Thermal Comfort Improvement Strategies for Outdoor Spaces in Traditional Villages Based on ENVI-Met: Shimengao Village in Chizhou City
Abstract
:1. Introduction
2. Study Object
2.1. Site Overview
2.2. Data Collection
3. Research Methodology
3.1. Spatial Syntactic Integration Analysis
3.2. ENVI-Met Modeling Setup
3.3. ENVI-Met Value Selection
3.4. Outdoor Thermal Comfort Calculation
4. Results and Analysis
4.1. Spatiotemporal Distribution of Thermal Comfort in the Core Area of Traditional Village Integration during Summer
4.2. Spatiotemporal Distribution of Thermal Comfort in Plaza Spaces
4.3. Analysis of the Thermal Comfort of the Street Space
4.4. Analysis of the Thermal Comfort of the Courtyard Space
5. Strategies for Optimizing Thermal Comfort in Outdoor Spaces in the Shimengao Village
5.1. Optimization of the Spatial Layout of Traditional Villages to Improve Their Thermal Comfort
5.2. Increase in External Building Amenities to Improve Thermal Comfort
5.3. Creation of Outdoor “Micro-Landscapes” to Improve Thermal Comfort
5.4. Changing the Materials of Outdoor Spaces to Improve Thermal Comfort
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PET | Physiological equivalent temperature (°C); |
RH | Relative humidity (%); |
Ta | Air temperature (°C); |
Wd | Wind direction (°); |
Ws | Wind speed (m/s) |
References
- Zhen, M.; Dong, Q.; Chen, P.; Ding, W.; Zhou, D.; Feng, W. Urban outdoor thermal comfort in western China. J. Asian Archit. Build. Eng. 2021, 20, 222–236. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, X.X. Evaluation and Optimization Design for Microclimate Comfort of Traditional Village Squares Based on Extension Correlation Function. J. Environ. Public Health 2022, 2022, 6106463. [Google Scholar] [CrossRef] [PubMed]
- Perini, K.; Chokhachian, A.; Dong, S.; Auer, T. Modeling and simulating urban outdoor comfort: Coupling ENVI-Met and TRNSYS by grasshopper. Energy Build. 2017, 152, 373–384. [Google Scholar] [CrossRef]
- Guo, T.Y.; Zhao, Y.; Yang, J.H.; Zhong, Z.N.; Ji, K.F.; Zhong, Z.Y.; Luo, X.Y. Effects of Tree Arrangement and Leaf Area Index on the Thermal Comfort of Outdoor Children’s Activity Space in Hot-Humid Areas. Buildings 2023, 13, 214. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications-A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Gadish, I.; Saaroni, H.; Pearlmutter, D. A predictive analysis of thermal stress in a densifying urban business district under summer daytime conditions in a Mediterranean City. Urban Clim. 2023, 48, 101298. [Google Scholar] [CrossRef]
- Xu, M.; Hong, B.; Mi, J.Y.; Yan, S.S. Outdoor thermal comfort in an urban park during winter in cold regions of China. Sustain. Cities Soc. 2018, 43, 208–220. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Liu, X.; Zeng, Z.; Liu, S.S.; Wang, Z.Y.; Tang, X.; He, B.J. Impacts of Water Bodies on Microclimates and Outdoor Thermal Comfort: Implications for Sustainable Rural Revitalization. Front. Environ. Sci. 2022, 10, 940482. [Google Scholar] [CrossRef]
- Han, J.; Li, X.Y.; Li, B.Y.; Yang, W.; Yin, W.; Peng, Y.; Feng, T. Research on the influence of courtyard space layout on building microclimate and its optimal design. Energy Build. 2023, 289, 113035. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Deng, W.; Xia, C.H.; Chen, J.Y.; Jiang, Y.J. An Examination of the Thermal Comfort Impacts of Ficus altssima on the Climate in Lower Subtropical China during the Winter Season. Sustainability 2023, 15, 2427. [Google Scholar] [CrossRef]
- Thomas, G.; Thomas, J.; Mathews, G.M.; Alexander, S.P.; Jose, J. Assessment of the potential of green wall on modification of local urban microclimate in humid tropical climate using ENVI-met model. Ecol. Eng. 2023, 187, 106868. [Google Scholar] [CrossRef]
