The Spatial Interface of Informal Settlements to Women’s Safety: A Human-Scale Measurement for the Largest Urban Village in Changsha, Hunan Province, China
Abstract
:1. Introduction
1.1. Significance
1.2. Innovation
2. Conceptual Framework
2.1. Penetrability
2.2. Proximity
2.3. Scales
3. Materials and Methods
3.1. Case Study
3.2. Research Design
3.3. Methodologies
4. Results
4.1. Overview of Findings
4.1.1. Online Survey
4.1.2. Field Surveys
4.2. Model Calculation
4.2.1. The Safety Impacts of Interface Variables on Women
4.2.2. Correlation of Nine Interface Variables
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN DESA. The Sustainable Development Goals Report 2022; UN DESA: New York, NY, USA, 2022; Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 11 July 2023).
- Akkerman, A. Femininity and Masculinity in City-Form: Philosophical Urbanism as a History of Consciousness. Hum. Stud. 2006, 29, 229–256. [Google Scholar] [CrossRef]
- Kamalipour, H.; Dovey, K. Mapping the visibility of informal settlements. Habitat Int. 2019, 85, 63–75. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wang, Y.; Wu, J. Urbanization and Informal Development in China: Urban Villages in Shenzhen. Int. J. Urban Reg. Res. 2009, 33, 957–973. [Google Scholar] [CrossRef]
- Pan, W.; Du, J. Towards sustainable urban transition: A critical review of strategies and policies of urban village renewal in Shenzhen, China. Land Use Policy 2021, 111, 105744. [Google Scholar] [CrossRef]
- Zhou, Y. Urban Street Interface Morphology Through Different Times in China. In Quantitative Research on Street Interface Morphology: Comparison between Chinese and Western Cities; Springer Nature: Singapore, 2022; pp. 15–36. ISBN 978-981-19-2549-8. [Google Scholar] [CrossRef]
- Liu, Y.; He, S.; Wu, F.; Webster, C. Urban villages under China’s rapid urbanization: Unregulated assets and transitional neighbourhoods. Habitat Int. 2010, 34, 135–144. [Google Scholar] [CrossRef]
- Chung, H. Building an image of Villages-in-the-City: A Clarification of China’s Distinct Urban Spaces. Int. J. Urban Reg. Res. 2010, 34, 421–437. [Google Scholar] [CrossRef]
- Hao, P.; Hooimeijer, P.; Sliuzas, R.; Geertman, S. What Drives the Spatial Development of Urban Villages in China? Urban Stud. 2013, 50, 3394–3411. [Google Scholar] [CrossRef]
- Sa, H. Land Transformations, Urbanized Actors, and Collective Values in Urban Villages in China. In Urban Studies; University of Helsinki: Helsinki, Finland, 2022; Available online: http://urn.fi/URN:ISBN:978-951-51-7038-5 (accessed on 11 July 2023).
- Bobić, M. Between the Edges: Street-Building Transition as Urbanity Interface; Thoth Publishers: Thoth Uitgeverij, The Netherlands, 2004; ISBN 90-6868-364-0. [Google Scholar]
- Simpson, J.; Freeth, M.; Simpson, K.J.; Thwaites, K. Street edge subdivision: Structuring ground floor interfaces to stimulate pedestrian visual engagement. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1775–1791. [Google Scholar] [CrossRef]
- Lai, Y.; Chan, E.H.W.; Choy, L. Village-led land development under state-led institutional arrangements in urbanising China: The case of Shenzhen. Urban Stud. 2017, 54, 1736–1759. [Google Scholar] [CrossRef]
- Wang, Y.P. Chapter 6: Urban Villages, Their Redevelopment and Implications for Inequality and Integration. In Urban Inequality and Segregation in Europe and China: Towards a New Dialogue; Springer Nature: Singapore, 2021; pp. 99–120. Available online: https://link.springer.com/book/10.1007/978-3-030-74544-8 (accessed on 11 July 2023).
- Du Plessis, C. The Links between Crime Prevention and Sustainable Development. Open House Int. 1999, 24, 33–40. Available online: https://www.researchgate.net/publication/334737207 (accessed on 11 July 2023).
- UN-Habitat. Sustainable Urbanization in Asia. 2012. Available online: https://unhabitat.org/sustainable-urbanization-in-asia (accessed on 11 July 2023).
