Management of Natural Gas Consumption during the Manufacturing of Lead-Acid Batteries
Abstract
:1. Introduction
2. Energy Management
- Energy audit (to measure natural gas consumption and identify saving opportunities).
- Implement EM strategies to improve and maintain energy efficiency standards.
- Factory (level 1): group of process chains supported by technical services supplying the required resources.
- Process chain (level 2): distinct logical combination of machine tools for the production units/lines.
- Machine tool (level 3): unit operation and auxiliary equipment of production units/lines where operational activities occur.
LAB Manufacturing
3. Materials and Methods
3.1. Production Lines
- Copper removal.
- Softening process to remove arsenic, antimony, tin, and other elements by oxidation.
- Removal of silver, gold, and zinc excess with the Parkes (desilverizing) process.
- Removal of bismuth in a process similar to desilverizing.
- Caustic clean to remove any trace impurity of antimony, calcium, magnesium, and zinc remaining from the previous processes.
3.2. Equipment
3.3. Combustion Analysis
3.4. Heat Transfer Analysis
3.5. Energy and Exergy Balances
3.6. GHG Emissions from the Combustion of Natural Gas
4. Results
4.1. Gas Consumption during the Manufacturing of LAB
4.2. Saving Potentials
4.2.1. Positive Grid Casting System
4.2.2. Refining
- A.
- Pure lead
- B.
- Lead-calcium-tin alloy for negative grids
- C.
- Lead-calcium-tin alloy for positive grids
- D.
- Lead-antimony alloy
4.2.3. Leady Oxide Powder Production
5. Implementation and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caetano, B.C.; Santos, N.D.S.A.; Hanriot, V.M.; Sandoval, O.R.; Huebner, R. Energy Conversion of Biogas from Livestock Manure to Electricity Energy Using a Stirling Engine. Energy Convers. Manag. X 2022, 15, 100224. [Google Scholar] [CrossRef]
- May, G.; Stahl, B.; Taisch, M.; Kiritsis, D.; Barletta, I.; Stahl, B.; Taisch, M. Energy Management in Manufacturing: From Literature Review to a Conceptual Framework. J. Clean. Prod. 2017, 167, 1464–1489. [Google Scholar] [CrossRef]
- Cabello, J.J.; Sagastume, A.; Sousa, V.; Hernández, H.; Balbis, M.; Silva, J.; Noriega, E.M.; Vandecasteele, C.; Cabello Eras, J.J.; Gutiérrez, A.S.; et al. Energy Management in the Formation of Light, Starter, and Ignition Lead-Acid Batteries. Energy Effic. 2019, 12, 1219–1236. [Google Scholar] [CrossRef]
- Gutiérrez, A.S.; Eras, J.J.; Santos, V.S.; Herrera, H.H.; Hens, L.; Vandecasteele, C. Electricity Management in the Production of Lead-Acid Batteries: The Industrial Case of a Production Plant in Colombia. J. Clean. Prod. 2018, 198, 1443–1458. [Google Scholar] [CrossRef]
- Dahodwalla, H.; Herat, S. Cleaner Production Options for Lead-Acid Battery Manufacturing Industry. J. Clean. Prod. 2000, 8, 133–142. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, K.; Liang, Y.; Yang, Y.; Chen, Z.; Liu, W. Life Cycle Environmental and Economic Assessment of Electric Bicycles with Different Batteries in China. J. Clean. Prod. 2023, 385, 135715. [Google Scholar] [CrossRef]
- Allen, C.; Telford, C. Automotive Battery Technology Trends Review; Ricardo Strategic Consulting (RSC): Shoreham-by-Sea, UK, 2020. [Google Scholar]
- Sagastume, A.; Cabello, J.J.J.; Huisingh, D.; Vandecasteele, C.; Hens, L. The Current Potential of Low-Carbon Economy and Biomass-Based Electricity in Cuba. The Case of Sugarcane, Energy Cane and Marabu (Dichrostachys Cinerea) as Biomass Sources. J. Clean. Prod. 2018, 172, 2108–2122. [Google Scholar] [CrossRef]
- Yu, Y.; Mao, J.; Li, C. Historical Evolution of Lead-Acid Battery System and Its Relationship with External Environment Based on the Composite Flow. Sci. Total Environ. 2020, 707, 134746. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Gaines, L. A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs; Energy Systems Division: Chicago, IL, USA, 2010.
