Estimation of Fishery Losses from Great Cormorants during the Wintering Period in Greek Lagoons (Ionian Sea, W. Greece)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Data Scources
2.2. Modeling Approach
2.3. Model Calibration and Sensitivity Analysis
2.4. Fishing Patterns in the Lagoons
2.5. Distribution of Losses at Lagoons and Time Appearance of Losses
3. Results
4. Discussion
- (a)
- The natural mortality M was ±42% in each species, which might include the inter-annual variability and the variability driven by the von Bertalanffy estimates (L∞ and k participate in the M estimation; Table A1).
- (b)
- (c)
- The studied lagoons exhibited differences in physicochemical variables [42], which explains the spatial expansion of mugilids according to their preferences [46]. Model iterations recorded a series of cases that simulated variable species composition. In each case, this affects the average value of the model’s estimates but not the range of distributions.
- (d)
- The analysis indicated that most of the losses are predicted to be in the two largest lagoons (No 13, Tsoukalio-Rodia and No 9, Logarou; Figure 1). In these lagoons, the high representation of mugilids is maintained at the same levels [42]. According to fishers, most of the losses in the above-mentioned lagoons were on the gilthead seabream. However, the gilthead seabream (except for a small lagoon: No 12, Pogonitsa; Figure 1) consists of a relatively small proportion to landings (<15%), and in some cases, the production was supported by enrichment programs [42]. It seems that during periods of low temperatures, gilthead seabream searches for favorable sites and is concentrated near to the communication, with the sea channels being an easy target for cormorants. In each case, this impact is temporarily limited to a few days, and it might not be sufficient to alter the prey species’ composition in the study lagoons.
- (e)
- The bird-days establishment of the cormorants in each lagoon ranged from 12 to 110 bird·days·year−1·ha−1, which is in agreement with the estimates reported by a previous study [13] (inland waters/lagoons: 20 to 100 bird·days·year−1·ha−1). Certain wetlands have been excluded from our estimations (e.g., the Amvrakikos Gulf, rivers Louros and Arachthos, Lake Voulkaria). The area of the gulf is apparently used by cormorants in limited situations for feeding, such as preying on small pelagics, which consists of 2.8% of DFI. Given also that freshwater fish species are not included in the feeding spectra of cormorants [24], the adjacent lakes and the upper system of rivers have not been considered in this study.
- (f)
- The wintering population of cormorants in the studied area referred to the maximum number of midwinter estimates. However, the first appearance of the cormorants in the Mediterranean is observed from the mid October and the last ones in mid April, with a progressive increase during the winter and a gradual decrease after the maximum appearance [47]. Through the use of a normal distribution, the timing of the appearance was simulated (mean = 90 days, SD = 25.7 days) and indicated that the recorded bird value (maximum value of distribution) multiplied by 64.39 days was equal to the bird-days estimated from the simulated appearance of cormorants. Thus, the 65 days estimated as the wintering period could be considered as a reliable estimate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Mugilids Species | |||||||
---|---|---|---|---|---|---|---|
Chelon saliens | Chelon aurata | Mugil cephalus | Chelon ramada | Chelon labrosus | |||