- Shahraki, S.Z.; Hosseini, A.; Sauri, D.; Hussaini, F. Fringe more than context: Perceived quality of life in informal settlements in a developing country: The case of Kabul, Afghanistan. Sustain. Cities Soc. 2020, 63, 102494. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.; Radzeviciene, A.; Ubarte, I.; Podviezko, A.; Podvezko, V.; Kuzminske, A.; Banaitis, A.; Binkyte, A.; Bucinskas, V. Quality of city life multiple criteria analysis. Cities 2018, 72, 82–93. [Google Scholar] [CrossRef]
- Dovey, K.; Wood, S. Public/private urban interfaces: Type, adaptation, assemblage. J. Urban. Int. Res. Placemak. Urban Sustain. 2015, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Jung-Choi, K. Workplace Violence in Workers with Multi-Party Employment Arrangements: Results from the Korean National Representative Survey. Saf. Health Work. 2022, 13, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Rampaul, K.; Magidimisha-Chipungu, H. Gender mainstreaming in the urban space to promote inclusive cities. J. Transdiscipl. Res. S. Afr. 2022, 18, 9. [Google Scholar] [CrossRef]
- Paananen, V.; Oppenlaender, J.; Goncalves, J.; Hettiachchi, D.; Hosio, S. Investigating Human Scale Spatial Experience. Proc. ACM Hum.-Comput. Interact. 2021, 5, 1–18. [Google Scholar] [CrossRef]
- Shach-Pinsly, D. Measuring security in the built environment: Evaluating urban vulnerability in a human-scale urban form. Landsc. Urban Plan. 2019, 191, 103412. [Google Scholar] [CrossRef]
- van Nes, A. Measuring the urban private-public interface. WIT Trans. Ecol. Environ. 2008, 117, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Kirkik Aydemir, K.P.; Çelikyay, S. Systemic View of Urban Public Space, Proposing a “Human-First” Model For Livable Interspaces/Interfaces. Avrupa Bilim Ve Teknol. Derg. 2022, 41, 508–516. [Google Scholar] [CrossRef]
- Van Oostrum, M. Urbanizing villages: Informal morphologies in Shenzhen’s urban periphery. J. Urban Des. 2018, 23, 732–748. [Google Scholar] [CrossRef]
- Van Nes, A.; Aghabeik, L. Ethnic groups and spatial behaviour in Rotterdam’s neighbourhoods. In Proceedings of the 10th International Space Syntax Symposium, London, UK, 13–17 July 2015; Karimi, K., Vaughan, L., Sailer, K., Palaiologou, G., Bolton, T., Eds.; Space Syntax Laboratory, The Bartlett School of Architecture: London, UK; pp. 102:1–102:17. Available online: https://repository.tudelft.nl/islandora/object/uuid:10e823cb-72e9-4cc9-9176-49e304711a65?collection=research (accessed on 11 July 2023).
- Singh, S.; Kumar, A. Sexual Violence in Indian Public Sphere: Counter-public Creation and Deferral. Space Cult. India 2019, 6, 8–28. [Google Scholar] [CrossRef]
- Thurston, R.C.; Chang, Y.; Matthews, K.A.; von Känel, R.; Koenen, K. Association of Sexual Harassment and Sexual Assault With Midlife Women’s Mental and Physical Health. JAMA Intern. Med. 2019, 179, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Kirkner, A.; Ullman, S.E. Sexual Assault Survivors’ Post-Traumatic Growth: Individual and Community-Level Differences. Violence Against Women 2020, 26, 1987–2003. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, V.; Loukaitou-Sideris, A. Fear of Sexual Harassment and Its Impact on Safety Perceptions in Transit Environments: A Global Perspective. Violence Against Women 2022, 28, 26–48. [Google Scholar] [CrossRef] [PubMed]
- Adom, D.; Daitey, S.T.; Yarney, L.; Fening, P.A. Breaking the Culture-specific Silence of Women Glass Bead Makers in Ghana: Towards Empowerment. Saf. Health Work. 2020, 11, 450–457. [Google Scholar] [CrossRef]
- Glasson, J.; Cozens, P. Making communities safer from crime: An undervalued element in impact assessment. Environ. Impact Assess. Rev. 2011, 31, 25–35. [Google Scholar] [CrossRef]
- Li, J.; Sun, S.; Li, J. The dawn of vulnerable groups: The inclusive reconstruction mode and strategies for urban villages in China. Habitat Int. 2021, 110, 102347. [Google Scholar] [CrossRef]
- Cozens, P.; Babb, C.; Stefani, D. Exploring and developing crime prevention through environmental design (CPTED) audits: An iterative process. Crime Prev. Community Saf. 2022, 25, 1–19. [Google Scholar] [CrossRef]
- Gehl, J. Life between Buildings: Using Public Space; Island Press: Washington, DC, USA, 2011; ISBN 1-61091-023-0. [Google Scholar]
- Gehl, J. Cities for People; Island Press: Washington, DC, USA, 2010; ISBN 13 978-1-59726-574-4. [Google Scholar]
- Al Mushayt, N.S.; Cin, F.D.; Proença, S.B. New Lens to Reveal the Street Interface. A Morphological-Visual Perception Methodological Contribution for Decoding the Public/Private Edge of Arterial Streets. Sustainability 2021, 13, 11442. [Google Scholar] [CrossRef]
