2009, 8, 519–527. [Google Scholar]
- Gouveia, N. Resíduos sólidos urbanos: Impactos socioambientais e perspectiva de manejo sustentável com inclusao social. Ciência Saúde Coletiva 2012, 17, 1503–1510. [Google Scholar] [CrossRef]
- Aparcana, S. Approaches to formalization of the informal waste sector into municipal solid waste management systems in low- and middle-income countries: Review of barriers and success factors. Waste Manag. 2016, 61, 593–607. [Google Scholar] [CrossRef]
- Ezeah, C.; Roberts, C. Waste governance agenda in Nigerian cities: A comparative analysis. Habitat Int. 2014, 41, 121–128. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.; Lavender Law, K. Production, use and fate of all plastics ever made. Sci. Adv. 2017, 3, 782. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wu, P.; Schartup, A.T.; Zhang, Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl. Acad. Sci. USA 2021, 118, e2111530118. [Google Scholar] [CrossRef]
- Freinkel, S. Plastic: A Toxic Love Story; Houghton Mifflin Harcourt: New York, NY, USA, 2011. [Google Scholar]
- Moore, S. Garbage matters: Concepts in new geographies of waste. Prog. Hum. Geogr. 2012, 36, 780–799. [Google Scholar] [CrossRef]
- Thompson, A. Climate Central. Retrieved 4 September 2019, from Climate Central. 2014. Available online: https://www.climatecentral.org/news/where-trash-is-a-burning-problem-17973 (accessed on 15 January 2023).
- Fruergaard, T.; Hyks, J.; Astrup, T. Life-cycle assessment of selected management options for air pollution control residues from waste incineration. Sci. Total Environ. 2010, 408, 4672–4680. [Google Scholar] [CrossRef]
- Chen, J.; Tang, J.; Xia, H.; Qiao, J. Huagong Jinzhan. Numerical simulation of dioxin emission concentration in grate furnace incineration processes for municipal solid waste. Chem. Ind. Eng. Prog. 2023, 42, 1061–1072. [Google Scholar]
- Xia, H.; Tang, J.; Aljerf, L.; Wang, T.; Qiao, J.; Xu, Q.; Wang, Q.; Ukaogo, P. Investigation on dioxins emission characteristic during complete maintenance operating period of municipal solid waste incineration. Environ. Pollut. 2023, 3181, 120949. [Google Scholar] [CrossRef]
- Bogner, J.; Pipatti, R.; Hashimoto, S.; Diaz, C.; Mareckova, K.; Diaz, L.; Gregory, R. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res. 2008, 26, 11–32. [Google Scholar] [CrossRef]
- Cointreau, S. Occupational and Environmental Health Issues of Solid Waste Management. Special Emphasis on Middle-and Lower-Income Countries; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Environmental Protection Agency Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks; EPA: Washington, DC, USA, 2002.
- Aleluia, J.; Ferrao, P. Characterization of urban waste management practices in developing Asian countries: A new analytical framework based on waste characteristics and urban dimension. Waste Manag. 2016, 58, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Ikhlayel, M. Development of management systems for sustainable municipal solid waste in developing countries: A systematic life cycle thinking approach. J. Clean. Prod. 2018, 180, 571–586. [Google Scholar] [CrossRef]
- Tenorio Gonçalves, A.T.; Ferreira Moraes, F.T.; Lima Marques, G.; Palma Lima, J.; da Silva Lima, R. Urban solid waste challenges in the BRICS countries: A systematic literature review. Ambiente Água—Interdiscip. J. Appl. Sci. 2018, 13, 1–20. [Google Scholar]
- Hung, M.-L.; Ma, H.-W.; Yang, W.-F. A novel sustainable decision making model for municipal solid waste management. Waste Manag. 2006, 27, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Seadon, J. Sustainable waste management systems. J. Clean. Prod. 2010, 18, 1639–1651. [Google Scholar] [CrossRef]
- Gellynck, X.; Jacobsen, R.; Verhelst, P. Identifying the key factors in increasing recycling and reducing residual household waste: A case study of the Flemish region of Belgium. J. Environ. Manag. 2011, 92, 2683–2690. [Google Scholar] [CrossRef]
- Guibrunet, L.; Sanzana Calvet, M.; Castan Broto, V. Flows, system boundaries and the politics of urban metabolism: Waste management in Mexico City and Santiago de Chile. Geoforum 2017, 85, 353–367. [Google Scholar] [CrossRef]
