Exposure Assessment and Risk Characterization of Carbon-Based Nanomaterials at Different Production Scales
Abstract
:1. Introduction
2. Materials and Methods
Exposure Scenarios
3. Results
3.1. ES1: Laboraotry 1—Synthesis of GO3.1.1. Measurement Campaign
Semi-Quantitative Morphological and Chemical Characterization
Figure 3a | Figure 3b | Figure 3c | |
---|---|---|---|
Chemical Composition | 66.6% C 17% O 0.49% S 0.42% Cl 0.17% Cu | Part 1: 75%C 14% O 0.8% Cl Part 2: 77.7% C 13.7% O 0.15% Cl | Part 1: 76% C 16.5% O 0.3% Cl. Part 2: 78.1% C 12.8% O 0.1% Cl |
Size (µm) | 2 µm × 0.8 µm | Part 1: 0.7 µm × 0.3 µm. Part 2: 0.6 µm × 0.5 µm | Part 1: 1 µm × 0.6 µm Part 2: 0.5 µm |
3.2. ES2: Laboratory 2—Dispersion of Carbon Nanotubes (CNTs)
3.2.1. Measurement Campaign
3.2.2. Semi-Quantitative Morphological and Chemical Characterization
Figure 6a | Figure 6b | Figure 6c | Figure 6d | Figure 6e | Figure 6f | |
---|---|---|---|---|---|---|
Chemical composition | 90% C 0.06% Si | 39% C, 0.44% Na, 1.5% Mg, 18.33% Al, 25.7% Si, 8% K, 0.5% Ti, 2.2% Fe | 92% C, 0.4% Na, 0.43% Mg, 0.56% Al, 1% Si, 0.95% K, 0.2% Ca, 0.14% Ti, 1.22% Fe, 0.2% Cu | 99.26% C | 99.2% C 0.04% Cu | Part.1: 99.39% C; Part.2: 99.4% C, 0.07% S; Part 3: 99.54% C |
Size (µm) | 0.6 µm × 0.3 µm | 10 µm × 5 µm | 8 µm × 4 µm | 0.5 µm × 0.3 µm | 0.8 µm × 0.6 µm | Part.1: 0.5 µm × 0.2 µm Part.2: 0.2 µm × 0.1 µm. Part.3: 0.4 µm × 0.1 µm |
3.3. ES3: Pilot Plant—Incorporation of Carbonaceous Nanoparticles into Resins
3.3.1. Measurement Campaign
3.3.2. Semi-Quantitative Morphological and Chemical Characterization
3.4. ES4: Industrial Scale
3.4.1. Measurement Campaign
3.4.2. Semi-Quantitative Morphological and Chemical Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, T.; Gu, Z.; Williams, R.G.; Strimaite, M.; Zha, J.; Zhou, Z.; Zhang, X.; Tan, C.; Liang, R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 2022, 51, 6126–6176. [Google Scholar] [CrossRef]
- Janczarek, M.; Klapiszewski, L.; Jedrzejczak, P.; Klapiszewska, I.; Slosarczyk, A.; Jesionowski, T. Progress of functionalized TiO2-based nanomaterials in the construction industry: A comprenhensive review. J. Chem. Eng. 2022, 430, 132062. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y. Nanomaterials for Soft Wearable Electronics, Department of Mechanical and Aerospace Engineering; North Carolina State University; Elseiver Inc.: Raleigh, NC, USA, 2022. [Google Scholar]
- Pirzada, M.; Altintas, Z. Nanomaterials for virus sensing and tracking. Chem. Soc. Rev. 2022, 51, 5805–5841. [Google Scholar] [CrossRef]
- Kole, C.; Kumar, D.S.; Khodakovskaya, M.V. Plant Nanotechnology, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Muhammad, S.S.; Faezrul, Z.A.H.; Farhana, A.; Mukhlis, A.R.; Mohamed, A.M.A.; Dayang, N.A.C. Carbon-based material derived from biomass waste for wastewater treatment. Environ. Adv. 2022, 9, 100259. [Google Scholar]