- Kamalipour, H. Mapping Urban Interfaces: A Typology of Public/Private Interfaces in Informal Settlements. Spaces Flows Int. J. Urban ExtraUrban Stud. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Kamalipour, H. Shaping Public Space in Informal Settlements: A Case Study. Sustainability 2023, 15, 3781. [Google Scholar] [CrossRef]
- Kamalipour, H. Forms of informality and adaptations in informal settlements. Int. J. Archit. Res. (ArchNet-IJAR) 2016, 10, 60–75. [Google Scholar] [CrossRef]
- Ewing, R.; Clemente, O.; Neckerman, K.M.; Purciel-Hill, M.; Quinn, J.W.; Rundle, A. Measuring Urban Design: Metrics for Livable Places; Island Press: Washington, DC, USA, 2013; Volume 200, ISBN 13 978-1610911948. [Google Scholar]
- Dovey, K.; King, R. Forms of Informality: Morphology and Visibility of Informal Settlements. Built Environ. 2011, 37, 11–29. Available online: https://www.jstor.org/stable/23289768 (accessed on 11 July 2023). [CrossRef] [Green Version]
- Ye, Y.; Li, D.; Liu, X. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geogr. 2018, 39, 631–652. [Google Scholar] [CrossRef]
- Jones, P. Distance and proximity matters: Understanding housing transformation through micro-morphology in informal settlements. Int. J. Hous. Policy 2021, 21, 169–195. [Google Scholar] [CrossRef]
- Gehl, J.; Kaefer, L.J.; Reigstad, S. Close encounters with buildings. Urban Des. Int. 2006, 11, 29–47. [Google Scholar] [CrossRef]
- Franck, K.; Stevens, Q. (Eds.) Loose Space: Possibility and Diversity in Urban Life; Routledge: London, UK, 2006. [Google Scholar]
- Glaser, M. (Ed.) The City at Eye Level: Lessons for Street Plinths; Eburon Uitgeverij BV: Utrecht, The Netherlands, 2012. [Google Scholar]
- Jansson, C. Factors Important to Street Users’ Perceived Safety on a Main Street. 2019. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260049 (accessed on 11 July 2023).
- Kamalipour, H. Improvising Places: The Fluidity of Space in Informal Settlements. Sustainability 2020, 12, 2293. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Shahab, S.; Ahmadpoor, N. Morphology of Urban Villages in China: A Case Study of Dayuan Village in Guangzhou. Urban Sci. 2020, 4, 23. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961; ISBN 13 978-0679600473. [Google Scholar]
- Dovey, K.; Wood, S. Public/private interfaces in the inner-city: Types, adaptations, assemblages. In Proceedings of the 5th State of Australian Cities National Conference, Melbourne, Australia., 29 November–2 December 2011. [Google Scholar]
- Jones, P. The Shaping of Form and Structure in Informal Settlements: A Case Study of Order and Rules in Lebak Siliwangi, Bandung, Indonesia. J. Reg. City Plan. 2019, 30, 43–61. [Google Scholar] [CrossRef]
- van Oostrum, M. Informal laneway encroachment: Reassessing public/private interface transformation in urban villages. Habitat Int. 2020, 104, 102259. [Google Scholar] [CrossRef]
- Oliveira, V.; Medeiros, V. Morpho: Combining morphological measures. Environ. Plan. B Plan. Des. 2016, 43, 805–825. [Google Scholar] [CrossRef]
- Roy, S.; Bailey, A. Safe in the City? Negotiating safety, public space and the male gaze in Kolkata, India. Cities 2021, 117, 103321. [Google Scholar] [CrossRef]
- Rišová, K.; Madajová, M.S. Gender differences in a walking environment safety perception: A case study in a small town of Banská Bystrica (Slovakia). J. Transp. Geogr. 2020, 85, 102723. [Google Scholar] [CrossRef]
- Van Nes, A.; Yamu, C. Theoretical Representations of the Built Environment. In Introduction to Space Syntax in Urban Studies; Springer: Cham, Switzerland, 2021; ISBN 978-3-030-59139-7. [Google Scholar] [CrossRef]
- Ashihara, Y. The Aesthetic Townscape; The MIT Press: Cambridge, UK, 1983; ISBN 9780262510318. [Google Scholar]
- Rodgers, D.; O’neill, B. Infrastructural violence: Introduction to the special issue. Ethnography 2012, 13, 401–412. [Google Scholar] [CrossRef]
- Datta, A.; Ahmed, N. Intimate infrastructures: The rubrics of gendered safety and urban violence in Kerala, India. Geoforum 2020, 110, 67–76. [Google Scholar] [CrossRef]
- Rashid, S.A.; Wahab, M.H.; Rani, W.N.M.W.M. Street design and women’s safety perception. Plan. Malays. J. Malays. Inst. Plan. 2017, 15, 13–20. [Google Scholar] [CrossRef]
- Meth, P. How Women and Men Experience the City, Gender in an Informal Urban Context. 2017. Available online: https://www.urbanet.info/gender-informal-urban-context/ (accessed on 11 July 2023).