- Heidbreder, L.M.; Bablok, I.; Drews, S.; Menzel, C. Tackling the plastic problem: A review on perceptions, behaviors, and interventions. Sci. Total Environ. 2019, 668, 1077–1093. [Google Scholar] [CrossRef]
- Mohan, G.; Carroll, E.; McCoy, S.; Mac Domhnail, C.; Mihut, G. Magnifying inequality? Home learning environments and social reproduction during school closures in Ireland. Ir. Educ. Stud. 2021, 40, 2021. [Google Scholar] [CrossRef]
- Lucertini, G.; Musco, F. Circular Urban Metabolismo Framework. One Earth 2020, 2, 138–142. [Google Scholar] [CrossRef]
- Baccini, P.; Bruner, P. Metabolism of the Anthroposphere: Analysis, Evaluation, Design, 2nd ed.; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Arora, R.; Paterok, K.; Banerjee, A.; Saluja, M. Potential and relevance of urban mining in the context of sustainable cities. IIMB Manag. Rev. 2017, 29, 210–224. [Google Scholar] [CrossRef]
- Graedel, T.; Allenby, B. Industrial Ecology and Sustainable Engineering; Pearson: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Bogner, J.M. Waste Management, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In I. P. Change, Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007; pp. 585–618. [Google Scholar]
- Vitorino de Souza Melare, A.; Montenegro Gonzalez, S.; Faceli, K.; Casadei, V. Technologies and decision support systems to aid solid-waste management: A systematic review. Waste Manag. 2017, 59, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Ibanescu, D.; Cailean, D.; Teodosiu, C.; Fiore, S. Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries. Waste Manag. 2018, 73, 39–53. [Google Scholar] [CrossRef]
- Nagendra, H.; Bai, X.; Brondizio, E.S.; Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 2018, 1, 341–349. [Google Scholar] [CrossRef]
- Hu, Y.; Poustie, M. Urban mining demonstration bases in China: A new approach to the reclamation of resources. Waste Manag. 2018, 79, 689–699. [Google Scholar] [CrossRef]
- Hidalgo, D.; Martin-Marroquin, J.; Corona, F. A multi-waste management concept as a basis towards a circular economy model. Renew. Sustain. Energy Rev. 2019, 111, 481–489. [Google Scholar] [CrossRef]
- Tomic, T.; Rolph Schneider, D. Circular economy in waste management—Socio-economic effect of changes in waste management system structure. J. Environ. Manag. 2020, 267, 110564. [Google Scholar] [CrossRef]
- Ferronato, N.; Rada, E.; Gorritty Portillo, M.; Cioca, L.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef]
- Gutberlet, J. Cooperative urban mining in Brazil: Collective practices in selective household waste collection and recycling. Waste Manag. 2015, 45, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Krasniqu, I.; Krasniqi, D.; Krasniqi, G. Strategic Local Governance Policy and Waste Management—Prishtina Municipality Case. 15th Workshop on International Stability, Technology, and Culture; The International Federation of Automatic Control: Kosovo, Serbia, 2013. [Google Scholar]
- Jouhara, H.; Czajczynska, D.; Ghazal, H.; Krzyzynska, R.; Anguilano, L.; Reynolds, A.; Spencer, N. Municipal waste management systems for domestic use. Energy 2017, 139, 485–506. [Google Scholar] [CrossRef]
- Huybrechts, D.; Verachtert, E.; Vander Aa, S.; Polders, C.; Van den Abeele, L. Polluted rainwater runoff from waste recovery and recycling companies: Determination of emission levels associated with the best available techniques. Waste Manag. 2016, 54, 74–82. [Google Scholar] [CrossRef]
- Haberl, H.; Schulz, N.B.; Plutzar, C.; Erb, K.H.; Krausmann, F.; Loibl, W.; Moser, D.; Moser, N.; Weisz, H.; Zechmeister, H.G.; et al. Human appropriation of net primary production and species diversity in agricultural landscapes. Agric. Ecosyst. Environ. 2004, 102, 213–218. [Google Scholar] [CrossRef]
- SEMARNAT. Visión Nacional Hacia Una Gestión Sustentable: Cero Residuos; SEMARNAT: Mexico City, Mexico, 2019.
- SEMARNAT. Diagnóstico Básico para la Gestión Integral de los Residuos; SEMARNAT: Mexico City, Mexico, 2020.