Total length | L∞ (cm) | 32.99 | 69.30 | 79.10 | 56.33 | 47.20 | |
Weight | W∞ (gr) | 299.77 | 2656.31 | 4960.19 | 1873.70 | 1128.28 | |
k | 0.261 | 0.136 | 0.151 | 0.179 | 0.200 | ||
t0 | −0.470 | −1.140 | −0.100 | −0.856 | −0.400 | ||
W = a × TLb | a | 0.00784 | 0.0056 | 0.0072 | 0.0055 | 0.008 | |
b | 3.018 | 3.130 | 3.041 | 3.160 | 3.010 | ||
Reference | [43] | [50] | |||||
Tm (°C) | 18 | Reference | |||||
M # | 0.587 | 0.312 | 0.322 | 0.396 | 0.448 | [51] | |
weight category | Cat A | Cat B | Cat C | ||||
Weight range | >400 gr | 150–400 gr | 80–150 gr | [48] | |||
v (€.kg−1) | [24] | [51] | [43] | market values 2015–2020 | |||
(DFI) Daily food intake of Birds, | DFI for mugilids (gr) | 169.6 | [24] | ||||
(Lcr) Length of fish consumed | Lcr for mugilids (cm) | 15–24 | [24] | ||||
q | 0.134 | 0.089 | 0.147 | 0.341 | 0.293 | [24] |
Appendix B
No | Species | Situation | Variable | abr | Mean | SD | Min | Max | |
---|---|---|---|---|---|---|---|---|---|
Input data | |||||||||
1 | Chelon saliens | consumed | W (gr) | CS Wcr | 36.30 | 12.03 | 4.02 | 100.22 | estimated by #17 and #6 |
2 | Chelon aurata | W (gr) | CA Wcr | 36.41 | 12.07 | 4.74 | 98.40 | estimated by #17 and #7 | |
3 | Mugil cephalus | W (gr) | MC Wcr | 36.38 | 12.05 | 3.41 | 106.27 | estimated by #17 and #8 | |
4 | Chelon ramada | W (gr) | CR Wcr | 36.40 | 12.02 | 4.73 | 96.57 | estimated by #17 and #9 | |
5 | Chelon labrosus | W (gr) | CL Wcr | 36.40 | 12.04 | 5.31 | 98.09 | estimated by #17 and #10 | |
6 | Chelon saliens | W Proportion | CS q | 0.20 | 0.05 | 0.08 | 0.40 | random distribution | |
7 | Chelon aurata | W Proportion | CA q | 0.20 | 0.05 | 0.08 | 0.40 | random distribution | |
8 | Mugil cephalus | W Proportion | MC q | 0.20 | 0.05 | 0.08 | 0.40 | random distribution | |
9 | Chelon ramada | W Proportion | CR q | 0.20 | 0.05 | 0.08 | 0.40 | random distribution | |
10 | Chelon labrosus | W Proportion | CL q | 0.20 | 0.05 | 0.08 | 0.40 | random distribution | |
11 | Chelon saliens | L (cm) | CS Lcr | 19.30 | 1.30 | 14.25 | 25.10 | normal distribution | |
12 | Chelon aurata | L (cm) | CA Lcr | 19.30 | 1.31 | 13.79 | 25.07 | normal distribution | |
13 | Mugil cephalus | L (cm) | MC Lcr | 19.30 | 1.30 | 13.94 | 24.93 | normal distribution | |
14 | Chelon ramada | L (cm) | CR Lcr | 19.31 | 1.31 | 13.77 | 24.51 | normal distribution | |
15 | Chelon labrosus | L (cm) | CL Lcr | 19.30 | 1.30 | 12.84 | 24.79 | normal distribution | |
16 | mean length (cm) | Lcr | 19.09 | 0.63 | 16.10 | 21.69 | estimated by #11 to #15 | ||
17 | DFI (kg) | DFI | 0.18 | 0.04 | 0.03 | 0.32 | normal distribution | ||
18 | individuals | Ncr | 3.12 | 0.68 | 0.60 | 6.80 | estimated by #1 to #15 | ||
19 | Chelon saliens | M range | CS M | 0.59 | 0.06 | 0.34 | 0.83 | estimated by Mi and #24 | |
20 | Chelon aurata | M range | CA M | 0.31 | 0.03 | 0.18 | 0.44 | estimated by Mi and #24 | |
21 | Mugil cephalus | M range | MC M | 0.32 | 0.03 | 0.19 | 0.46 | estimated by Mi and #24 | |
22 | Chelon ramada | M range | CR M | 0.40 | 0.04 | 0.23 | 0.56 | estimated by Mi and #24 | |
23 | Chelon labrosus | M range | CL M | 0.45 | 0.04 | 0.26 | 0.64 | estimated by Mi and #24 | |
24 | M fluctuation | Mcg | 1.00 | 0.10 | 0.58 | 1.42 | normal distribution | ||
25 | catchability (proportion) | catchP | 0.60 | 0.23 | 0.20 | 1.00 | random distribution | ||
26 | Chelon saliens | captured | Lc (cm) | CS Lc | 26.87 | 2.87 | 18.66 | 31.31 | beta distribution and random distribution |