- Lorenc, T.; Clayton, S.; Neary, D.; Whitehead, M.; Petticrew, M.P.; Thomson, H.; Cummins, S.; Sowden, A.; Renton, A. Crime, fear of crime, environment, and mental health and wellbeing: Mapping review of theories and causal pathways. Health Place 2012, 18, 757–765. [Google Scholar] [CrossRef]
- Jagori. Safe Cities Free of Violence against Women and Girls Initiative. In Report of the Baseline Survey Delhi; Signate G Press: Kolkata, India, 2010; Available online: http://www.jagori.org/wp-content/uploads/2011/03/Baseline-Survey_layout_for-Print_12_03_2011.pdf (accessed on 11 July 2023).
- Sadeghi, A.R.; Jangjoo, S. Women’s preferences and urban space: Relationship between built environment and women’s presence in urban public spaces in Iran. Cities 2022, 126, 103694. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, B.; Luo, T.; Liu, Y.; Portnov, B.A.; Trop, T.; Jiao, W.; Liu, H.; Li, Y.; Liu, Q. Evaluating Street Lighting Quality in Residential Areas by Combining Remote Sensing Tools and a Survey on Pedestrians’ Perceptions of Safety and Visual Comfort. Remote Sens. 2022, 14, 826. [Google Scholar] [CrossRef]
- Jagori. Transforming Development Practice. In United Nations Entity for Gender Equality and the Empowerment of Women (UN-Women); 2010; Available online: https://asiapacific.unwomen.org/sites/default/files/Field%20Office%20ESEAsia/Docs/Publications/2015/southasia/reportstudies/01_evaw/WFS_Articles1.pdf (accessed on 11 July 2023).
- Lin, T.; Lin, H.; Hu, M. Three-dimensional visibility analysis and visual quality computation for urban open spaces aided by Google SketchUp and WebGIS. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 618–646. [Google Scholar] [CrossRef]
- Dovey, K.; van Oostrum, M.; Chatterjee, I.; Shafique, T. Towards a morphogenesis of informal settlements. Habitat Int. 2020, 104, 102240. [Google Scholar] [CrossRef]
- Mundher, R.; Al-Sharaa, A.; Al-Helli, M.; Gao, H.; Abu Bakar, S. Visual Quality Assessment of Historical Street Scenes: A Case Study of the First “Real” Street Established in Baghdad. Heritage 2022, 5, 3680–3704. [Google Scholar] [CrossRef]
- Tang, J.; Long, Y. Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Zhu, M.; Sze, N.; Newnam, S. Effect of urban street trees on pedestrian safety: A micro-level pedestrian casualty model using multivariate Bayesian spatial approach. Accid. Anal. Prev. 2022, 176, 106818. [Google Scholar] [CrossRef] [PubMed]
- Mahadevia, D.; Lathia, S. Women’s Safety and Public Spaces: Lessons from the Sabarmati Riverfront, India. Urban Plan. 2019, 4, 154–168. [Google Scholar] [CrossRef]
- Lee, J.; Abdel-Aty, M.; Xu, P.; Gong, Y. Is the safety-in-numbers effect still observed in areas with low pedestrian activities? A case study of a suburban area in the United States. Accid. Anal. Prev. 2019, 125, 116–123. [Google Scholar] [CrossRef]
- Guerra, E.; Dong, X.; Kondo, M. Do denser neighborhoods have safer streets? Population density and traffic safety in the philadelphia region. J. Plan. Educ. Res. 2019, 42, 0739456X19845043. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, L.; Li, J.; Zhang, N.; Sun, Y.; Wang, X.; Wu, H. Assessment of Perceived Factors of Road Safety in Rural Left-Behind Children’s Independent Travel: A Case Study in Changsha, China. Sustainability 2023, 15, 10355. [Google Scholar] [CrossRef]