- Sullivan, J.L.; Gaines, L. Status of Life Cycle Inventories for Batteries. Energy Convers Manag. 2012, 58, 134–148. [Google Scholar] [CrossRef]
- Rydh, C.J.; Sandén, B.A. Energy Analysis of Batteries in Photovoltaic Systems. Part I: Performance and Energy Requirements. Energy Convers Manag. 2005, 46, 1957–1979. [Google Scholar] [CrossRef]
- Rantik, M. Life Cycle Assessment of Five Batteries for Electric Vehicles under Different Charging Regimes; Master, Swedish Transport and Communications Research Board: Stockholm, Sweden, 1999.
- Davidson, A.J.; Binks, S.P.; Gediga, J. Lead Industry Life Cycle Studies: Environmental Impact and Life Cycle Assessment of Lead Battery and Architectural Sheet Production. Int. J. Life Cycle Assess. 2016, 21, 1624–1636. [Google Scholar] [CrossRef] [Green Version]
- Yudhistira, R.; Khatiwada, D.; Sanchez, F. A Comparative Life Cycle Assessment of Lithium-Ion and Lead-Acid Batteries for Grid Energy Storage. J. Clean. Prod. 2022, 358, 131999. [Google Scholar] [CrossRef]
- Balbis, M.; Cabello, J.J.; Sagastume, A.; Sousa, V.; Pérez, Y.; Rueda-Bayona, J.G. Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia. Int. J. Energy Econ. Policy 2019, 9, 103–112. [Google Scholar] [CrossRef]
- ElMaraghy, H.A.; Youssef, A.M.A.; Marzouk, A.M.; ElMaraghy, W.H. Energy Use Analysis and Local Benchmarking of Manufacturing Lines. J. Clean. Prod. 2017, 163, 36–48. [Google Scholar] [CrossRef]
- Sa, A.; Thollander, P.; Cagno, E. Assessing the Driving Factors for Energy Management Program Adoption. Renew. Sustain. Energy Rev. 2017, 74, 538–547. [Google Scholar] [CrossRef]
- Paramonova, S.; Thollander, P.; Ottosson, M. Quantifying the Extended Energy Efficiency Gap-Evidence from Swedish Electricity-Intensive Industries. Renew. Sustain. Energy Rev. 2015, 51, 472–483. [Google Scholar] [CrossRef] [Green Version]
- Cagno, E.; Trianni, A. Evaluating the Barriers to Specific Industrial Energy Efficiency Measures: An Exploratory Study in Small and Medium-Sized Enterprises. J. Clean. Prod. 2014, 82, 70–83. [Google Scholar] [CrossRef]
- Jovanović, B.; Filipović, J.; Bakić, V. Energy Management System Implementation in Serbian Manufacturing—Plan-Do-Check-Act Cycle Approach. J. Clean. Prod. 2017, 162, 1144–1156. [Google Scholar] [CrossRef]
- Brunke, J.C.; Johansson, M.; Thollander, P. Empirical Investigation of Barriers and Drivers to the Adoption of Energy Conservation Measures, Energy Management Practices and Energy Services in the Swedish Iron and Steel Industry. J. Clean. Prod. 2014, 84, 509–525. [Google Scholar] [CrossRef] [Green Version]
- Fernando, Y.; Hor, W.L. Impacts of Energy Management Practices on Energy Efficiency and Carbon Emissions Reduction: A Survey of Malaysian Manufacturing Firms. Resour. Conserv. Recycl. 2017, 126, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, J.; Woodbury, K.A.; O’Neill, Z. Using Change-Point and Gaussian Process Models to Create Baseline Energy Models in Industrial Facilities: A Comparison. Appl. Energy 2018, 213, 415–425. [Google Scholar] [CrossRef]
- Kiessling, R. Lead Acid Battery Formation Techniques. Digatron Firing Circuits Digatron 1992, 1–31. [Google Scholar]
- Zanconato, M.D.; de Rossi, B.B.; Johansen, H.D.; Chaves, M.R.d.M.; Antoniassi, B. Automation Benefits in the Formation Process of Lead-Acid Batteries. Indep. J. Manag. Prod. 2017, 8, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Cabello, J.J.; Sagastume, A.; Sousa, V.; Cabello, M.J. Energy Management of Compressed Air Systems. Assessing the Production and Use of Compressed Air in Industry. Energy 2020, 213, 118662. [Google Scholar] [CrossRef]
- ISO 50001:2018; Energy Management Systems—Requirements with Guidance for Use. ISO: Geneva, Switzerland, 2018.