- Tariq, M.; Hussain, T.; Mujahid, A.; Ahmad, M.N.; Din, M.I.; Intisar, A.; Zahid, M. Applications of Carbon Based Materials in Developing Advanced Energy Storage Devices. In Carbon Nanotubes; Ghosh, K.M., Datta, K., Rushi, A.D., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2019, 9, 1401. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, G.; Zhang, X.H.; Gomathi, T.; Wang, S.-F.; Azam, A.M.; Mydhili, G.; Nirmala, G.; Alzohairy, M.A.; Chung, I.M. Current Use of Carbon-Based Materials for Biomedical Applications. Processes 2020, 8, 355. [Google Scholar] [CrossRef]
- Vaniyamparambath, V.D.S.; Anjanapura, V.R. Single walled carbon nanotubes in high concentrations is cytotoxic to the human neuronal cell LN18. Results Chem. 2022, 4, 100484. [Google Scholar] [CrossRef]
- González-Durruthy, M.; Concu, R.; Ruso, J.M.; Cordeiro, M.N.D.S. New Mechanistic Insights on Carbon Nanotubes’ Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches. Biology 2021, 10, 171. [Google Scholar] [CrossRef]
- Laurent, G.; Kristina, B.K.; Carole, S.; Trine, B.; Laëtitia, C.; Nicklas, R.J.; Sarah, V.; Håkan, W.; Sébastien, B.; Henrik, W.; et al. Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: Comparison between intratracheal instillation and inhalation exposure. Toxicol. Appl. Pharmacol. 2019, 375, 17–31. [Google Scholar] [CrossRef]
- Devasena, T.; Francis, A.P.; Ramaprabhu, S. Toxicity of Graphene: An Update. Rev. Environ. Contam. Toxicol. 2021, 259, 51–76. [Google Scholar] [CrossRef]
- Rive, C.; Reina, G.; Wagle, P.; Treossi, E.; Palermo, V.; Bianco, A.; Delogu, L.G.; Rieckher, M.; Schumacher, B. Improved biocompatibility of amino-functionalized graphene oxide in Caenorhabditis elegans. Small 2019, 15, 1902699. [Google Scholar] [CrossRef]
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, A.G.; Díaz, E.; Long, M.S.; Godleski, J.; Brain, J.; Pratsinis, S.E.; Demokritou, P. A novel platform for pulmonary and cardiovascular toxicological characterization of inhaled engineered nanomaterials. Nanotoxicology 2012, 6, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, S.; Hwang, K.S.; Lim, N.R.; Oh, H.B.; Cho, I.J.; Kim, J.; Kim, K.H.; Kim, H.N. Effect of carbon nanomaterial dimension on the functional activity and degeneration of neurons. Biomaterials 2021, 279, 121232. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liu, X.; Zhang, W.; Zeng, Z.; Liu, Z.; Zhang, C.; Liu, Y.; Shao, B.; Liang, Q.; Wangwang, T.; et al. Advances in the application; toxicity and degradation of carbon nanomaterials in environment: A review. Environ. Int. 2020, 134, 105298. [Google Scholar] [CrossRef]
- Yi, H.; Huang, D.; Qin, L.; Zeng, G.; Lai, C.; Chen, M.; Ye, S.; Song, B.; Ren, X.; Guo, X. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl. Catal. B Environ. 2018, 239, 408–424. [Google Scholar] [CrossRef]
- Negri, V.; Pacheco-Torres, J.; Calle, D.; López-Larrubia, P. Carbon Nanotubes in Biomedicine; Nanobiomaterials for Electrochemical and Biomedicine Applications. Top. Curr. Chem. 2020, 378, 177–217. [Google Scholar] [CrossRef]
- Williams, P.T. Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review. Waste Biomass Valor. 2021, 12, 1–28. [Google Scholar] [CrossRef]
