Blockchain with Quantum Mayfly Optimization-Based Clustering Scheme for Secure and Smart Transport Systems
Abstract
:1. Introduction
2. Related Works
3. The Proposed Model
3.1. Design of QMFO-Based Clustering Process
3.2. BC Technology for Privacy Preserving
3.3. Security Mechanism
4. Performance Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Zhang, L.; Li, C.; Bai, J.; Lv, H.; Lv, Z. Blockchain-based secure communication of intelligent transportation digital twins system. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22630–22640. [Google Scholar] [CrossRef]
- Ning, Z.; Sun, S.; Wang, X.; Guo, L.; Guo, S.; Hu, X.; Hu, B.; Kwok, R.Y. Blockchain-enabled intelligent transportation systems: A distributed crowdsensing framework. IEEE Trans. Mob. Comput. 2021, 21, 4201–4217. [Google Scholar] [CrossRef]
- Finogeev, A.; Deev, M.; Parygin, D.; Finogeev, A. Intelligent SDN Architecture with Fuzzy Neural Network and Blockchain for Monitoring Critical Events. Appl. Artif. Intell. 2022, 36, 2145634. [Google Scholar] [CrossRef]
- Li, Y.; Ouyang, K.; Li, N.; Rahmani, R.; Yang, H.; Pei, Y. A blockchain-assisted intelligent transportation system promoting data services with privacy protection. Sensors 2020, 20, 2483. [Google Scholar] [CrossRef]
- Ali, M.; Karimipour, H.; Tariq, M. Integration of blockchain and federated learning for Internet of Things: Recent advances and future challenges. Comput. Secur. 2021, 108, 102355. [Google Scholar] [CrossRef]
- Beenish, H.; Javid, T.; Fahad, M.; Siddiqui, A.A.; Ahmed, G.; Syed, H.J. A Novel Markov Model-Based Traffic Density Estimation Technique for Intelligent Transportation System. Sensors 2023, 23, 768. [Google Scholar] [CrossRef]
- Chandio, A.A.; Tziritas, N.; Xu, C.Z. Big-data processing techniques and their challenges in transport domain. ZTE Commun. 2015, 1, 1–21. [Google Scholar]
- Wang, Q.A.; Zhang, C.; Ma, Z.G.; Ni, Y.Q. Modelling and forecasting of SHM strain measurement for a large-scale suspension bridge during typhoon events using variational heteroscedastic Gaussian process. Eng. Struct. 2022, 251, 113554. [Google Scholar] [CrossRef]
- Wang, Q.A.; Dai, Y.; Ma, Z.G.; Wang, J.F.; Lin, J.F.; Ni, Y.Q.; Ren, W.X.; Jiang, J.; Yang, X.; Yan, J.R. Towards high-precision data modeling of SHM measurements using an improved sparse Bayesian learning scheme with strong generalization ability. Struct. Health Monit. 2023, 14759217231170316. [Google Scholar] [CrossRef]
- Wang, Q.A.; Wang, C.B.; Ma, Z.G.; Chen, W.; Ni, Y.Q.; Wang, C.F.; Yan, B.G.; Guan, P.X. Bayesian dynamic linear model framework for structural health monitoring data forecasting and missing data imputation during typhoon events. Struct. Health Monit. 2022, 21, 2933–2950. [Google Scholar] [CrossRef]
- Baker, T.; Asim, M.; Samwini, H.; Shamim, N.; Alani, M.M.; Buyya, R. A blockchain-based Fog-oriented lightweight framework for smart public vehicular transportation systems. Comput. Netw. 2022, 203, 108676. [Google Scholar] [CrossRef]