- Lopes, H.S.; Remoaldo, P.C.; Ribeiro, V.; Martín-Vide, J. Perceptions of human thermal comfort in an urban tourism destination—A case study of Porto (Portugal). Build. Environ. 2021, 205, 108246. [Google Scholar] [CrossRef]
- Xin, K.; Zhao, J.Y.; Wang, T.H.; Gao, W.J. Supporting Design to Develop Rural Revitalization through Investigating Village Microclimate Environments: A Case Study of Typical Villages in Northwest China. Int. J. Environ. Res. Public Health 2022, 19, 8310. [Google Scholar] [CrossRef]
- Fan, Q.D.; Du, F.T.; Li, H.; Zhang, C.M. Thermal-comfort evaluation of and plan for public space of Maling Village, Henan, China. PLoS ONE 2021, 16, e0256439. [Google Scholar] [CrossRef]
- Yang, S.Q.; Matzarakis, A. Implementation of human thermal comfort and air humidity in Koppen-Geiger climate classification and importance towards the achievement of Sustainable Development Goals. Theor. Appl. Climatol. 2019, 138, 981–998. [Google Scholar] [CrossRef]
- Wang, H.F.; Chiou, S.C. Study on the Sustainable Development of Human Settlement Space Environment in Traditional Villages. Sustainability 2019, 11, 4186. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.J.; Li, N.; Wang, Z.Y. Parametric Reconstruction of Traditional Village Morphology Based on the Space Gene Perspective-The Case Study of Xiaoxi Village in Western Hunan, China. Sustainability 2023, 15, 2088. [Google Scholar] [CrossRef]
- Xiang, H.W.; Qin, Y.; Xie, M.J.; Zhou, B. Study on the “Space Gene” Diversity of Traditional Dong Villages in the Southwest Hunan Province of China. Sustainability 2022, 14, 14306. [Google Scholar] [CrossRef]
- Askarizad, R.; Safari, H. Investigating the role of semi-open spaces on the sociability of public libraries using space syntax (Case Studies: Sunrise Mountain and Desert Broom Libraries, Arizona, USA). Ain Shams Eng. J. 2020, 11, 253–264. [Google Scholar] [CrossRef]
- Alalouch, C.; Al-Hajri, S.; Naser, A.; Al Hinai, A. The impact of space syntax spatial attributes on urban land use in Muscat: Implications for urban sustainability. Sustain. Cities Soc. 2019, 46, 101417. [Google Scholar] [CrossRef]
- Lee, S.; Yoo, C.; Seo, K.W. Determinant Factors of Pedestrian Volume in Different Land-Use Zones: Combining Space Syntax Metrics with GIS-Based Built-Environment Measures. Sustainability 2020, 12, 8647. [Google Scholar] [CrossRef]
- Li, R.; Mao, L. Spatial Characteristics of Suburban Villages Based on Spatial Syntax. Sustainability 2022, 14, 14195. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Diz-Mellado, E.; Rivera-Gomez, C.; Galan-Marin, C.; Samuelson, H.W. Thermal comfort modelling and empirical validation of predicted air temperature in hot-summer Mediterranean courtyards. J. Build. Perform. Simul. 2022, 15, 39–61. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Galan-Marin, C.; Rivera-Gomez, C.; Roa-Fernandez, J. Courtyard microclimate ENVI-met outputs deviation from the experimental data. Build. Environ. 2018, 144, 129–141. [Google Scholar] [CrossRef]
- Abd Elraouf, R.; ELMokadem, A.; Megahed, N.; Eleinen, O.A.; Eltarabily, S. Evaluating urban outdoor thermal comfort: A validation of ENVI-met simulation through field measurement. J. Build. Perform. Simul. 2022, 15, 268–286. [Google Scholar] [CrossRef]
- Liu, Z.H. Numerical Simulation Study of Microclimate in Urban Old Residential Transformation Area Based on Envi-Met Software. Fresenius Environ. Bull. 2022, 31, 11297–11304. [Google Scholar]
- Kim, S.W.; Brown, R.D. Pedestrians’ behavior based on outdoor thermal comfort and micro-scale thermal environments, Austin, TX. Sci. Total Environ. 2022, 808, 152143. [Google Scholar] [CrossRef]