- Boccuni, F.; Ferrante, R.; Tombolini, F.; Natale, C.; Gordani, A.; Sabella, S.; Iavicoli, S. Occupational exposure to graphene and silica nanoparticles, Part I: Workplace measurements and sampling. Nanotoxicology 2020, 14, 1280–1300. [Google Scholar] [CrossRef] [PubMed]
- Ribalta, C.; López-Lilao, A.; Estupiñá, S.; Fonseca, A.S.; Tobías, A.; García-Cobos, A.; Minguillón, M.C.; Monfort, E.; Viana, M. Health risk assessment from exposure to particles duringpacking in working environments. Sci. Total Environ. 2019, 671, 474–487. [Google Scholar] [CrossRef]
- Sousa, M.; Arezes, P.; Silva, F. Occupational Exposure to Ultrafine Particles in Metal Additive Manufacturing: A Qualitative and Quantitative Risk Assessment. Int. J. Environ. Res. Public. 2021, 18, 9788. [Google Scholar] [CrossRef] [PubMed]
- Salmatonidis, A.; Ribalta, C.; Sanfélix, V.; Bezantakos, S.; Biskos, G.; Vulpoi, A.; Simion, S.; Monfort, E.; Viana, M. Workplace Exposure to Nanoparticles during Thermal Spraying of Ceramic Coatings. Ann. Work Expo. Health 2019, 6, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Methner, M.; Hodson, L.; Geraci, C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--part A. J. Occup. Environ. Hyg. 2010, 7, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Strategies, Techniques and Sampling Protocols for Determining the Concentration of Manufaturaed Nanomaterias in Air at the Workplace, No. 82, ENV/JM/MONO (2017)30. Available online: https://one.oecd.org/document/ENV/JM/MONO(2017)30/en/pdf (accessed on 8 December 2022).
- Lepistö, T.; Kuuluvainen, H.; Juuti, P.; Järvinen, A.; Arffman, A.; Rönkkö, T. Measurement of the human respiratory tract deposited surface area of particles with an electrical low pressure impactor. Aerosol. Sci. Technol. 2020, 54, 958–971. [Google Scholar] [CrossRef]
- Asbach, C.H.C.; Kuhlbusch, T.A.J.; Kaminski, H.; Stahlmecke, B.; Plitzko, S.; Götz, U.; Voetz, M.; Kiesling, H.J.; Dahmann, D. Standard Operation Procedures for Assessing Exposure to Nanomaterials, Following a Tiered Approach, nanoGEM. Federal Ministry of Education and Reseach. 2012. Available online: https://www.nanopartikel.info/data/methodik/SOPs_aus_Projekten/nanoGEM-SOP_tiered-approach-exposure-assessment-workplace_2012.pdf (accessed on 30 November 2022).
- Kaminski, H.; Beyer, M.; Fissan, H.; Asbach, C.; Kuhlbusch, T.A.J. Measurements of nanosale TiO2 and Al2O3 in industrial workplace environments; Methodology and results. Aerosol. Air. Qual. Res. 2015, 15, 129–141. [Google Scholar] [CrossRef]
- Grand View Research. Graphene Market Size, Share and Trends Analysis Report by Product (Graphene Oxide, Graphene Nanoplatelets), By Application (Electronics, Composites, Energy), By Region, And Segment Forecasts, 2023–2030. Market Report. Report Code: CH 3833. Available online: https://www.grandviewresearch.com/industry-analysis/graphene-industry (accessed on 30 March 2023).
- Mordor Intelligence. Europe Nanofiber Market Size and Share Analysis-Growth Trends and Forecasts (2023–2028). Available online: https://www.mordorintelligence.com (accessed on 30 March 2023).