- Medel, D.K.S.; Perez, B.A.M.; Alpaño, P.V.; Pedrasa, J.R. Mitigation of Data Integrity Attacks using Blockchain-based Intelligent Transportation System. In Proceedings of the 2021 26th IEEE Asia-Pacific Conference on Communications (APCC), Kuala Lumpur, Malaysia, 11–13 October 2021; pp. 13–18. [Google Scholar]
- Maskey, S.R.; Badsha, S.; Sengupta, S.; Khalil, I. Bits: Blockchain-based intelligent transportation system with outlier detection for the smart city. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6. [Google Scholar]
- Das, D.; Banerjee, S.; Chatterjee, P.; Biswas, M.; Biswas, U.; Alnumay, W. Design and development of an intelligent transportation management system using blockchain and smart contracts. Clust. Comput. 2022, 25, 1899–1913. [Google Scholar] [CrossRef]
- Fernandes, C.P.; Montez, C.; Adriano, D.D.; Boukerche, A.; Wangham, M.S. A blockchain-based reputation system for trusted VANET nodes. Ad Hoc Netw. 2023, 140, 103071. [Google Scholar] [CrossRef]
- Cocîrlea, D.; Dobre, C.; Hîrţan, L.A.; Purnichescu-Purtan, R. Blockchain in intelligent transportation systems. Electronics 2020, 9, 1682. [Google Scholar] [CrossRef]
- Zia, M. B-DRIVE: A blockchain-based distributed IoT network for smart urban transportation. Blockchain Res. Appl. 2021, 2, 100033. [Google Scholar] [CrossRef]
- Das, D.; Dasgupta, K.; Biswas, U. A secure blockchain-enabled vehicle identity management framework for intelligent transportation systems. Comput. Electr. Eng. 2023, 105, 108535. [Google Scholar] [CrossRef]
- Kudva, S.; Badsha, S.; Sengupta, S.; La, H.; Khalil, I.; Atiquzzaman, M. A scalable blockchain-based trust management in VANET routing protocol. J. Parallel Distrib. Comput. 2021, 152, 144–156. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Yan, B.; Wang, G.; Shan, Z. BSV-PAGS: Blockchain-based special vehicles priority access guarantee scheme. Comput. Commun. 2020, 161, 28–40. [Google Scholar] [CrossRef]
- Liu, T.; Sabrina, F.; Jang-Jaccard, J.; Xu, W.; Wei, Y. Artificial intelligence-enabled DDoS detection for blockchain-based smart transport systems. Sensors 2022, 22, 32. [Google Scholar] [CrossRef]
- Akhter, A.S.; Ahmed, M.; Shah, A.S.; Anwar, A.; Zengin, A. A secured privacy-preserving multi-level blockchain framework for cluster-based VANET. Sustainability 2021, 13, 400. [Google Scholar] [CrossRef]
- Chaudhary, B.; Singh, K. A Blockchain enabled location-privacy preserving scheme for vehicular ad-hoc networks. Peer-to-Peer Netw. Appl. 2021, 14, 3198–3212. [Google Scholar] [CrossRef]
- Gazdar, T.; Alboqomi, O.; Munshi, A. A Decentralized Blockchain-Based Trust Management Framework for Vehicular Ad Hoc Networks. Smart Cities 2022, 5, 348–363. [Google Scholar] [CrossRef]
- Alharthi, A.; Ni, Q.; Jiang, R. A privacy-preservation framework based on biometrics blockchain (BBC) to prevent attacks in VANET. IEEE Access 2021, 9, 87299–87309. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, M.; Wei, Z.; Lu, M. Economic Optimal Scheduling of Wind–Photovoltaic-Storage with Electric Vehicle Microgrid Based on Quantum Mayfly Algorithm. Appl. Sci. 2022, 12, 8778. [Google Scholar] [CrossRef]