- Corchado, E.; Arroyo, A.; Tricio, V. Soft computing models to identify typical meteorological days. Log. J. Igpl 2011, 19, 373–383. [Google Scholar] [CrossRef]
- Liu, C.; Tang, L.N.; Yan, J.S.; Ouyang, J.Y. Direct and indirect effects of multisensory modalities on visitor’ s thermal comfort in an urban park in a humid-hot climate. Int. J. Sustain. Dev. World Ecol. 2023, 30, 319–328. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Yahia, M.W.; Arroyo, I.; Bengs, C. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador. Int. J. Biometeorol. 2018, 62, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.K.; Jin, Y.M.; Jin, H. Combined effects of the visual-thermal environment on the subjective evaluation of urban pedestrian streets in severely cold regions of China. Build. Environ. 2023, 228, 109895. [Google Scholar] [CrossRef]
- Lai, D.Y.; Guo, D.H.; Hou, Y.F.; Lin, C.Y.; Chen, Q.Y. Studies of outdoor thermal comfort in northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar] [CrossRef]
- Liu, W.W.; Zhang, Y.X.; Deng, Q.H. The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate. Energy Build. 2016, 128, 190–197. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Zhang, X.J.; Xie, J.C.; Liu, J.P. Effects of elevated air speed on thermal comfort in hot-humid climate and the extended summer comfort zone. Energy Build. 2023, 287, 112953. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Rivera-Gomez, C.; Roa-Fernandez, J.; Hernandez-Valencia, M.; Herrera-Limones, R. Effect of thermal inertia and natural ventilation on user comfort in courtyards under warm summer conditions. Build. Environ. 2023, 228, 109812. [Google Scholar] [CrossRef]
- Li, T.S.; Zhang, M.H.; Gu, X.G. Optimization strategies for conservation of traditional dwellings in Hongcun Village, China, based on decay phenomena analysis. PLoS ONE 2022, 17, e0276306. [Google Scholar] [CrossRef]
- Chen, W.X.; Yang, L.Y.; Wu, J.H.; Wu, J.H.; Wang, G.Z.; Bian, J.J.; Zeng, J.; Liu, Z.L. Spatio-temporal characteristics and influencing factors of traditional villages in the Yangtze River Basin: A Geodetector model. Herit. Sci. 2023, 11, 111. [Google Scholar] [CrossRef]
- Ma, K.; Tang, X.L.; Ren, Y.J.; Wang, Y.W. Research on the Spatial Pattern Characteristics of the Taihu Lake “Dock Village” Based on Microclimate: A Case Study of Tangli Village. Sustainability 2019, 11, 368. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Zhang, J.P.; Yan, Y.; Sun, S.B.; Xu, X.Y.; Higueras, E. Effect of the spatial form of Jiangnan traditional villages on microclimate and human comfort. Sustain. Cities Soc. 2022, 87, 104136. [Google Scholar] [CrossRef]
- Tao, J.; Xiao, D.W.; Qin, Q.H.; Zhuo, X.L.; Wang, J.Y.; Chen, H.S.; Wang, Q. Climate-adaptive Design of Historic Villages and Dwellings in a Typhoon-prone Region in Southernmost Mainland China. Int. J. Archit. Herit. 2022, 16, 117–135. [Google Scholar] [CrossRef]
- Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Gou, S.Q.; Li, Z.R.; Zhao, Q.; Nik, V.M.; Scartezzini, J.L. Climate responsive strategies of traditional dwellings located in an ancient village in hot summer and cold winter region of China. Build. Environ. 2015, 86, 151–165. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr.-Earth Environ. 2013, 37, 2–28. [Google Scholar] [CrossRef]
- Li, Z.R.; Feng, X.W.; Sun, J.T.; Li, C.; Yu, W.X.; Fang, Z.S. STMRT: A simple tree canopy radiative transfer model for outdoor mean radiant temperature. Build. Environ. 2023, 228, 109846. [Google Scholar] [CrossRef]
- Lai, D.Y.; Liu, Y.Q.; Liao, M.C.; Yu, B.Q. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Clim. 2023, 39, 101398. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Diz-Mellado, E.; Rivera-Gomez, C.A.; Galan-Marin, C. Shade and Thermal Comfort in Courtyards: Experimental versus Simulation Results. Buildings 2022, 12, 1961. [Google Scholar] [CrossRef]