27 | Chelon aurata | Lc (cm) | CA Lc | 37.25 | 7.85 | 21.47 | 49.20 | beta distribution and random distribution | |
28 | Mugil cephalus | Lc (cm) | MC Lc | 42.55 | 9.89 | 23.68 | 56.95 | beta distribution and random distribution | |
29 | Chelon ramada | Lc (cm) | CR Lc | 35.52 | 6.68 | 21.09 | 45.27 | beta distribution and random distribution | |
30 | Chelon labrosus | Lc (cm) | CL Lc | 32.31 | 5.25 | 19.97 | 40.00 | beta distribution and random distribution | |
Output model | |||||||||
31 | Chelon saliens | captured | W (gr) | CS Wc | 9.85 | 8.93 | 0.20 | 78.55 | estimated |
32 | Chelon aurata | W (gr) | CA Wc | 55.55 | 33.37 | 4.07 | 341.29 | estimated | |
33 | Mugil cephalus | W (gr) | MC Wc | 75.00 | 46.60 | 3.91 | 433.98 | estimated | |
34 | Chelon ramada | W (gr) | CR Wc | 36.68 | 21.99 | 2.36 | 240.28 | estimated | |
35 | Chelon labrosus | W (gr) | CL Wc | 22.31 | 14.48 | 0.88 | 135.13 | estimated | |
36 | Chelon saliens | E (Euro) | CS Ec | 0.02 | 0.01 | 0.00 | 0.12 | estimated | |
37 | Chelon aurata | E (Euro) | CA Ec | 0.25 | 0.20 | 0.00 | 2.05 | estimated | |
38 | Mugil cephalus | E (Euro) | MC Ec | 0.39 | 0.30 | 0.01 | 2.60 | estimated | |
39 | Chelon ramada | E (Euro) | CR Ec | 0.15 | 0.11 | 0.00 | 1.44 | estimated | |
40 | Chelon labrosus | E (Euro) | CL Ec | 0.06 | 0.04 | 0.00 | 0.41 | estimated | |
41 | aT (year) | aT (year) | 3.46 | 1.43 | 1.00 | 6.00 | estimated | ||
42 | fishery biomass (kg) | Wc | 0.20 | 0.10 | 0.02 | 0.76 | estimated | ||
43 | E (Euro) | Ec | 0.86 | 0.52 | 0.05 | 4.45 | estimated | ||
44 | mean proportion | Cat A | 0.50 | 0.33 | 0.00 | 1.00 | estimated | ||
45 | mean proportion | Cat B | 0.39 | 0.28 | 0.00 | 1.00 | estimated | ||
46 | mean proportion | Cat C | 0.11 | 0.16 | 0.00 | 1.00 | estimated |
References
- Perez-Ruzafa, A.; Mompeán, C.; Marcos, C. Hydrographic, geomorphologic and fish assemblage relationships in coastal lagoons. Hydrobiologia 2007, 577, 107–125. [Google Scholar] [CrossRef]
- GFCM. Mediterranean Coastal Lagoons: Sustainable Management and Interactions among Aquaculture, Capture Fisheries and the Environment; FAO Fish. Technical Paper; FAO: Rome, Italy, 2015; p. 95. [Google Scholar]
- Mateus, M.; Almeida, D.; Simonson, W.; Felgueiras, M.; Banza, P.; Batty, L. Conflictive uses of coastal areas: A case study in a southern European coastal lagoon (Ria de Alvor, Portugal). Ocean Coast. Manag. 2016, 132, 90–100. [Google Scholar] [CrossRef]
- Pearce, F.; Crivelli, A.J. Characteristics of Mediterranean Wetlands; MedWet Publications: Arles, France, 1994. [Google Scholar]
- Kapetsky, J.M. Coastal Lagoon Fisheries around the World: Some Perspectives On Fishery Yields, and Other Comparative Fishery Characteristics. In Studies and Reviews-General Fisheries Council for the Mediterranean (FAO); FAO: Rome, Italy, 1984; Volume 61. [Google Scholar]
- Koutrakis, E.; Conides, A.; Parpoura, A.C.; Van Ham, E.H.; Katselis, G.; Koutsikopoulos, C. Lagoon fisheries’ resources in Hellas. In State of Hellenic Fisheries; Papaconstantinou, C., Zenetos, A., Vassilopoulou, V., Tserpes, G., Eds.; Hellenic Centre for Marine Research: Athens, Greece, 2007; pp. 223–232. [Google Scholar]
- Marchowski, D.; Leitner, M. Conservation implications of extraordinary Greater Scaup (Aythya marila) concentrations in the Odra Estuary, Poland. Condor 2019, 121, duz013. [Google Scholar] [CrossRef]
- Marchowski, D.; Jankowiak, Ł.; Ławicki, Ł.; Wysocki, D.; Chylarecki, P.W. Fishery bycatch is among the most important threats to the European population of Greater Scaup Aythya marila. Bird Conserv. Int. 2020, 30, 176–193. [Google Scholar] [CrossRef]