- Konduru, S.; Sathya, M. Remora optimization algorithm-based optimized node clustering technique for reliable data delivery in VANETs. Int. J. Intell. Netw. 2022, 3, 74–79. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, B. A center-based secure and stable clustering algorithm for VANETs on highways. Wirel. Commun. Mob. Comput. 2019, 2019, 8415234. [Google Scholar] [CrossRef] [Green Version]
- Awan, K.A.; Din, I.U.; Almogren, A. A Blockchain-Assisted Trusted Clustering Mechanism for IoT-Enabled Smart Transportation System. Sustainability 2022, 14, 14889. [Google Scholar] [CrossRef]
Average Cluster Head Lifetime | BQMFO-CSSTS | ATCM IOT-ESTS | WOACNET | DL-SCHS | Stab Trust |
---|---|---|---|---|---|
(r, v) (50, 30) | 493.38 | 467.49 | 342.89 | 249.03 | 459.40 |
(r, v) (100, 40) | 543.55 | 519.27 | 394.67 | 457.78 | 418.94 |
(r, v) (125, 50) | 541.93 | 520.89 | 397.91 | 428.65 | 418.94 |
(r, v) (150, 60) | 527.36 | 506.33 | 472.34 | 464.25 | 321.85 |
(r, v) (200, 70) | 541.93 | 528.98 | 485.29 | 509.56 | 504.71 |
(r, v) (225, 80) | 541.93 | 522.51 | 449.69 | 501.47 | 399.52 |
(r, v) (250, 90) | 543.55 | 519.27 | 456.16 | 480.44 | 517.65 |
Average Cluster Duration Lifetime | BQMFO-CSSTS | ATCM IOT-ESTS | WOACNET | DL-SCHS | Stab Trust |
---|---|---|---|---|---|
(n, r) (20, 50) | 502.45 | 479.45 | 270.69 | 484.76 | 491.83 |
(n, r) (40, 100) | 539.60 | 521.91 | 290.15 | 511.29 | 507.76 |
(n, r) (60, 150) | 594.45 | 573.22 | 304.30 | 523.68 | 571.45 |
(n, r) (80, 200) | 592.68 | 583.83 | 472.37 | 578.52 | 482.99 |
(n, r) (100, 250) | 597.98 | 590.91 | 518.37 | 589.14 | 589.14 |
(n, r) (120, 300) | 599.75 | 589.14 | 555.52 | 564.37 | 566.14 |
Average Cluster Durational Lifetime | BQMFO-CSSTS | ATCM IOT-ESTS | WOACNET | DL-SCHS | Stab Trust |
---|---|---|---|---|---|
(r, v) (50, 30) | 474.21 | 464.53 | 338.72 | 253.24 | 456.47 |
(r, v) (100, 40) | 532.28 | 516.15 | 382.27 | 461.31 | 429.05 |
(r, v) (125, 50) | 540.34 | 524.21 | 400.01 | 416.14 | 409.69 |
(r, v) (150, 60) | 537.11 | 503.24 | 467.76 | 464.53 | 324.21 |
(r, v) (200, 70) | 541.95 | 520.99 | 480.66 | 498.40 | 501.63 |
(r, v) (225, 80) | 535.50 | 520.99 | 450.02 | 506.47 | 408.08 |
(r, v) (250, 90) | 543.57 | 520.99 | 464.53 | 485.50 | 509.69 |
Overhead Ratio | |||||
---|---|---|---|---|---|
Time (Min) | BQMFO-CSSTS | ATCM IOT-ESTS | WOACNET | DL-SCHS | Stab Trust |
50 | 04.94 | 09.46 | 013.97 | 14.42 | 027.97 |
100 | 05.84 | 13.07 | 017.13 | 18.94 | 033.39 |
150 | 08.10 | 17.13 | 020.74 | 25.71 | 039.26 |
200 | 08.10 | 15.33 | 021.65 | 28.42 | 041.06 |
250 | 08.10 | 16.23 | 024.36 | 26.61 | 046.48 |
300 | 09.91 | 17.58 | 027.97 | 34.74 | 050.09 |
350 | 13.52 | 20.74 | 030.23 | 39.26 | 054.16 |
400 | 13.52 | 23.91 | 031.13 | 43.77 | 059.58 |
450 | 14.87 | 27.52 | 037.90 | 47.84 | 063.64 |
500 | 18.94 | 30.23 | 042.42 | 49.64 | 065.00 |
550 | 21.20 | 31.13 | 044.68 | 55.06 | 073.12 |