- ISO 50006; Energy Management Systems—Measuring Energy Performance Using Energy Baselines (EnB) and Energy Performance Indicators (EnPI)—General Principles and Guidance. ISO: Geneva, Switzerland, 2014.
- Wegener, M.; Isalgue, A.; Malmquist, A.; Martin, A.; Santarelli, M.; Arranz, P.; Camarra, O. Exergetic Model of a Small-Scale, Biomass-Based CCHP/HP System for Historic Building Structures. Energy Convers. Manag. X 2021, 12, 100148. [Google Scholar] [CrossRef]
- Bohdanowicz, P.; Martinac, I. Determinants and Benchmarking of Resource Consumption in Hotels-Case Study of Hilton International and Scandic in Europe. Energy Build. 2007, 39, 82–95. [Google Scholar] [CrossRef]
- Puranik, V.S. CUSUM Quality Control Chart for Monitoring Energy Use Performance, 2007. In Proceedings of the IEEM 2007: 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2–5 December 2007; IEEE: Singapore, 2007; pp. 1231–1235. [Google Scholar]
- Lin, B.; Recke, B.; Knudsen, J.K.H.; Jørgensen, S.B. A Systematic Approach for Soft Sensor Development. Comput. Chem. Eng. 2007, 31, 419–425. [Google Scholar] [CrossRef]
- Katronic Katronic Download Centre. Available online: https://www.katronic.com/pages/katronic-datasheets-manuals-and-application-references-for-downloading/ (accessed on 26 April 2023).
- Teledyne FLIR Support for FLIR E53. Available online: https://www.flir.com.mx/support/products/e53/#Documents (accessed on 26 April 2023).
- TESTO Testo 340—Flue Gas Analyzer for Industry. Available online: https://www.testo.com/en-ID/testo-340/p/0632-3340 (accessed on 28 June 2022).
- Stevenson, M. Encyclopedia of Electrochemical Power Sources. In Encyclopedia of Electrochemical Power Sources; Garche, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 165–178. ISBN 9780444527455. [Google Scholar]
- Kermeli, K.; Deuchler, R.; Worrell, E.; Masanet, E. Energy Efficiency and Cost Saving Opportunities for Metal Casting an ENERGY STAR® Guide for Energy and Plant Managers; US EPA: Washington, DC, USA, 2016.
- Minnesota Technical Assistance Program Energy Efficiency Opportunities for Ferrous Metal Casters. Available online: http://www.mntap.umn.edu/industries/facility/metalcast/ferrous/ (accessed on 28 June 2022).
- ITP Metal Casting. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry; U.S. Department of Energy: Columbia, IN, USA, 2005.
- Azeez, R.O.; Bashiru, A.; Olufemi, O.; Olakunle, O.T.; Oludele, A. Development of a High-Efficiency Crucible Furnace for Melting 30kg Non-Ferrous Metal Scraps. Am. J. Eng. Res. 2020, 9, 62–70. [Google Scholar]
- Kirchne, R.L. Electric Resistance Melting: A Low Cost, Efficient Method for the Melting and Heating of Aluminum and Other Metals; The EPRl Center for Metals Product: Pennsylvania, PA, USA, 1986. [Google Scholar]
- UNIDO. Independent Mid-Term Evaluation. Promoting Energy Efficiency and Renewable Energy in Selected Micro, Small and Medium Enterprises (MSME) Clusters in India; UNIDO: Vienna, Austria, 2018. [Google Scholar]
- Szakacs, B.; Scrattish, F. Lead Acid Battery Grid Casting System Installation and Technique. U.S. Patent 4,090,550, 23 May 1978. [Google Scholar]
- Knospe, B. Practical Guide Industrial Flue Gas Analysis; Testo: Alton Hampshire, UK, 2018. [Google Scholar]
- U.S. Department of Energy. Improving Process Heating System Performance: A Sourcebook for Industry, 2nd ed.; Industrial Technologies Program: Washington, DC, USA, 2007; pp. 1–116.