- Park, Y.; Garcia, M. Pedestrian safety perception and urban street settings. Int. J. Sustain. Transp. 2020, 14, 860–871. [Google Scholar] [CrossRef]
- Zhai, X.; Huang, H.; Sze, N.N.; Song, Z.; Hon, K.K. Diagnostic analysis of the effects of weather condition on pedestrian crash severity. Accid. Anal. Prev. 2019, 122, 318–324. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic press: New York, NY, USA, 2013. [Google Scholar]
- Sen, A.; Srivastava, M. Multiple regression. In Regression Analysis: Theory, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1990; pp. 28–59. [Google Scholar] [CrossRef]
- Jaber, A.; Abu Baker, L.; Csonka, B. The Influence of Public Transportation Stops on Bike-Sharing Destination Trips: Spatial Analysis of Budapest City. Futur. Transp. 2022, 2, 688–697. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Delacre, M.; Leys, C.; Mora, Y.L.; Lakens, D. Taking Parametric Assumptions Seriously: Arguments for the Use of Welch’s F-test instead of the Classical F-test in One-Way ANOVA. Int. Rev. Soc. Psychol. 2019, 32, 13. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Upadhye, S.; Worster, A. Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 2006, 8, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Berrar, D. Performance measures for binary classification. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128114322. [Google Scholar] [CrossRef]
- Tan, Y.; He, J.; Han, H.; Zhang, W. Evaluating residents’ satisfaction with market-oriented urban village transformation: A case study of Yangji Village in Guangzhou, China. Cities 2019, 95, 102394. [Google Scholar] [CrossRef]
- Yu, L.; Xie, B.; Chan, E.H. Exploring impacts of the built environment on transit travel: Distance, time and mode choice, for urban villages in Shenzhen, China. Transp. Res. Part E Logist. Transp. Rev. 2019, 132, 57–71. [Google Scholar] [CrossRef]
- Black, A.W. The quest for sustainable, healthy communities. Aust. J. Environ. Educ. 2004, 20, 33–44. [Google Scholar] [CrossRef]
- Marzbali, M.H.; Abdullah, A.; Razak, N.A.; Tilaki, M.J.M. A Review of the Effectiveness of Crime Prevention by Design Approaches towards Sustainable Development. J. Sustain. Dev. 2011, 4, 160. [Google Scholar] [CrossRef] [Green Version]
- Newman, O. Defensible Space: Crime Prevention through Urban Design; Macmillan: New York, NY, USA, 1972; ISBN 0-02-000750-7. Available online: https://www.huduser.gov/publications/pdf/def.pdf (accessed on 11 July 2023).
- Williams, T.G.; Logan, T.M.; Zuo, C.T.; Liberman, K.D.; Guikema, S.D. Parks and safety: A comparative study of green space access and inequity in five US cities. Landsc. Urban Plan. 2020, 201, 103841. [Google Scholar] [CrossRef]
Factor | Variable | Abbr. | Code | Criteria | Literature Review |
---|---|---|---|---|---|
Penetrability | Porosity | PO | PO1 | open to public < 20% | Kamalipour [39]; Gao et al. [51]; Kamalipour [40] |
PO2 | open to public 20~50% | ||||
PO3 | open to public > 50% | ||||
Transparency | TR | TR1 | opaque | Jacobs [52]; Bobić [11]; Dovey and Wood [19,43] | |