- Rossi, F.; Cardinali, M.; Di Giuseppe, A.; Castellani, B.; Nicolini, A. Outdoor thermal comfort improvement with advanced solar awnings: Subjective and objective survey. Build. Environ. 2022, 215, 108967. [Google Scholar] [CrossRef]
- Zheng, B.H.; Li, J.Y.; Chen, X.; Luo, X. Evaluating the Effects of Roof Greening on the Indoor Thermal Environment throughout the Year in a Chinese City (Chenzhou). Forests 2022, 13, 304. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Bottacin-Busolin, A.; Keshmiri, A. A Parametric Study on the Effects of Green Roofs, Green Walls and Trees on Air Quality, Temperature and Velocity. Buildings 2022, 12, 2159. [Google Scholar] [CrossRef]
- Hwang, R.L.; Lin, T.P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- Mohammad, P.; Aghlmand, S.; Fadaei, A.; Gachkar, S.; Gachkar, D.; Karimi, A. Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Clim. 2021, 40, 100993. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.L.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, Q.M.; Lan, Y.L. Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- Yu, H.M.; Zhang, T.; Fukuda, H.; Ma, X. The effect of landscape configuration on outdoor thermal environment: A case of urban Plaza in Xi’an, China. Build. Environ. 2023, 231, 110027. [Google Scholar] [CrossRef]
- Zhang, L.L.; Liu, H.R.; Wei, D.; Liu, F.; Li, Y.R.; Li, H.L.; Dong, Z.J.; Cheng, J.Y.; Tian, L.; Zhang, G.M.; et al. Impacts of Spatial Components on Outdoor Thermal Comfort in Traditional Linpan Settlements. Int. J. Environ. Res. Public Health 2022, 19, 6421. [Google Scholar] [CrossRef]
- Simon, H.; Linden, J.; Hoffmann, D.; Braun, P.; Bruse, M.; Esper, J. Modeling transpiration and leaf temperature of urban trees—A case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 2018, 174, 33–40. [Google Scholar] [CrossRef]
- Zaki, S.A.; Toh, H.J.; Yakub, F.; Saudi, A.S.M.; Ardila-Rey, J.A.; Muhammad-Sukki, F. Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City. Sustainability 2020, 12, 1053. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.K.; Mahapatra, S.; Atreya, S.K. Bioclimatism and vernacular architecture of north-east India. Build. Environ. 2009, 44, 878–888. [Google Scholar] [CrossRef]
- Yang, X.S.; Zhao, L.H.; Bruse, M.; Meng, Q.L. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build. Environ. 2013, 60, 93–104. [Google Scholar] [CrossRef]
- Yang, J.Y.; Hu, X.Y.; Feng, H.Y.; Marvin, S. Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban For. Urban Green. 2021, 66, 127384. [Google Scholar] [CrossRef]
- Zhang, S.J.; Li, S.Z.; Shu, L.; Xiao, T.Q.; Shui, T.T. Landscape Configuration Effects on Outdoor Thermal Comfort across Campus-A Case Study. Atmosphere 2023, 14, 270. [Google Scholar] [CrossRef]
- Robitu, M.; Musy, M.; Inard, C.; Groleau, D. Modeling the influence of vegetation and water pond on urban microclimate. Sol. Energy 2006, 80, 435–447. [Google Scholar] [CrossRef]
- Schaefer, M.; Ebrahimi Salari, H.; Kockler, H.; Thinh, N.X. Assessing local heat stress and air quality with the use of remote sensing and pedestrian perception in urban microclimate simulations. Sci. Total Environ. 2021, 794, 148709. [Google Scholar] [CrossRef]
Location | Chizhou (117°37′ E, 30°21′ N) |
---|---|
Population | 1323 |
Building density | 18.4% |
Wind direction | S |
Average wind speed | 1.52 m/s |
Average annual Ta | 17.6 °C |
Average precipitation | 1294.7 mm |
Average building height | 1–2 |
Location | Space Type | Characters | Graphical Language |
---|---|---|---|
Sample point 1 | Plaza space | Square space components | |
linear water system | |||
central surface water system | |||
Sample point 2 | street space | linear water system | |