- Marchowski, D. Bycatch of Seabirds in the Polish Part of the Southern Baltic Sea in 1970–2018: A Review. Acta Ornithol. 2022, 56, 139–158. [Google Scholar] [CrossRef]
- Zydelis, R.; Small, C.; French, G. The incidental catch of seabirds in gillnet fisheries: A global review. Biol. Conserv. 2013, 162, 76–88. [Google Scholar] [CrossRef]
- Steffens, W. Great Cormorant Phalacrocorax carbo is threatening fish populations and sustainable fishing in Europe. Am. Fish. Soc. Symp. 2011, 75, 189–200. [Google Scholar]
- Seiche, K.; Gerdeaux, D.; Gwiazda, R.; Lévai, F.; Musil, P.; Nemenonoks, O.; Strod, T.; Carss, D. Cormorant-fisheries conflicts in Carp pond areas in Europe and Israel: An INTERCAFE overview. In Action 635 Final Report V NERC Centre for Ecology & Hydrology on Behalf of COST; European Cooperation of Science and Technology: Brussels, Belgium, 2012; p. 129. ISBN 978-1-906698-10-2. Available online: http://www.intercafeproject.net/pdf/Carp_Ponds_Manual_FOR_WEB.pdf (accessed on 27 May 2023).
- Ostman, O.; Bostrom, M.K.; Bergstrom, U.; Andersson, J.; Lunneryd, S.-G. Estimating Competition between Wildlife and Humans-A Case of Cormorants and Coastal Fisheries in the Baltic Sea. PLoS ONE 2013, 8, e83763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, S.; Bergström, U.; Bonsdorff, E.; Vetemaa, M. Competition for the fish-fish extraction from the Baltic Sea by humans, aquatic mammals, and birds. ICES J. Mar. Sci. 2018, 75, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Ostman, O.; Bergenius, M.; Bostrom, M.K.; Lunneryd, S.G. Do cormorant colonies affect local fish communities in the Baltic Sea? Can. J. Fish. Aquat. Sci. 2012, 69, 1047–1055. [Google Scholar] [CrossRef]
- Veneranta, L.; Heikinheimo, O.; Marjomäki, T.J. Cormorant (Phalacrocorax carbo) predation on a coastal perch (Perca fluviatilis) population: Estimated effects based on PIT tag mark-recapture experiment. ICES J. Mar. Sci. 2020, 77, 2611–2622. [Google Scholar] [CrossRef]
- Adámek, Z.; Kajgrová, L. Great cormorant (Phalacrocorax carbo sinensis) occurrence in carp aquacultural ponds: A case study from the South Bohemia (Czech Republic) pond region. Aquacult. Int. 2022, 30, 2541–2556. [Google Scholar] [CrossRef]
- Russell, R.W. Comparative demography and life history tactics of seabirds: Implications for conservation and marine monitoring. Am. Fish. Soc. Symp. 1999, 23, 51–76. [Google Scholar]
- Marchowski, D.; Mohr, A.; Ławicki, Ł.; Jankowiak, Ł. Warmer winters increase the breeding success of the Goosander: The case of the Pomeranian Lake District in Poland. Ardea 2022, 110, 31–40. [Google Scholar] [CrossRef]
- Van Eerden, M.R.; Koffijberg, K.; Platteeuw, M. Riding on the crest of the wave: Possibilities and limitations for a thriving population of migratory Cormorants Phalacrocorax carbo in man-dominated wetlands. Ardea 1995, 83, 1–9. [Google Scholar] [CrossRef]
- Russell, I.C.; Dare, P.J.; Eaton, D.R.; Armstrong, J.D. Assessment of the Problem of Fish-Eating Birds in Inland Fisheries in England and Wales; Report to the Ministry of Agriculture, Fisheries and Food; Project Number VC0104; MAFF: London, UK, 1996; 130p. [Google Scholar]
- Herrmann, C.; Bregnballe, T.; Larsson, K.; Leivits, M.; Rusanen, P. Population Development of Baltic Bird Species: Great Cormorant (Phalacrocorax carbo sinensis). HELCOM Baltic Sea Environment Fact Sheets. 2019. Available online: https://helcom.fi/baltic-sea-trends/environment-fact-sheets/biodiversity/population-development-of-great-cormorant/ (accessed on 31 December 2019).