Equipment | Measurement Principle | Range |
---|---|---|
NanoExplore | Partector 2: based on the electrical charge of the aerosol. It measures LDSA, number concentration, and average particle diameter. OPC-N3: determine the particle size (related to the intensity of light scattered via a calibration based on the Mie scattering theory) and particle number concentration. | Partector 2: LDSA: 0–1.2 × 104 µm2/cm3 20–150 nm (fixed deposition voltage) 10–300 nm (adaptative deposition voltage) OPC: 0.35 μm to 40 μm 104 particles/s |
NanoTracer PNT1000 | Principle relies on electrical charging of airborne particles in a sampled airflow and subsequent measurements of the particle-bound charge concentration. It measures LDSA, the number concentration, and the average particle diameter. | 0–106 part/cm3 10–300 nm |
NanoWatcher | CPC (condensation particle counter). The instrument provides the real-time number concentration measurement. Principle: the particles grow into larger alcohol droplets and are counted by an optical detector. | 0–5.0 × 106 part/cm3 23 nm–2.5 μm |
Cascade impactor Sioutas (SKC) | The cascade impactor separates and collects ultrafine, fine, and > 2.5-micron airborne particles (five size ranges, including > 2.5, 1.0 to 2.5, 0.50 to 1.0, 0.25 to 0.50, and <0.25 micron). Particles above each cut-point are collected on a 25 mm PTFE filter in each appropriate stage when the impactor is used with a 9 L/min sample pump. | 2.5–1.0–0.5–0.25 µm |
Leland Legacy Pump | Air sampling pump for particle collection. Up to 15 lpm for different uses (cyclones, impactors, cassettes …). | 1–15 lpm |
Sampling pump CASELLA Apex | Personal air sampling pump. The pump draws contaminated air through a sampling head at a rate determined by the head design or sampling strategy. | 0.005–5 lpm |
Sampling Filters | Polycarbonate filter of 37 mm, SEM/EDX microscopy | 3–4 lpm |
Condensation Particle Counter (CPC) | The particles grow into larger supersaturated vapor droplets and are counted by an optical detector. Results are given in particles/cm3. | 10 nm–1 µm 105 part/cm3 |
Optical Particle Sizer (OPS) | Determines particle concentration (#/cm3), mass (µg/m3), and size distribution. | 300 nm–10 µm 103 part/cm3 |
ES1 | ES2 | ES3 | ES4 | |
---|---|---|---|---|
Scale | Laboratory 1 | Laboratory 2 | Pilot scale | Industrial scale |
Process | Synthesis of GO | Dispersion of CNTs | Incorporation of carbonaceous nanoparticles into resins | Preparation of a dispersion of CNFs |
Material | Graphene, 2D materials | Three types of CNTs | Graphene, graphite, and MWCNTs | Carbon-based materials |
Volume (m3) | 115 | 115 | 338.5 | 4800 |
Activity duration | 30 min | 30 min | 3 h | Weighing: 10 min Dispersion: 2.3 h |