- U.S. Department of Energy. Improving Process Heating System Performance: A Sourcebook for Industry, 3rd ed.; U.S. Department of Energy: Washington, DC, USA, 2015.
- Hebei United Energy Tech Non-Combustible Mineral Wool Insulation. Available online: https://www.alibaba.com/product-detail/Mineral-Wool-Thermal-Conductivity-Price-Mineral_1600121804484.html?spm=a2700.7724857.normal_offer.d_title.32b058b3MMhNVL&s=p (accessed on 28 October 2021).
- Bejan, A. Convection Heat Transfer, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 9780470900376. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Churchill, S.W.; Chu, H.H.S. Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. Int. J. Heat. Mass. Transf. 1975, 18, 1323–1329. [Google Scholar] [CrossRef]
- Boetcher, S.K.S. Natural Convection from Circular Cylinders; Springer: New York, NY, USA, 2014; ISBN 9783319081311. [Google Scholar]
- Martynenko, O.G.; Khramtsov, P.P. Free-Convective Heat Transfer; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 9783540250012. [Google Scholar]
- Kang, G.U.; Chung, B.J.; Kim, H.J. Natural Convection Heat Transfer on a Vertical Cylinder Submerged in Fluids Having High Prandtl Number. Int. J. Heat. Mass. Transf. 2014, 79, 4–11. [Google Scholar] [CrossRef]
- Valero, A.; Valero, A. Chemical Exergy Calculator. Available online: https://www.exergoecology.com/excalc (accessed on 8 March 2022).
- UPME Calculadora de Emisiones. Available online: http://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html (accessed on 18 May 2023).
- CML—Department of Industrial Ecology. CML-IA Characterisation Factors; CML—Department of Industrial Ecology: Leiden, The Netherlands, 2016. [Google Scholar]
- Kusik, C.L.; Kenahan, C.B. Energy Use Patterns for Metal Recycling; U.S. Government Printing Office: Washington, DC, USA, 1978.
- Prabhakar, A.; Mielnicka, J.; Jolly, M.; Salonitis, K. Improving Energy Efficiency in Direct Method for Continuous Casting of Lead Sheets. In The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; Pt F6, pp. 121–132. [Google Scholar] [CrossRef]
- Bouras, F.; Attia, M.E.H.; Khaldi, F. Entropy Generation Optimization in Internal Combustion Engine. Environ. Process. 2015, 2, S233–S242. [Google Scholar] [CrossRef]
- Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals and Applications, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2019; ISBN 978-0073398198. [Google Scholar]
- Frogner, K.; Andersson, M.; Cedell, T.; Svensson, L.; Jeppsson, P.; Ståhl, J.-E. Industrial Heating Using Energy Efficient Induction Technology. In Proceedings of the Proceedings of the 44th CIRP International Conference on Manufacturing Systems, Madison, WI, USA, 31 May–3 June 2011. [Google Scholar]
- Chromalox Impedance Heating System. Available online: https://www-dev.chromalox.com/catalog/industrial-heaters-and-systems/heat-transfer-system/impedance-heating-systems/impedance-heating-system (accessed on 6 December 2021).
- Sandia National Laboratories. Heat Trace Options Report; Sandia National Laboratories: Albuquerque, NM, USA, 2019.
- Sandia National Laboratories. Preheating System Comparison; Sandia National Laboratories: Albuquerque, NM, USA, 2019.