- BirdLife International. Species Factsheet: Phalacrocorax carbo, 2023. Available online: http://datazone.birdlife.org/species/factsheet/great-cormorant-phalacrocorax-carbo (accessed on 24 July 2023).
- Liordos, V.; Zogaris, S.; Papandropoulos, D. Great Cormorant Phalacrocorax carbo food and human perceptions at the Amvrakikos Gulf, western Greece. In Proceedings of the 7th International Conference on Cormorants, Villeneuve, Switzerland, 23–26 November 2005; Van Eerden, M.R., van Rijn, S., Keller, V., Eds.; Wetlands International-IUCN Cormorant Research Group: Lelystad, The Netherlands, 2005; pp. 102–111. [Google Scholar]
- Goutner, V.; Papakostas, G.; Economidis, P.S. Diet and growth of Great cormorant (Phalacrocorax carbo) nestlings in a Mediterranean estuarine environment (Axios Delta, Greece). Israel J. Zool. 1997, 43, 133–148. [Google Scholar] [CrossRef]
- Liordos, V.; Goutner, V. Spatial Patterns of Winter Diet of the Great Cormorant in Coastal Wetlands of Greece. Waterbirds 2007, 30, 103–111. [Google Scholar] [CrossRef]
- Kazantzidis, S. Status of the breeding population of Great Cormorants in Greece in 2012. In National Reports from the 2012 Breeding Census of Great Cormorants Phalacrocorax carbo in Parts of the Western Palearctic; Bregnballe, T., Lynch, J., Parz-Gollner, R., Marion, L., Volponi, S., Paquet, J.-Y., Van Eerden, M.R., Eds.; IUCN-Wetlands International Cormorant Research Group Report; Technical Report from DCE—Danish Centre for Environment and Energy, Aarhus University; DCE: Aarhus, Denmark, 2013; Volume 22, pp. 51–54. Available online: http://dce2.au.dk/pub/TR22.pdf (accessed on 27 May 2023).
- Liordos, V.; Pergantis, F.; Perganti, I.; Roussopoulos, Y. Long-term population trends reveal increasing importance of a Mediterranean wetland complex (Messolonghi lagoons, Greece) for wintering waterbirds. Zool. Stud. 2014, 53, 12. [Google Scholar] [CrossRef] [Green Version]
- Carss, D.N.; Marzano, M. Reducing the Conflict between Cormorants and Fisheries on a Pan-European Scale. Summary and National Overviews. Final Report Concerted Action Q5CA-2000 2005, 1387. Available online: http://www.intercafeproject.net/pdf/REDCAFESummaryandNationalOverview.pdf (accessed on 27 May 2023).
- Cowx, I. Policy Department Structural and Cohesion Policies. Directorate-General for Internal Policies. 2013. Available online: http://ec.europa.eu/environment/nature/cormorants/files/Cowx_Report_for_Parliament.pdf (accessed on 27 May 2023).