Measurement equipment | Nanoexplore, Nanowatcher, Nanotracer | Nanoexplore, Nanowatcher, Nanotracer | CPC, OPS | Nanoexplore, OPS |
(a) | ||||||
NP (part/cm3) | Background | Near Field | ||||
NanoExplore | NanoTracer | NanoWatcher | NanoExplore | NanoTracer | NanoWatcher | |
Mean | 1.10 × 104 | 3.78 × 103 | 1.25 × 104 | 1.04 × 104 | 8.08 × 103 | 1.90 × 104 |
Min. | 1.03 × 104 | 2.16 × 103 | 9.22 × 103 | 7.87 × 103 | 4.65 × 103 | 1.15 × 104 |
Max. | 1.17 × 104 | 4.56 × 103 | 1.58 × 104 | 1.23 × 104 | 1.92 × 104 | 2.56 × 104 |
Std. Dev. | 3.83 × 102 | 5.39 × 102 | 1.77 × 103 | 6.87 × 102 | 1.96 × 103 | 3.04 × 103 |
(b) | ||||||
Background | Near Field | |||||
LDSA (μm2/cm3) | SIZE (nm) | LDSA (μm2/cm3) | SIZE (nm) | |||
Mean | 2.45 × 101 | 40.8 | 2.29 × 101 | 40.4 | ||
Min. | 2.36 × 101 | 38.9 | 2.02 × 101 | 37.6 | ||
Max. | 2.51 × 101 | 43 | 2.57 × 101 | 47.6 | ||
Std. Dev. | 4.35 × 10−1 | 1.07 | 1.11 × 100 | 1.23 |
C (µg/m3) | Background | Near Field | ||||
---|---|---|---|---|---|---|
PM1 | PM2.5 | PM10 | PM1 | PM2.5 | PM10 | |
Mean | 4.00 × 103 | 1.60 × 102 | 1.60 × 102 | 1.41 × 103 | 2.65 × 102 | 5.37 × 102 |
Min. | 0 | 0 | 0 | 0 | 0 | 0 |
Max. | 1.00 × 101 | 3.00 × 101 | 3.00 × 101 | 1.00 × 101 | 8.00 × 101 | 3.60 × 100 |
Std. Dev. | 1.98 × 102 | 6.18 × 102 | 6.18 × 102 | 1.18 × 102 | 1.12 × 101 | 3.12 × 101 |
(a) | ||||||
NP (part/cm3) | Background | Near Field | ||||
NanoExplore | NanoTracer | NanoWatcher | NanoExplore | NanoTracer | NanoWatcher | |
Mean | 1.12 × 104 | 9.54 × 103 | 1.94 × 104 | 1.14 × 104 | 1.00 × 104 | 2.86 × 104 |
Min. | 9.53 × 103 | 8.31 × 103 | 1.50 × 104 | 9.90 × 103 | 7.74 × 103 | 4.29 × 103 |
Max. | 1.45 × 104 | 1.10 × 104 | 2.56 × 104 | 1.45 × 104 | 1.17 × 104 | 4.70 × 105 |
Std. Dev. | 6.91 × 102 | 5.65 × 102 | 2.01 × 103 | 6.16 × 102 | 8.07 × 102 | 4.33 × 104 |
(b) | ||||||
Background | Near Field | |||||
LDSA (μm2/cm3) | SIZE (nm) | LDSA (μm2/cm3) | SIZE (nm) | |||
Mean | 2.25 × 101 | 35.7 | 2.26 × 101 | 35.4 | ||
Min. | 2.09 × 101 | 31.3 | 2.12 × 101 | 31.3 | ||
Max. | 2.54 × 101 | 39.3 | 2.54 × 101 | 39.3 | ||
Std. Dev. | 6.37 × 10−1 | 1.33 | 5.49 × 10−1 | 1.26 |
C (µg/m3) | Background | Near Field | ||||
---|---|---|---|---|---|---|
PM1 | PM2.5 | PM10 | PM1 | PM2.5 | PM10 | |
Mean | 9.65 × 10−2 | 2.40 × 10−1 | 1.37 | 8.93 × 10−2 | 2.49 × 10−1 | 9.81 × 10−1 |
Min. | 0 | 0 | 0 | 0 | 0 | 0 |
Max. | 4.00 × 10−1 | 3.20 | 5.00 × 101 | 4.00 × 10−1 | 3.20 | 4.00 × 101 |
Std. Dev. | 8.80 × 102 | 5.62 × 10−1 | 6.50 | 8.53 × 10−2 | 5.87 × 10−1 | 5.01 |
Activity (ES3) | NP (Part/cm3) | |||
---|---|---|---|---|
Max. | Min. | Mean. | Std.Dev | |
FF-CPC1 | ||||
Background | 4.38 × 104 | 8.21 × 103 | 1.70 × 104 | 7.57 × 103 |
Graphene | 4.31 × 104 | 2.96 × 104 | 3.58 × 104 | 2.70 × 103 |
RGO | 4.94 × 104 | 2.88 × 104 | 4.13 × 104 | 2.98 × 103 |