TR2 | Semi-transparent | ||||
TR3 | transparent | ||||
Flatness | FL | FL1 | setback | Oliveira et al. [56]; Jones [54]; Van Oostrum [55]; Kamalipour [40] | |
FL2 | align to the street | ||||
FL3 | set forward | ||||
Proximity | Continuity | CO | CO1 | <15 shops/100 m | Ashihara [60]; Gehl [37]; Roy and Bailey [57]; Rišová and Madajová [58] |
CO2 | 15~20 shops/100 m | ||||
CO3 | >20 shops/100 m | ||||
Infrastructure | IN | IN1 | No indicator | Mahadevia and Lathia [75]; Datta and Ahmed [62]; Sadeghi and Jangjoo [67] | |
IN2 | 1~2 indicators | ||||
IN3 | have all | ||||
Cross Angle | CR | CR1 | angle < 90° | Lin et al. [70]; UN-Women [69] | |
CR2 | angle > 90° | ||||
CR3 | straight | ||||
Scale | Ground Surface | GR | GR1 | width < 1.0 m | Ashihara [60]; Dovey et al. [71] |
GR2 | width ≈ 1.5~3.0 m | ||||
GR3 | width > 3.0 m | ||||
Enclosure | EN | EN1 | D/H < 1 | Ashihara [60]; Ewing et al. [42] | |
EN2 | D/H ≈ 1 | ||||
EN3 | D/H > 1 | ||||
Sky Exposure | SK | SK1 | open sky < 40% | Tang and Long [73]; Van Oostrum [55]; Mundher et al. [72] | |
SK2 | open sky ≈ 40~80% | ||||
SK3 | open sky > 80% |
N of Items | Sample Size | Cronbach’s Alpha | Hotelling’s T-Squared | F | df1 | df2 | Sig |
---|---|---|---|---|---|---|---|
29 | 359 | 0.712 | 328,109.593 | 10,834.425 | 28 | 331 | 0.000 *** |
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.716 | |
Bartlett’s Test of Sphericity | Approx. Chi-Square | 1937.056 |
df | 231 | |
Sig. | 0.000 *** |
Mean ± Std. Dev | |||||
---|---|---|---|---|---|
Factors | Male (n = 179) | Female (n = 180) | t | p-Value | |
Interface variables | Porosity | 6.229 ± 1.931 | 6.133 ± 1.865 | 0.478 | 0.633 |
Transparency | 6.520 ± 2.254 | 5.706 ± 2.554 | 3.202 ** | 0.001 | |
Flatness | 5.067 ± 1.880 | 4.583 ± 2.014 | 2.352 * | 0.019 | |
Continuity | 3.687 ± 2.239 | 3.872 ± 2.270 | −0.778 | 0.437 | |
Infrastructure | 5.927 ± 1.969 | 6.567 ± 1.986 | −3.062 ** | 0.002 | |
Cross angle | 7.061 ± 1.774 | 7.422 ± 1.654 | −1.993 * | 0.047 | |
Ground surface | 4.911 ± 2.113 | 4.989 ± 2.003 | −0.360 | 0.719 | |
Enclosure | 2.939 ± 2.104 | 3.128 ± 2.028 | −0.868 | 0.386 | |
Sky exposure | 2.659 ± 2.560 | 2.600 ± 2.322 | 0.230 | 0.819 | |
Worried | Sexual harassment | 0.402 ± 0.492 | 0.622 ± 0.486 | −4.262 *** | 0.000 |
Assault | 0.492 ± 0.501 | 0.622 ± 0.486 | −2.505 * | 0.013 | |
Rape | 0.173 ± 0.379 | 0.378 ± 0.486 | −4.446 *** | 0.000 | |
Stalking | 0.581 ± 0.495 | 0.839 ± 0.369 | −5.597 *** | 0.000 | |
Robbery | 0.469 ± 0.500 | 0.606 ± 0.490 | −2.607 * | 0.010 | |
Kidnapping | 0.128 ± 0.336 | 0.333 ± 0.473 | −4.736 *** | 0.000 | |
Murder | 0.112 ± 0.316 | 0.194 ± 0.397 | −2.185 * | 0.030 | |
Steal | 0.559 ± 0.498 | 0.550 ± 0.499 | 0.165 | 0.869 | |
Drug dealing | 0.196 ± 0.398 | 0.189 ± 0.393 | 0.159 | 0.874 | |
Do not worry | 0.117 ± 0.323 | 0.033 ± 0.180 | 3.047 ** | 0.002 | |
Others | 0.056 ± 0.230 | 0.072 ± 0.260 | −0.631 | 0.528 | |
Insecurity concerns | Psychological | 0.648 ± 0.479 | 0.872 ± 0.335 | −5.143 *** | 0.000 |
Physical | 0.285 ± 0.453 | 0.500 ± 0.501 | −4.265 *** | 0.000 | |
No feeling | 0.218 ± 0.414 | 0.056 ± 0.230 | 4.597 *** | 0.000 |
PO | TR | FL | CO | IN | CR | GR | EN | SK | |
---|---|---|---|---|---|---|---|---|---|