- Platteeuw, M.; van Eerden, M.R. Time and energy constraints of fishing behavior in breeding Cormorants Phalacrocorax carbo sinensis at lake Ijsselmeer, The Netherlands. Ardea 1995, 83, 223–234. [Google Scholar]
- Paillisson, J.M.; Carpentier, A.; Le Gentil, J.; Marion, L. Space utilization by a cormorant (Phalacrocorax carbo L.) colony in a multi- wetland complex in relation to feeding strategies. C. R. Biol. 2004, 327, 493–500. [Google Scholar] [CrossRef]
- van Dam, C.; Asbirk, S. Cormorants and Human Interests. In Proceedings of the Workshop towards an International Conservation and Management Plan for the Great Cormorant (Phalacrocorax carbo), Lelystad, The Netherlands, 4 October 1996. [Google Scholar]
- Bildsøe, M.; Jensen, I.B.; Vestergaard, K.S. Foraging behaviour of cormorants Phalacrocorax carbo in pound nets in Denmark: The use of barrel nets to reduce predation. Wildl. Biol. 1998, 4, 129–136. [Google Scholar] [CrossRef]
- Keller, T.M.; Lanz, U. Great Cormorant Phalacrocorax carbo sinensis management in Bavaria, southern Germany—What can we learn from seven winters with intensive shooting? Vogewelt 2003, 124, 189–200. [Google Scholar]
- Polensky, J.; Regenda, J.; Adamek, Z.; Cisar, P. Prospects for the monitoring of the great cormorant (Phalacrocorax carbo sinensis) using a drone and stationary cameras. Ecol. Inform. 2022, 70, 101726. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Heikinheimo, O.; Lehtonen, H.; Rusanen, P. The role of cormorants, fishing effort and temperature on the catches per unit effort of fisheries in Finnish coastal areas. Fish. Res. 2017, 190, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Dimitriou, E.; Kapareliotis, A.; Akovitiotis, K.; Pergantis, F.; Perifanos, M.; Tsagarakis, E. Recording of injured fish from attacks by the species Phalacrocorax carbo Linnaeus 1758, Great cormorant, in the closed lagoon “Buka” at the mouth of the Achelos river. In Proceedings of the 11th Panhellenic Conference of Ichthyologists, Preveza, Greece, 10–13 April 2003. [Google Scholar]
- Salmi, J.A.; Auvinen, H.; Raitaniemi, J.; Kurkilahti, M.; Lilja, J.; Maikola, R. Perch (Perca fluviatilis) and pikeperch (Sander lucioperca) in the diet of the great cormorant (Phalacrocorax carbo) and effects on catches in the Archipelago Sea, Southwest coast of Finland. Fish. Res. 2015, 164, 26–34. [Google Scholar] [CrossRef]
- King, M. Fisheries Biology. In Assessment and Management; Oxford Press: London, UK, 1995; p. 342. [Google Scholar]
- Katselis, G.; Koukou, K.; Moutopoulos, D. Yield per recruit and spawning stock biomass models for the management of four Mugilidae species in Mesolonghi—Aitoliko lagoon (W. Greece). Int. Aquat. Res. 2010, 2, 155–162. [Google Scholar]
- Katselis, G.; Moutopoulos, D.K.; Dimitriou, E.; Koutsikopoulos, C. Long-term changes of fisheries landings in enclosed gulf lagoons (Amvrakikos gulf, W Greece): Influences of fishing and other human impacts. Estuar. Coast. Shelf Sci. 2013, 131, 31–40. [Google Scholar] [CrossRef]
- HOS. Hellenic Ornithological Society. 2021. Available online: https://www.ornithologiki.gr/el/oi-draseis-mas/diatirisi-erevna/parakoloythisi-katagrafi-poulion/115-mesoxeimoniatikes-katametriseis-ydrovion-poulion (accessed on 27 May 2023).
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice-Hall/Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Liordos, V. Biology and Ecology of Great Cormorant (Phalacrocorax carbo L. 1758) Populations Breeding and Wintering in Greek Wetlands; Aristotle University of Thessaloniki: Serres, Greece, 2004; 308p. [Google Scholar]
- Oren, O.H. Aquaculture of Grey Mullets; CUP Archive: Cambridge, UK, 1981; 507p, ISBN 052122926X-9780521229265. [Google Scholar]
- Bregnballe, T.; Frederiksen, M.; Gregersen, J. Seasonal distribution and timing of migration of Cormorants Phalacrocorax carbo sinensis breeding in Denmark. Bird Study 1997, 44, 257–276. [Google Scholar] [CrossRef]
- Katselis, G.; Koutsikopoulos, C.; Rogdakis, Y.; Lachanas, T.; Dimitriou, E.; Vidalis, K. A model to estimate the annual production of roes (avgotaracho) of flathead mullet (Mugil cephalus) based on the spawning migration of species. Fish. Res. 2005, 75, 138–148. [Google Scholar] [CrossRef]
- Dimitriou, E.; Katselis, G.; Moutopoulos, D.K.; Milios, K.; Malamis, A.; Koutsikopoulos, C. Description of the processing stages of a protected designation of origin fish product: The Greek caviar avgotaracho messolongiou. Agric. Econ. Rev. 2016, 17, 50–62. [Google Scholar]
- Froese, R.; Pauly, D. (Eds.) FishBase. World Wide Web Electronic Publication. 2023. Available online: www.fishbase.org (accessed on 1 February 2023).