Graphite | 4.33 × 104 | 1.28 × 104 | 3.28 × 104 | 5.25 × 103 |
MWCNTs agitation | 3.44 × 104 | 1.66 × 104 | 2.53 | 2.53 × 103 |
Graphene agitation | 7.21 × 104 | 1.44 × 104 | 2.39 × 104 | 5.47 × 103 |
Graphite agitation | 1.00 × 105 | 1.95 × 104 | 3.07 × 104 | 3.44 × 103 |
NF-CPC2 | ||||
Background | 4.94 × 104 | 1.67 × 104 | 2.33 × 104 | 3.09 × 103 |
Graphene | 1.69 × 105 | 2.26 × 104 | 2.94 × 104 | 1.64 × 104 |
RGO | 1.44 × 105 | 2.20 × 104 | 3.39 × 104 | 1.19 × 104 |
Graphite | 3.68 × 104 | 1.71 × 104 | 2.61 × 104 | 3.74 × 103 |
MWCNTs agitation | 3.16 × 104 | 1.22 × 104 | 2.19 × 104 | 2.32 × 103 |
Graphene agitation | 2.92 × 104 | 1.38+ × 104 | 2.02 × 104 | 3.31 × 103 |
Graphite agitation | 3.17 × 104 | 1.72 × 104 | 2.65 × 104 | 1.56 × 103 |
Activity (ES3) | NP (Part/cm3) | |||
---|---|---|---|---|
Max. | Min. | Mean. | Std. Dev | |
Background | 52.86 | 20.87 | 43.52 | 7.15 |
Graphene | 26.72 | 17.74 | 22.32 | 1.55 |
RGO | 24.42 | 15.51 | 19.85 | 1.54 |
Graphite | 35.23 | 15.09 | 19.60 | 2.93 |
MWCNTs agitation | 75.14 | 10.99 | 17.86 | 8.34 |
Graphene agitation | 109.00 | 17.02 | 50.25 | 22.12 |
Graphite agitation | 29.92 | 14.37 | 19.97 | 2.94 |
Activity (ES3) | C (µg/m3) | |||
Background | 126.64 | 1.65 | 18.47 | 15.56 |
Graphene | 76.82 | 2.49 | 14.66 | 13.32 |
RGO | 102.40 | 3.02 | 20.78 | 15.85 |
Graphite | 93.66 | 2.92 | 24.57 | 17.95 |
MWCNTs agitation | 560.10 | 1.62 | 19.74 | 70.15 |
Graphene agitation | 606.63 | 6.70 | 168.10 | 126.75 |
Graphite agitation | 76.58 | 2.01 | 13.94 | 12.27 |
Figure 8a | Figure 8b | Figure 8c | |
---|---|---|---|
Chemical composition | 20.8%O 78.8% C 0.4% Al | 32.5%O 59.3%C 2.2%Al 3.5% Si 0.8% Fe 1.7% Mg | 23.5% O 68% C 0.8% Al 1.2% Si 5.7% Ca 0.8% Fe |
Figure 9a | Figure 9b | Figure 9c | |
---|---|---|---|
Chemical composition | 100% C | 73.4% C 13.07% O 1.62% Pd 12% Au | 70.2% C 13.2% O 2.2% Pd 14.4%Au |
Figure 10a | Figure 10b | Figure 10c | |
---|---|---|---|
Chemical composition | 42.8% O 15.6% Ca 41.1%C 0.03% Si 0.2% Al 0.02 Mg | 20.7%O 0.5% Ca 78.8% C | 17.4% O 81.4% C 0.8% Al |
Activity | Background NF (μg/m3) | Background FF (μg/m3) | NP (10–300 nm) NF (Part/cm3) | |||
---|---|---|---|---|---|---|
Mean | Std. Dev | Mean | Std. Dev | Mean | Std. Dev | |
Weighing and pouring | 4.70 × 10−1 | 3.60 × 100 | ND | ND | 6.19 × 103 | 6.17 × 102 |
Dispersion | 5.60 × 10−1 | 3.56 × 100 | 4.30 × 10−1 | 2.42 × 100 | 9.15 × 103 | 1.01 × 103 |
Scenario | Activity | Age Range | (CACT − CBKG) (part/cm3) | 3σBKG | Exposure Estimation | Environmental Parameters |
---|---|---|---|---|---|---|
ES 1: Laboratory 1- Synthesis of GO | Mixes of GO with NaOH solution and mechanical movements | 20–30 | −6.00 × 102 | 1.15 × 103 | Not significant | T: 23.4 ° RH: 65% |