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos. Ciudad de México; Gobierno de la Ciudad de México: Mexico City, Mexico, 2021. [Google Scholar]
- Secretaría del Medio Ambiente. Basura Cero; Gobierno de la Ciudad de México: Mexico City, Mexico, 2016. [Google Scholar]
- Neumayer, E. Weak Versus Strong Sustainability: Exploring the Limits of Two Opposing Paradigms; Research Gate: London, UK, 2003. [Google Scholar]
- Shiflet, A.B.; Shiflet, G.W. Introduction to Computational Science. Modeling and Simulations for the Sciences; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Marmolejo, L. Systemic analysis of municipal solid waste management facility sustainability in municipalities with populations below 20,000 inhabitants. Ing. Y Compet. 2013, 15, 253–263. [Google Scholar]
- Brandt, P.; Ernst, A.; Gralla, F.; Luederitz, C.; Lang, D.J.; Newig, J.; von Wehrden, H. A review of transdisciplinary research in sustainability science. Ecol. Econ. 2013, 92, 1–15. [Google Scholar] [CrossRef]
- Klenk, N.; Meehan, K.; Lee Pinel, S.; Mendez, F.; Torres Lima, P.; Kammen, D.M. Stakeholders in climate science: Beyond lip service? Glob. Chang. Sci. 2015, 350, 743–744. [Google Scholar] [CrossRef]
- Cash, D.W.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Guston, D.H.; Mitchell, R.B. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 2003, 100, 8086–8091. [Google Scholar] [CrossRef]
- Mauser, W.; Klepper, G.; Rice, M.; Schmalzbauer, B.S.; Hackmann, H.; Leemans, R.; Moore, H. Transdisciplinary global change research: The co-creation of knowledge for sustainability. Environ. Sustain. 2013, 5, 420–431. [Google Scholar] [CrossRef]
- Stokols, D. Toward a science of transdisciplinary action research. Am. J. Community Psychol. 2006, 38, 63–77. [Google Scholar] [CrossRef]
- García, R. Interdisciplinariedad y sistemas complejos. Rev. Lationoamericana Metodol. Las Cienc. Soc. 2011, 1, 64–79. [Google Scholar]
- Delgado, G.; Imaz, M.; Beristain, A. La sustentabilidad en el siglo, X.X.I. Interdisciplina 2015, 3, 9–21. [Google Scholar]
- Ogata, K. Dinámica de Sistemas; Prentice Hall: Ciudad de México, Mexico, 1987. [Google Scholar]
- Yuan, H. A model for evaluating the social performance of construction waste management. Waste Manag. 2012, 32, 11. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, M.F. Simulation of Ecological and Environmental Models; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Mendoza Reyes, M.A. Tesis: Modelado Dinámico de Osciladores; UAEM: Cuernavaca, Mexico, 2020. [Google Scholar]
- Chen, X.; Pang, J.; Zhang, Z.; Li, H. Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis. Sustainability 2014, 6, 9268–9281. [Google Scholar] [CrossRef]
- LaVigne, A.; Stuntz, L. Model Mysteries; Creative Learning Exchange: Acton, MA, USA, 2016. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2006. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2007. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2008. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2009. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2010. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2011. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2012. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2013. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno de la Ciudad de México: Ciudad de México, Mexico, 2014. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno de la Ciudad de México: Ciudad de México, Mexico, 2015. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno de la Ciudad de México: Ciudad de México, Mexico, 2016. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno del Distrito Federal: Ciudad de México, Mexico, 2017. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno de la Ciudad de México: Ciudad de México, Mexico, 2018. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno de la Ciudad de México: Ciudad de México, Mexico, 2019. [Google Scholar]
- Secretaría del Medio Ambiente. Inventario de Residuos Sólidos; Gobierno de la Ciudad de México: Ciudad de México, Mexico, 2020. [Google Scholar]
Ss_ | En_ | Ec_ | Sc_ | Pl_ | Mt_ |
---|---|---|---|---|---|
sustainability | environmental | products | recovery | municipal | systems |
development | impacts | economics | social | policy | analysis |
indicators | emissions | costs | communities | government | models |
regional | reduce | value | problems | public | methods |
states | resources | efficiency | stakeholders | institutional | scenarios |