- Pauly, D. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J. Cons. Explor. Mer. 1981, 39, 175–192. [Google Scholar] [CrossRef]
tEc (€·bird−1·day−1) | tWc (kg·bird−1·day−1) | ||||
---|---|---|---|---|---|
FP | Mean (SD) | CF Range (0.025–0.975) | Mean (SD) | CF Range (0.025–0.975) | n |
1 | 0.614 a (0.376) | 0.151–1.538 | 0.196 a (0.093) | 0.061–0.399 | 20,000 |
2 | 0.886 b (0.499) | 0.221–2.064 | 0.203 b (0.099) | 0.059–0.424 | 20,000 |
3 | 1.075 c (0.554) | 0.306–2.351 | 0.198 a (0.099) | 0.057–0.429 | 20,000 |
Total | 0.857 (0.518) | 0.186–2.112 | 0.199 (0.097) | 0.058–0.416 | 60,000 |
FS | aT (Years) | Mean Value | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||
tEc | 1 | 0.160 (0.26) | 0.407 (0.66) | 0.046 (0.07) | 0.001 (0.00) | 0.000 (0.00) | 0.000 (0.00) | 0.615 |
2 | 0.017 (0.01) | 0.317 (0.36) | 0.350 (0.39) | 0.155 (0.17) | 0.034 (0.03) | 0.002 (0.00) | 0.879 | |
3 | 2.857 (2.65) | 0.006 (0.00) | 0.088 (0.08) | 0.358 (0.33) | 0.509 (0.47) | 0.112 (0.10) | 1.075 | |
total | 0.059 (0.06) | 0.243 (0.28) | 0.162 (0.18) | 0.171 (0.20) | 0.181 (0.21) | 0.038 (0.04) | 0.856 | |
tWc | 1 | 0.064 (0.32) | 0.121 (0.61) | 0.010 (0.05) | 0.000 (0.00) | 0.001 (0.00) | 0.000 (0.00) | 0.197 |
2 | 0.006 (0.03) | 0.082 (0.41) | 0.075 (0.37) | 0.029 (0.14) | 0.006 (0.03) | 0.000 (0.00) | 0.201 | |
3 | 9.922 (4.99) | 0.001 (0.00) | 0.018 (0.09) | 0.068 (0.34) | 0.090 (0.45) | 0.019 (0.09) | 0.198 | |
total | 0.023 (0.11) | 0.068 (0.34) | 0.035 (0.17) | 0.032 (0.16) | 0.032 (0.16) | 0.006 (0.03) | 0.199 |
Coefficients (Standard Error) | Sensitivity Analysis | |||||
---|---|---|---|---|---|---|
Fishing Strategy | ||||||
1 | 2 | 3 | 1 | 2 | 3 | |
Constant (c) | −1.62 (0.0823) | 0.449 (0.0704) | 1.660 (0.0358) | |||
Int. Var | %changes in tEc when Int.Var change ±20% | |||||
catchP | 1.851 (0.0109) | 1.863 (0.0093) | 1.853 (0.0047) | 19.92–24.88 | 20.04–25.06 | 19.93–24.90 |
Mcg | −0.860 (0.0254) | −1.31 (0.0213) | −1.700 (0.0109) | 15.89–18.89 | 23.13–30.09 | 28.94–40.73 |
aLcr | −0.010 (0.0040) | −0.08 (0.0034) | −0.110 (0.0017) | 6.03–6.42 | 27.04–37.07 | 35.27–54.49 |
WcrCS | 0.001 (0.0002) | 0.000 (0.0001) | 0.000 (9.5223) | 0.92–0.93 | 0.51–0.51 | 0.48–0.48 |
WcrCA | 0.007 (0.0002) | 0.007 (0.0001) | 0.008 (0.0000) | 5.00–5.26 | 5.57–5.90 | 6.24–6.65 |
WcrMC | 0.011 (0.0002) | 0.012 (0.0001) | 0.012 (9.5908) | 7.99–8.68 | 8.46–9.24 | 8.84–9.69 |
WcrCR | 0.005 (0.0002) | 0.005 (0.0001) | 0.004 (9.6104) | 4.25–4.44 | 4.04–4.21 | 3.47–3.60 |