ES 2: Laboratory 2- Dispersion of CNTs | Weighing CNTs, addition of solvent, and transfer of material to a covered ultrasound | 30–45 | 2.00 × 102 | 2.07 × 102 | Not significant | T: 22.4 ° RH: 46% |
ES3: Pilot plant -Incorporation of carbonaceous nanoparticles into resins | Weighing and transferring of graphene | 30–45 | 6.10 × 103 | 9.27 × 103 | Not significant | T: 22.8 ° RH: 52% |
Weighing and transferring of RGO | 1.06 × 104 | 9.27 × 103 | Significant | T: 22.6 ° RH: 54% | ||
Weighing and transferring of graphite | 2.80 × 103 | 9.27 × 103 | Not significant | T: 22.5 ° RH: 55% | ||
MWCNTs agitation | −1.40 × 103 | 9.27 × 103 | Not significant | T: 22.4 ° RH: 54% | ||
Graphene stirring | −3.10 × 103 | 9.27 × 103 | Not significant | T: 22.4 ° RH: 55% | ||
Graphite stirring | 3.20 × 103 | 9.27 × 103 | Moderate | T: 21.9 ° RH: 55% | ||
ES4: Industrial scale—preparation of a dispersion of CNFs | Weighing and pouring | 40–50 | 3.94 × 103 | 1.85 × 103 | Not significant | T: 20.4 ° RH: 61% |
Dispersion | 7.15 × 103 | 3.26 × 103 | Not significant |
ES | Process | Background Concentration (NPs/cm3) | Process Concentration (NPs/cm3) | Source |
---|---|---|---|---|
1 | Weighing Graphene Platelets Vacuum Cleaning | 3.375 | 10.305 (10.3 × 103) 8.487 (8.5 × 103) | LIFE NanoRISK (ENV/ES/000178) |
2 | Weighing Graphene Spheres | 3.375 | 4.789 (4.8 × 103) | LIFE NanoRISK (ENV/ES/000178) |
3 | Weighing Graphene Platelets | 3.375 | 4.978 (4.9 × 103) | LIFE NanoRISK (ENV/ES/000178) |
4 | Weighing Graphene Spheres | 3.375 | 6.669 (6.9 × 103) | LIFE NanoRISK (ENV/ES/000178) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fito López, C.; Colmenar González, I.; Andreu Sánchez, O.; Vela, V.; Domat Rodriguez, M. Exposure Assessment and Risk Characterization of Carbon-Based Nanomaterials at Different Production Scales. Sustainability 2023, 15, 12544. https://doi.org/10.3390/su151612544
Fito López C, Colmenar González I, Andreu Sánchez O, Vela V, Domat Rodriguez M. Exposure Assessment and Risk Characterization of Carbon-Based Nanomaterials at Different Production Scales. Sustainability. 2023; 15(16):12544. https://doi.org/10.3390/su151612544
Chicago/Turabian StyleFito López, Carlos, Inmaculada Colmenar González, Oscar Andreu Sánchez, Verónica Vela, and Maidá Domat Rodriguez. 2023. "Exposure Assessment and Risk Characterization of Carbon-Based Nanomaterials at Different Production Scales" Sustainability 15, no. 16: 12544. https://doi.org/10.3390/su151612544
APA StyleFito López, C., Colmenar González, I., Andreu Sánchez, O., Vela, V., & Domat Rodriguez, M. (2023). Exposure Assessment and Risk Characterization of Carbon-Based Nanomaterials at Different Production Scales. Sustainability, 15(16), 12544. https://doi.org/10.3390/su151612544