Component | Mass Fraction (%) |
---|---|
CH4 | 96.3 |
N2 | 2.6 |
CO2 | 0.4 |
C2H6 | 0.5 |
C3H8 | 0.1 |
C4H10 | 0.1 |
Total | 100.0 |
GHG | Emission (kg/TJ) | Emission Factor (kgCO2eq./kg) | Equivalent Emission (kgCO2eq./TJ) |
---|---|---|---|
CO2 | 55,540 | 1 | 55,540 |
CO | 3.28 | 3 | 10 |
CH4 | 1 | 28 | 28 |
N2O | 0.1 | 265 | 27 |
Total | - | - | 55,605 |
System | Gas (m3/Month) | Share (%) | Pareto (%) |
---|---|---|---|
Positive grid casting | 24,255 | 36.9 | 36.9 |
Refining | 20,347 | 31.0 | 67.9 |
Production of PbO | 8626 | 13.1 | 81.0 |
Production of terminals and connectors | 5409 | 8.2 | 89.2 |
Tunnel 1 (curing and drying) | 3586 | 5.5 | 94.7 |
Tunnel 2 (curing and drying) | 3492 | 5.3 | 100.0 |
Total | 65,715 | 100.0 | 100.0 |
Flow | Equipment | Flow (kg/Shift) | T (°C) | T (K) | ech | eph | Ech | Eph | ET | ET (%) |
---|---|---|---|---|---|---|---|---|---|---|
(kJ/kg) | (MJ/Shift) | |||||||||
Lead | Crucible | 769.3 | 38 | 311 | 1064.5 | 0.0 | 818.9 | 0.0 | 818.9 | 18.1 |
Fuel * | 38.0 | 38 | 311 | 38,584.0 | 0.0 | 1465.0 | 0.0 | 1465.1 | 32.3 | |
Air | 636.4 | 38 | 311 | 48.4 | 0.0 | 30.8 | 0.0 | 30.8 | 0.7 | |
Molten lead | 769.3 | 450 | 723 | 1064.5 | 62.9 | 818.9 | 48.4 | 867.2 | 19.1 | |
Combustion gas | 674.4 | 253 | 526 | 197.5 | 295.8 | 133.2 | 199.5 | 332.7 | 7.3 | |
Exergy destruction | - | - | - | - | - | - | 1039.4 | 24.6 | ||
Molten lead | Casting machine | 769.3 | 450 | 723 | 1064.5 | 62.9 | 818.9 | 48.4 | 867.2 | 19.1 |
Fuel * | 34.3 | 38 | 311 | 38,584.0 | 0.0 | 1323.6 | 0.0 | 1323.6 | 29.2 | |
Air | 582.6 | 38 | 311 | 48.4 | 0.0 | 28.2 | 0.0 | 28.2 | 0.6 | |
Grids | 735.8 | 80 | 353 | 1064.5 | 6.4 | 783.2 | 4.7 | 787.9 | 17.4 | |
Grids rejected | 33.5 | 80 | 353 | 1064.5 | 6.4 | 35.7 | 0.2 | 35.9 | 0.8 | |
Combustion gas | 616.9 | 302 | 575 | 164.4 | 363.3 | 101.4 | 224.1 | 325.5 | 7.2 | |
Heat loss | - | - | - | - | - | - | - | 43.9 | 1.0 | |
Exergy destruction | - | - | - | - | - | - | - | 957.6 | 22.6 |
Flow | Equipment | m (kg/Batch) | T (°C) | Xch | Xph | Xtotal | |
---|---|---|---|---|---|---|---|
(MJ/Batch) | |||||||
Scrap | In | Crucible | 32,793 | 38 | 34,908 | 0 | 34,908 |
Natural gas | 325 | 38 | 12,543 | 0 | 12,543 | ||
Air | 5088 | 38 | 247 | 0 | 247 | ||
Refined lead | Out | 29,123 | 400 | 31,001 | 520 | 31,521 | |
Slag | 3670 | 400 | 3907 | 66 | 3972 | ||
Surface heat loss | - | 160 | - | 375 | 375 | ||
Combustion gases | 5413 | 313 | 1034 | 492 | 1526 | ||
Refined lead | In | Ingot | 29,123 | 400 | 31,001 | 520 | 31,521 |
Natural gas | 133 | 38 | 5113 | 0 | 5113 | ||
Ingots | Out | 29,123 | 90 | 31,001 | 17 | 31,018 |
Parameter | Unit | Crucible Surface | ||
---|---|---|---|---|
Current | Optimized | Savings | ||
Surface temperature | °C | 159.6 | 80 | - |