WcrCL | 0.002 (0.0002) | 0.002 (0.0001) | 0.001 (9.5399) | 1.90–1.94 | 1.46–1.48 | 1.22–1.24 |
R2 | 0.651 | 0.734 | 0.918 | |||
n | 20,000 | 20,000 | 20,000 |
No | Area (km2) | Yield T (t·km−2) | Yield M (t·km−2) | PrpM | n | Cat A | Cat B | Cat C | FSe |
---|---|---|---|---|---|---|---|---|---|
1 | 2.26 | Unknown fishing activity and fishing data during 2002–2020 | 2 * | ||||||
2 | 3.29 | 1.30 (0.75) | 0.48 (0.22) | 0.37 | 19 | 0.42 | 0.29 | 0.29 | 2 |
3 | 5.25 | 1.36 (0.80) | 0.76 (0.39) | 0.55 | 14 | 0.37 | 0.28 | 0.35 | 2 |
4 | 0.66 | Unknown fishing activity and fishing data during 2002–2020 | 2 * | ||||||
5 | 0.56 | Unknown fishing activity and fishing data | |||||||
6 | 1.94 | 0.29 (0.15) | 0.13 (0.10) | 0.45 | 5 | 1.00 | 0.00 | 0.00 | 3 |
7 | 3.22 | 1.28 (0.78) | 0.19 (0.16) | 0.14 | 6 | 0.54 | 0.32 | 0.15 | 2 |
8 | 0.39 | Unknown fishing activity and fishing data | |||||||
9 | 30.64 | 2.65 (0.83) | 1.24 (0.56) | 0.46 | 16 | 0.21 | 0.59 | 0.20 | 1 |
10 | 1.12 | 1.40 (1.01) | 0.65 (0.43) | 0.46 | 19 | 0.75 | 0.20 | 0.05 | 3 |
11 | 1.90 | 2.29 (1.84) | 0.60 (0.52) | 0.26 | 18 | 0.74 | 0.16 | 0.10 | 3 |
12 | 0.47 | 2.39 (2.40) | 0.11 (0.09) | 0.05 | 12 | 0.58 | 0.42 | 0.00 | 2 |
13 | 43.90 | 0.73 (0.27) | 0.36 (0.14) | 0.48 | 17 | 0.31 | 0.49 | 0.20 | 1 |
14 | 0.29 | 4.40 (3.59) | 1.61 (1.58) | 0.36 | 18 | 0.41 | 0.47 | 0.13 | 1 |
FS | 1 | 0.18 | 0.59 | 0.24 | 1 | ||||
2 | 0.50 | 0.40 | 0.10 | 2 | |||||
3 | 0.81 | 0.19 | 0.01 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katselis, G.; Konstas, S.; Moutopoulos, D.K. Estimation of Fishery Losses from Great Cormorants during the Wintering Period in Greek Lagoons (Ionian Sea, W. Greece). Sustainability 2023, 15, 12007. https://doi.org/10.3390/su151512007
Katselis G, Konstas S, Moutopoulos DK. Estimation of Fishery Losses from Great Cormorants during the Wintering Period in Greek Lagoons (Ionian Sea, W. Greece). Sustainability. 2023; 15(15):12007. https://doi.org/10.3390/su151512007
Chicago/Turabian StyleKatselis, George, Spyridon Konstas, and Dimitrios K. Moutopoulos. 2023. "Estimation of Fishery Losses from Great Cormorants during the Wintering Period in Greek Lagoons (Ionian Sea, W. Greece)" Sustainability 15, no. 15: 12007. https://doi.org/10.3390/su151512007
APA StyleKatselis, G., Konstas, S., & Moutopoulos, D. K. (2023). Estimation of Fishery Losses from Great Cormorants during the Wintering Period in Greek Lagoons (Ionian Sea, W. Greece). Sustainability, 15(15), 12007. https://doi.org/10.3390/su151512007