PO | 1.000 | ||||||||
TR | 0.296 ** | 1.000 | |||||||
FL | 0.226 ** | 0.353 ** | 1.000 | ||||||
CO | −0.302 ** | −0.303 ** | −0.300 ** | 1.000 | |||||
IN | −0.365 ** | −0.457 ** | −0.394 ** | 0.181 ** | 1.000 | ||||
CR | 0.050 | 0.088 | 0.107 * | −0.327 ** | −0.118 * | 1.000 | |||
GR | −0.320 ** | −0.379 ** | −0.320 ** | 0.099 | 0.107 * | −0.156 ** | 1.000 | ||
EN | −0.176 ** | −0.311 ** | −0.208 ** | −0.132 * | −0.011 | −0.167 ** | −0.007 | 1.000 | |
SK | −0.292 ** | −0.338 ** | −0.362 ** | −0.033 | 0.073 | −0.246 ** | −0.021 | 0.022 | 1.000 |
N of Items | Sample Size | Cronbach’s Alpha | Hotelling’s T-Squared | F | df1 | df2 | Sig |
---|---|---|---|---|---|---|---|
38 | 374 | 0.824 | 23,139.494 | 565.032 | 37 | 337 | <0.001 *** |
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.782 | |
Bartlett’s Test of Sphericity | Approx. Chi-Square | 4253.878 |
df | 703 | |
Sig. | 0.000 *** |
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95.0% Confidence Interval for B | Collinearity Statistics | ||||
---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Tolerance | VIF | |||||
a. Sum of safety score (all day) | (Constant) | 67.441 | 1.065 | 63.319 | <0.001 | 65.346~69.535 | |||
Cross angle | 6.694 | 1.364 | 0.247 | 4.907 *** | <0.001 | 4.012~9.377 | 0.978 | 1.023 | |
Enclosure | −4.339 | 1.397 | −0.155 | −3.105 ** | 0.002 | −7.087~−1.591 | 0.987 | 1.013 | |
Sky exposure | 3.076 | 1.244 | 0.124 | 2.473 * | 0.014 | 0.631~5.522 | 0.988 | 1.012 | |
b. Safety score in the daytime (8:00–17:00) | (Constant) | 35.680 | 0.514 | 69.443 | <0.001 | 34.67~36.691 | |||
Transparency | 1.660 | 0.808 | 0.107 | 2.054 * | 0.041 | 0.070~3.250 | 0.962 | 1.039 | |
Enclosure | −1.823 | 0.814 | −0.115 | −2.240 * | 0.026 | −3.424~−0.222 | 0.977 | 1.023 | |
Cross angle | 1.682 | 0.799 | 0.110 | 2.106 * | 0.036 | 0.111~3.2530 | 0.959 | 1.043 | |
c. Safety score at night (18:00–23:00) | (Constant) | 30.747 | 0.711 | 43.248 | <0.001 | 29.349~32.145 | |||
Cross angle | 4.864 | 0.733 | 0.327 | 6.635 *** | <0.001 | 3.422~6.305 | 0.961 | 1.041 | |
Sky exposure | 2.485 | 0.663 | 0.182 | 3.747 *** | <0.001 | 1.181~3.788 | 0.986 | 1.014 | |
Enclosure | −2.547 | 0.752 | −0.166 | −3.385 ** | 0.001 | −4.026~−1.067 | 0.966 | 1.036 | |
Continuity | 1.505 | 0.684 | 0.108 | 2.199 * | 0.029 | 0.159~2.850 | 0.965 | 1.036 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95.0% Confidence Interval for B | Collinearity Statistics | |||
---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Tolerance | VIF | |||||
1 | (Constant) | 67.610 | 0.760 | 88.966 *** | <0.001 | 66.116~69.105 | |||
manual | 6.878 | 1.315 | 0.262 | 5.232 *** | <0.001 | 4.293~9.462 | 1.000 | 1.000 | |
none manual | 0.000 | ||||||||
2 | (Constant) | 63.871 | 1.420 | 44.987 *** | <0.001 | 61.079~66.662 | |||
manual | 7.283 | 1.315 | 0.277 | 5.538 *** | <0.001 | 4.697~9.869 | 0.979 | 1.021 | |
18–30 | 4.779 | 1.615 | 0.192 | 2.959 ** | 0.003 | 1.603~7.955 | 0.585 | 1.709 | |
31–40 | 4.403 | 1.685 | 0.168 | 2.613 ** | 0.009 | 1.090~7.716 | 0.594 | 1.683 | |
41–55 | 0.000 |
Model | Eigenvalue | Condition Index | Variance Proportions | ||||
---|---|---|---|---|---|---|---|
(Constant) | Manual | 18–30 | 31–40 | ||||