Surface heat loss | W | 8971 | 2454 | 6516 |
Excess air (λ) | - | 1.41 | 1.10 | - |
Combustion efficiency (λ) | % | 72.5 | 74.2 | 1.7 |
Natural gas | m3/batch | 471.7 | 437.6 | 34.1 |
GHG emissions | kgCO2eq./batch | 973.1 | 902.7 | 70.4 |
Cost | USD/batch | 235.9 | 218.8 | 17.1 |
Equipment | Unit | Combustion | Impedance | Savings | ||
---|---|---|---|---|---|---|
Min. | Max. | Min. | Max. | |||
Natural gas | m3/batch | 192.3 | - | - | - | - |
Electricity | kWh/batch | - | 137.7 | 309.8 | - | - |
Energy costs | USD/batch | 96.1 | 20.7 | 46.5 | 75.5 | 49.7 |
GHG emissions | kgCO2eq./batch | 396.7 | 22.9 | 51.4 | 373.8 | 345.2 |
Capital cost | USD | - | 4118 | - | - |
Flow | Process | T (°C) | Flow (kg/h) | Xch (kW) | Xph (kW) | XT (kW) |
---|---|---|---|---|---|---|
Lead | Crucible | 38 | 957.4 | 283.1 | 0.0 | 283.1 |
Molten lead | 414 | 957.4 | 283.1 | 8.9 | 292.0 | |
Natural gas | 38 | 4.5 | 48.4 | 0.0 | 48.4 | |
Air (combustion) | 38 | 106.4 | 1.4 | 0.0 | 1.4 | |
Combustion gases | 253 | 110.9 | 1.5 | 2.2 | 3.7 | |
Natural gas | Barton | 38 | 0.5 | 5.4 | 0.0 | 5.4 |
Air (combustion) | 38 | 12.6 | 0.2 | 0.0 | 0.2 | |
Air (reaction) | 38 | 124.4 | 1.7 | 0.0 | 1.7 | |
Leady oxide | 97 | 1009.5 | 120.5 | 0.4 | 120.9 |
Parameter | Unit | Crucible Surface | |||
---|---|---|---|---|---|
Current | Optimized | Savings | |||
Temperature | °C | 159.3 | 94.5 | - | |
Heat loss | kW | 1.55 | 0.61 | 0.94 | |
λ | 1.5 | 1.1 | - | ||
ηcombustion | % | 75.8 | 77.1 | 1.3 | |
Natural gas | Insulation | 85 | 33 | 51 | |
Combustion | - | - | 52 | ||
GHG emissions | Insulation | 175 | 69 | 106 | |
Combustion | - | - | 107 | ||
Cost | Insulation | 87 | 34 | 53 | |
Combustion | - | - | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Mendoza Fandiño, J.M.; Tavera Quiroz, H.C. Management of Natural Gas Consumption during the Manufacturing of Lead-Acid Batteries. Sustainability 2023, 15, 12030. https://doi.org/10.3390/su151512030
Sagastume Gutiérrez A, Cabello Eras JJ, Mendoza Fandiño JM, Tavera Quiroz HC. Management of Natural Gas Consumption during the Manufacturing of Lead-Acid Batteries. Sustainability. 2023; 15(15):12030. https://doi.org/10.3390/su151512030
Chicago/Turabian StyleSagastume Gutiérrez, Alexis, Juan Jose Cabello Eras, Jorge Mario Mendoza Fandiño, and Humberto Carlos Tavera Quiroz. 2023. "Management of Natural Gas Consumption during the Manufacturing of Lead-Acid Batteries" Sustainability 15, no. 15: 12030. https://doi.org/10.3390/su151512030
APA StyleSagastume Gutiérrez, A., Cabello Eras, J. J., Mendoza Fandiño, J. M., & Tavera Quiroz, H. C. (2023). Management of Natural Gas Consumption during the Manufacturing of Lead-Acid Batteries. Sustainability, 15(15), 12030. https://doi.org/10.3390/su151512030