building setback square space components | |||
alley-type space components | |||
Sample point 3 | Courtyard space | courtyard-type space components |
Total Initial Time Duration | Initial Temperature | Ws | Wd | RH | Roughness |
---|---|---|---|---|---|
07:00 (14 h) | 20 °C | 1.5 m/s | 180° | Highest point 94%; Lowest point 31% | 0.1 |
Time | Ta | RH | Time | Ta | RH | Time | Ta | RH |
---|---|---|---|---|---|---|---|---|
00:00 | 22.3 °C | 88% | 08:00 | 27.2 °C | 58% | 16:00 | 33.0 °C | 31% |
01:00 | 22.3 °C | 83% | 09:00 | 28.9 °C | 51% | 17:00 | 32.0 °C | 36% |
02:00 | 21.0 °C | 88% | 10:00 | 28.9 °C | 51% | 18:00 | 31.0 °C | 40% |
03:00 | 21.0 °C | 88% | 11:00 | 30.0 °C | 45% | 19:00 | 27.8 °C | 54% |
04:00 | 21.0 °C | 83% | 12:00 | 31.0 °C | 43% | 20:00 | 27.2 °C | 58% |
05:00 | 20.0 °C | 94% | 13:00 | 32.2 °C | 36% | 21:00 | 25.0 °C | 69% |
06:00 | 22.3 °C | 83% | 14:00 | 33.0 °C | 38% | 22:00 | 23.9 °C | 78% |
07:00 | 23.9 °C | 78% | 15:00 | 33.0 °C | 31% | 23:00 | 22.8 °C | 88% |
Thermal Sensation | Very Cold | Cold | Cool | Slightly Cool | Neutral | Slightly Warm | Warm | Hot | Very Hot |
---|---|---|---|---|---|---|---|---|---|
PET (°C) | <−8 | −8~−1 | −1~7 | 7~15 | 15~22 | 22~30 | 30~38 | 38~46 | >46 |
Location | Time | Main PET | Reasons |
---|---|---|---|
Sample point 1 | 09:00 | 26.0–42.0 °C | The square space has an open space and water body, which provide good thermal comfort. Thus, reasonable space layout and microlandscape settings enhance thermal comfort. |
Sample point 2 | 38.0–42.0 °C | ||
Sample point 3 | 42.0–50.0 °C | ||
Sample point 1 | 12:00 | 34.0–46.0 °C | With the increase in Ta, the overall thermal comfort was reduced, whereas the thermal comfort under the shadow of buildings was increased. Since the square space is located in the tuyere, the wind speed was higher, thus improving the thermal comfort in this space compared with that in other spaces. |
Sample point 2 | 42.0–50.0 °C | ||
Sample point 3 | 50.0–54.0 °C | ||
Sample point 1 | 15:00 | 38.0–50.0 °C | The courtyard space exhibited poor thermal comfort because of a lack of ventilation. |
Sample point 2 | 50.0–54.0 °C | ||
Sample point 3 | >54.0 °C | ||
Sample point 1 | 18:00 | 22.0–30.0 °C | Compared with the street, the courtyard space was shaded by the surrounding buildings, exhibiting better thermal comfort. |
Sample point 2 | 26.0–34.0 °C | ||
Sample point 3 | 26.0–30.0 °C | ||
Sample point 1 | 21:00 | <22.0 °C | The drop in Ta resulted in a neutral thermal comfort across the whole area. |
Sample point 2 | 22.0–26.0 °C | ||
Sample point 3 | 22.0–26.0 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, T.; Sheng, L.; Zhang, S.; Zheng, L.; Shui, T. Thermal Comfort Improvement Strategies for Outdoor Spaces in Traditional Villages Based on ENVI-Met: Shimengao Village in Chizhou City. Sustainability 2023, 15, 11785. https://doi.org/10.3390/su151511785
Xiao T, Sheng L, Zhang S, Zheng L, Shui T. Thermal Comfort Improvement Strategies for Outdoor Spaces in Traditional Villages Based on ENVI-Met: Shimengao Village in Chizhou City. Sustainability. 2023; 15(15):11785. https://doi.org/10.3390/su151511785
Chicago/Turabian StyleXiao, Tieqiao, Lanlan Sheng, Shaojie Zhang, Licheng Zheng, and Taotao Shui. 2023. "Thermal Comfort Improvement Strategies for Outdoor Spaces in Traditional Villages Based on ENVI-Met: Shimengao Village in Chizhou City" Sustainability 15, no. 15: 11785. https://doi.org/10.3390/su151511785
APA StyleXiao, T., Sheng, L., Zhang, S., Zheng, L., & Shui, T. (2023). Thermal Comfort Improvement Strategies for Outdoor Spaces in Traditional Villages Based on ENVI-Met: Shimengao Village in Chizhou City. Sustainability, 15(15), 11785. https://doi.org/10.3390/su151511785