zero waste | greenhouse gas | companies | health | private | assessment |
pickers | gas | markets | households | informal | framework |
risks | effective | consumption | knowledge | organizations | variables |
country | ecological | capital | workers | legislation | evaluation |
solutions | methane | consumers | population | regulations | scientific |
monitoring | carbon | business | networks | authorities | hierarchy |
national | carbon dioxide | financial | behaviors | actors | components |
complex | renewable | incentives | people | associated | |
opportunities | pollution | prices | concerns | agencies | |
cleaner | investment | human | accountable | ||
hazardous | savings | residents | rights | ||
natural | tax | education | governance | ||
climate | pay | prevention | illegal | ||
conservation | bank | relationships | |||
air | amounts | participants | |||
habitat | responsibility | ||||
learning |
Wm_ | Pr_ | In_ | Tc_ | Ma_ |
---|---|---|---|---|
waste | recycling | cities | technologies | energy |
management | solid | facilities | composting | materials |
waste management system | landfill | urban | incineration | food |
operations | process | sources | wte | paper |
implementation | collection | industry | anaerobic | wastewater |
strategies | generation | service | innovation | organic |
alternatives | treatment | sites | combustion | cycle |
integrated | separation | hotels | digestion | biomass |
action | disposal | agricultural | engineering | fuels |
flow | transportation | equipment | gasification | electricity |
selected | chemical | metals | ||
composition | vermicomposting | plastic | ||
transfer | biological | power | ||
residues | biodegradable | heat | ||
glass | ||||
biogas | ||||
ash | ||||
sewage | ||||
oil |
Clusters/Codes | Frequency | Number of Interactions | % Absolute | % Relative to the Cluster |
---|---|---|---|---|
Sustainability Cluster (subtotal) | 30,838 | 37% | 100% | |
Sustainability | 3664 | 4% | 12% | 12% |
Environmental | 7846 | 9% | 25% | 24% |
Economical | 9524 | 11% | 31% | 33% |
Social | 5210 | 6% | 17% | 15% |
Politics | 4595 | 6% | 15% | 15% |
Waste Management Cluster (subtotal) | 45,577 | 55% | 100% | |
Waste management | 4832 | 6% | 11% | 10% |
Processes | 17,867 | 21% | 39% | 38% |
Infrastructure | 3334 | 4% | 7% | 8% |
Technologies | 5071 | 6% | 11% | 10% |
Materials | 14,474 | 17% | 32% | 34% |
0% | ||||
Methodology Cluster/Code (subtotal) | 6992 | 8% | 100% | 100% |
Total codes interactions | 83,407 | 100% |
En_ | Ec_ | Wm_ | In_ | Ma_ | Pl_ | Pr_ | Sc_ | Ss_ | Tc_ | |
---|---|---|---|---|---|---|---|---|---|---|
En_ | 0 | 1441 | 632 | 321 | 1726 | 600 | 1969 | 733 | 770 | 549 |
Ec_ | 1441 | 0 | 677 | 467 | 1824 | 679 | 2255 | 1125 | 711 | 561 |
Wm_ | 632 | 677 | 0 | 279 | 726 | 712 | 1056 | 490 | 550 | 170 |
In_ | 321 | 467 | 279 | 0 | 524 | 318 | 1154 | 252 | 186 | 223 |
Ma_ | 1726 | 1824 | 726 | 524 | 0 | 545 | 3912 | 828 | 748 | 946 |
Pl_ | 600 | 679 | 712 | 318 | 545 | 0 | 1055 | 571 | 419 | 204 |
Pr_ | 1969 | 2255 | 1056 | 1154 | 3912 | 1055 | 0 | 1148 | 870 | 1434 |
Sc_ | 733 | 1125 | 490 | 252 | 828 | 571 | 1148 | 0 | 406 | 138 |
Ss_ | 770 | 711 | 550 | 186 | 748 | 419 | 870 | 406 | 0 | 191 |
Tc_ | 549 | 561 | 170 | 223 | 946 | 204 | 1434 | 138 | 191 | 0 |
Sustainability Cluster Codes | ||||||
---|---|---|---|---|---|---|
En_ | Ec_ | Pl_ | Sc_ | Summation | ||
Waste management cluster codes | In_ | 2.27% | 3.30% | 2.25% | 1.78% | 9.59% |
Ma_ | 12.19% | 12.88% | 3.85% | 5.85% | 34.77% | |
Pr_ | 13.91% | 15.93% | 7.45% | 8.11% | 45.39% | |
Tc_ | 3.88% | 3.96% | 1.44% | 0.97% | 10.25% | |
Summation | 32.24% | 36.07% | 14.99% | 16.71% | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacintos Nieves, A.; Delgado Ramos, G.C. Advancing the Application of a Multidimensional Sustainable Urban Waste Management Model in a Circular Economy in Mexico City. Sustainability 2023, 15, 12678. https://doi.org/10.3390/su151712678
Jacintos Nieves A, Delgado Ramos GC. Advancing the Application of a Multidimensional Sustainable Urban Waste Management Model in a Circular Economy in Mexico City. Sustainability. 2023; 15(17):12678. https://doi.org/10.3390/su151712678
Chicago/Turabian StyleJacintos Nieves, Antonio, and Gian Carlo Delgado Ramos. 2023. "Advancing the Application of a Multidimensional Sustainable Urban Waste Management Model in a Circular Economy in Mexico City" Sustainability 15, no. 17: 12678. https://doi.org/10.3390/su151712678