600 | 23.45 | 31.58 | 047.39 | 57.77 | 077.19 |
650 | 24.81 | 34.29 | 053.26 | 60.48 | 083.96 |
700 | 26.61 | 35.65 | 059.58 | 64.54 | 085.77 |
750 | 32.48 | 39.26 | 069.51 | 65.45 | 090.73 |
800 | 37.45 | 46.48 | 078.54 | 67.25 | 098.41 |
850 | 39.71 | 49.64 | 088.02 | 70.87 | 101.57 |
900 | 43.32 | 54.16 | 107.89 | 77.19 | 117.83 |
Throughput Ratio (kbps) | |||||
---|---|---|---|---|---|
Time (Min) | BQMFO-CSSTS | ATCM IOT-ESTS | WOACNET | DL-SCHS | Stab Trust |
50 | 0352.93 | 0209.42 | 0281.17 | 0154.22 | 110.06 |
100 | 0490.92 | 0341.89 | 0281.17 | 0225.98 | 121.10 |
150 | 0529.56 | 0363.97 | 0347.41 | 0237.02 | 176.30 |
200 | 0579.23 | 0375.01 | 0397.08 | 0281.17 | 237.02 |
250 | 0612.35 | 0413.64 | 0485.40 | 0286.69 | 275.65 |
300 | 0689.62 | 0468.84 | 0595.79 | 0308.77 | 292.21 |
350 | 0816.58 | 0546.11 | 0684.10 | 0325.33 | 292.21 |
400 | 0866.25 | 0634.43 | 0728.26 | 0380.53 | 303.25 |
450 | 0949.05 | 0783.46 | 0728.26 | 0419.16 | 347.41 |
500 | 1015.28 | 0766.90 | 0800.02 | 0496.44 | 363.97 |
550 | 1120.16 | 0899.37 | 0822.10 | 0546.11 | 375.01 |
600 | 1213.99 | 0982.16 | 0882.81 | 0667.55 | 413.64 |
650 | 1225.03 | 1009.76 | 0965.61 | 0728.26 | 468.84 |
700 | 1307.82 | 1114.64 | 0971.13 | 0827.62 | 524.04 |
750 | 1401.66 | 1169.83 | 1098.08 | 0899.37 | 601.31 |
800 | 1489.97 | 1313.34 | 1208.47 | 0926.97 | 673.07 |
850 | 1556.21 | 1401.66 | 1263.67 | 1087.04 | 805.54 |
900 | 1644.52 | 1561.73 | 1368.54 | 1197.43 | 888.33 |
Energy Consumption (Joule) | |||||
---|---|---|---|---|---|
No. of Nodes | BQMFO-CSSTS | ATCM IOT-ESTS | WOACNET | DL-SCHS | Stab Trust |
50 | 059.09 | 093.41 | 115.33 | 153.45 | 186.81 |
100 | 127.72 | 172.51 | 182.04 | 162.03 | 222.08 |
150 | 166.79 | 193.48 | 233.51 | 205.87 | 237.32 |
200 | 119.14 | 147.73 | 270.68 | 233.51 | 255.43 |
250 | 099.12 | 138.20 | 307.86 | 249.72 | 288.79 |
300 | 157.26 | 187.76 | 322.15 | 306.90 | 311.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamro, H.; Alqahtani, H.; Alruwaili, F.F.; Aljameel, S.S.; Rizwanullah, M. Blockchain with Quantum Mayfly Optimization-Based Clustering Scheme for Secure and Smart Transport Systems. Sustainability 2023, 15, 11782. https://doi.org/10.3390/su151511782
Alamro H, Alqahtani H, Alruwaili FF, Aljameel SS, Rizwanullah M. Blockchain with Quantum Mayfly Optimization-Based Clustering Scheme for Secure and Smart Transport Systems. Sustainability. 2023; 15(15):11782. https://doi.org/10.3390/su151511782
Chicago/Turabian StyleAlamro, Hayam, Hamed Alqahtani, Fahad F. Alruwaili, Sumayh S. Aljameel, and Mohammed Rizwanullah. 2023. "Blockchain with Quantum Mayfly Optimization-Based Clustering Scheme for Secure and Smart Transport Systems" Sustainability 15, no. 15: 11782. https://doi.org/10.3390/su151511782
APA StyleAlamro, H., Alqahtani, H., Alruwaili, F. F., Aljameel, S. S., & Rizwanullah, M. (2023). Blockchain with Quantum Mayfly Optimization-Based Clustering Scheme for Secure and Smart Transport Systems. Sustainability, 15(15), 11782. https://doi.org/10.3390/su151511782