1 | 1 | 1.578 | 1.000 | 0.21 | 0.21 | ||
2 | 0.422 | 1.934 | 0.79 | 0.79 | |||
2 | 1 | 2.311 | 1.000 | 0.03 | 0.07 | 0.03 | 0.03 |
2 | 1.013 | 1.510 | 0.00 | 0.01 | 0.16 | 0.18 | |
3 | 0.569 | 2.015 | 0.02 | 0.82 | 0.02 | 0.12 | |
4 | 0.107 | 4.640 | 0.95 | 0.10 | 0.78 | 0.67 |
Penetrability | I | J | Mean Difference (I−J) | Std. Error | Sig. |
---|---|---|---|---|---|
Porosity | PO1 | PO2 | −0.333 | 0.217 | 0.394 |
PO2 | PO3 | −0.785 | 0.320 | 0.086 | |
PO3 | PO1 | 1.118 | 0.261 | 0.010 * | |
Transparency | TR1 | TR2 | −0.443 | 0.227 | 0.247 |
TR2 | TR3 | −1.063 | 0.233 | 0.006 ** | |
TR3 | TR1 | 1.506 | 0.112 | 0.000 *** | |
Flatness | FL1 | FL2 | 0.710 | 0.221 | 0.011 * |
FL2 | FL3 | −0.052 | 0.136 | 0.975 | |
FL3 | FL1 | −0.658 | 0.191 | 0.010 * |
Proximity | I | J | Mean Difference (I−J) | Std. Error | Sig. |
---|---|---|---|---|---|
Continuity | CO1 | CO2 | −0.314 | 0.200 | 0.377 |
CO2 | CO3 | −0.970 | 0.237 | 0.001 ** | |
CO3 | CO1 | 1.284 | 0.175 | 0.000 *** | |
Infrastructure | IN1 | IN2 | −0.795 | 0.280 | 0.076 |
IN2 | IN3 | −0.701 | 0.308 | 0.149 | |
IN3 | IN1 | 1.495 | 0.159 | 0.009 ** | |
Cross angle | CR1 | CR2 | −0.542 | 0.164 | 0.017 * |
CR2 | CR3 | −0.559 | 0.297 | 0.228 | |
CR3 | CR1 | 1.101 | 0.252 | 0.009 ** |
Scale | I | J | Mean Difference (I−J) | Std. Error | Sig. |
---|---|---|---|---|---|
Ground surface | GR1 | GR2 | −0.452 | 0.202 | 0.152 |
GR2 | GR3 | −0.888 | 0.274 | 0.018 * | |
GR3 | GR1 | 1.340 | 0.193 | 0.001 ** | |
Enclosure | EN1 | EN2 | −0.065 | 0.644 | 1.000 |
EN2 | EN3 | 0.821 | 0.252 | 0.023 * | |
EN3 | EN1 | −0.757 | 0.602 | 0.807 | |
Sky exposure | SK1 | SK2 | −0.585 | 0.228 | 0.045 * |
SK2 | SK3 | −0.181 | 0.283 | 1.000 | |
SK3 | SK1 | 0.766 | 0.249 | 0.013 * |
Test Result Variable(s) | Area | Std. Error a | Asymptotic Sig. b | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
Penetrability | 0.975 | 0.023 | 0.000 *** | 0.930 | 1.000 |
Proximity | 0.970 | 0.026 | 0.000 *** | 0.919 | 1.000 |
Scale | 0.961 | 0.032 | 0.000 *** | 0.898 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Zhu, L.; Li, J.; Sun, Y.; Wang, X.; Wu, H. The Spatial Interface of Informal Settlements to Women’s Safety: A Human-Scale Measurement for the Largest Urban Village in Changsha, Hunan Province, China. Sustainability 2023, 15, 11748. https://doi.org/10.3390/su151511748
Zhang N, Zhu L, Li J, Sun Y, Wang X, Wu H. The Spatial Interface of Informal Settlements to Women’s Safety: A Human-Scale Measurement for the Largest Urban Village in Changsha, Hunan Province, China. Sustainability. 2023; 15(15):11748. https://doi.org/10.3390/su151511748
Chicago/Turabian StyleZhang, Ni, Li Zhu, Jiang Li, Yilin Sun, Xiaokang Wang, and Honglin Wu. 2023. "The Spatial Interface of Informal Settlements to Women’s Safety: A Human-Scale Measurement for the Largest Urban Village in Changsha, Hunan Province, China" Sustainability 15, no. 15: 11748. https://doi.org/10.3390/su151511748
APA StyleZhang, N., Zhu, L., Li, J., Sun, Y., Wang, X., & Wu, H. (2023). The Spatial Interface of Informal Settlements to Women’s Safety: A Human-Scale Measurement for the Largest Urban Village in Changsha, Hunan Province, China. Sustainability, 15(15), 11748. https://doi.org/10.3390/su151511748