Emission Characteristics, Speciation, and Potential Environmental Risks of Heavy Metals from Coal-Fired Boilers: A Review
Abstract
:1. Introduction
2. Methodology
3. Emission Characteristics of HMs from Coal-Fired Boilers
3.1. Release of HMs from Coal Combustion
3.2. Emission Factor and Inventory of HMs
3.3. Cross-Media Partitioning of HMs among Output Streams
4. Speciation of HMs in Waste from Coal-Fired Boilers
4.1. Sequential Chemical Extraction Method for Speciation Analysis of HMs
4.2. Chemical Fractionations of HMs in Wastes
5. Potential Environmental Risks of HMs from Coal-Fired Boilers
5.1. Methodology for Potential Environmental Risk of HMs
5.2. Potential Environmental Risks of HMs
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pacyna, J.M. An assessment of the applicability of the critical load concept as a basis for international protocols on emission reductions for heavy metals and persistent organic compounds. Sources, transport and deposition. In Assessment of the Applicability for Pollution Control Authorities of the Concept “Critical Load” of Long-Range Transported Micropollutants in Relation to Aquatic and Terrestrial Ecosystems; Research Report No. 32; Ministry of Environment: Oslo, Norway, 1998; pp. 31–40. [Google Scholar]
- Ito, S.; Yokoyama, T.; Asakura, K. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Sci. Total Environ. 2006, 368, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.Q.; Chen, B.; Li, Y.X.; Zhou, S.L.; Zou, X.W.; Zhang, N.; Zhou, Y.R.; Chen, H.X.; Zou, J.; Zeng, X.H.; et al. The Co-Benefits of Clean Air and Low-Carbon Policies on Heavy Metal Emission Reductions from Coal-Fired Power Plants in China. Resour. Conserv. Recycl. 2022, 181, 106258. [Google Scholar] [CrossRef]
- Tian, H.Z.; Zhu, C.Y.; Gao, J.J.; Cheng, K.; Hao, J.M.; Wang, K.; Hua, S.B.; Wang, Y.; Zhou, J.R. Quantitative Assessment of Atmospheric Emissions of Toxic Heavy Metals from Anthropogenic Sources in China: Historical Trend, Spatial Distribution, Uncertainties, and Control Policies. Atmos. Chem. Phys. 2015, 15, 10127–10147. [Google Scholar] [CrossRef] [Green Version]
- Nriagu, J.O. Global Inventory of Natural and Anthropogenic Emissions of Trace Metals to the Atmosphere. Nature 1979, 279, 409–411. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An Assessment of Global and Regional Emissions of Trace Metals to the Atmosphere from Anthropogenic Sources Worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Agents Classified by the IARC Monographs, Volumes 1–111. Available online: http://monographs.iarc.fr/ENG/Classification/index.php (accessed on 24 July 2023).
- WHO (World Health Organization). Health Risks of Persistent Organic Pollutants from Long-Range Transboundary Air Pollution. Available online: www.euro.who.int/__data/assets/pdf_file/0009/78660/e78963.pdf (accessed on 24 July 2023).
- MEE (Ministry of Ecology and Environment of China). Opinions on Further Strengthening Prevention and Control of Heavy Metal Pollution; Ministry of Ecology and Environment of China: Beijing, China, 2022. [Google Scholar]
- UN Environment. The Global Mercury Assessment 2018; UN Environment: Nairobi, Kenya, 2018. [Google Scholar]
- EEA (European Environment Agency). National Emissions Reported to the Convention on Long-Range Transboundary Air Pollution (LRTAP Convention). Available online: https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-convention-on-long-range-transboundary-air-pollution-lrtap-convention-16 (accessed on 24 July 2023).
- Olson, C.I.; Fakhraei, H.; Driscoll, C.T. Mercury Emissions, Atmospheric Concentrations, and Wet Deposition across the Conterminous United States: Changes over 20 Years of Monitoring. Environ. Sci. Technol. Lett. 2020, 7, 376–381. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Tian, H.Z.; Gao, X.; Zhang, Y.; Wu, X.C.; Zhu, C.Y.; Gao, J.J. Atmospheric Emission Characteristics and Control Policies of Five Precedent-Controlled Toxic Heavy Metals from Anthropogenic Sources in China. Environ. Sci. Technol. 2015, 49, 1206–1214. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Tian, H.Z.; Hao, Y.; Gao, J.J.; Hao, J.M.; Wang, Y.; Hua, S.B.; Wang, K.; Liu, H.J. A High-Resolution Emission Inventory of Anthropogenic Trace Elements in Beijing-Tianjin-Hebei (BTH) Region of China. Atmos. Environ. 2018, 191, 452–462. [Google Scholar] [CrossRef]
- Tong, Y.L.; Gao, J.J.; Yue, T.; Zhang, X.X.; Liu, J.Y.; Bai, J. Distribution, Chemical Fractionation, and Potential Environmental Risks of Hg, Cr, Cd, Pb, and As in Wastes from Ultra-Low Emission Coal-Fired Industrial Boilers in China. J. Hazard. Mater. 2023, 446, 130606. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.L.; Gao, J.J.; Wang, K.; Jing, H.; Wang, C.L.; Zhang, X.X.; Liu, J.Y.; Yue, T.; Wang, X.; Xing, Y. Highly-Resolved Spatial-Temporal Variations of Air Pollutants from Chinese Industrial Boilers. Environ. Pollut. 2021, 289, 117931. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Yang, J.P.; Zhao, Y.C.; Liu, H.; Zhang, J.Y.; Zheng, C.G. Behavior and Fate of As, Se, and Cd in an Ultra-Low Emission Coal-Fired Power Plant. J. Clean. Prod. 2019, 209, 722–730. [Google Scholar] [CrossRef]
- Tong, Y.L.; Wang, K.; Gao, J.J.; Yue, T.; Zuo, P.L.; Wang, C.L.; Tong, L.; Zhang, X.X.; Zhang, Y.; Liang, Q.M.; et al. Mercury Distribution and Emission Reduction Potentials of Chinese Coal-Fired Industrial Boilers. Air Qual. Atmos. Health 2022, 15, 967–978. [Google Scholar] [CrossRef]
- Liu, K.Y.; Wang, S.X.; Wu, Q.R.; Wang, L.; Ma, Q.; Zhang, L.; Li, G.L.; Tian, H.Z.; Duan, L.; Hao, J.M. A Highly Resolved Mercury Emission Inventory of Chinese Coal-Fired Power Plants. Environ. Sci. Technol. 2018, 52, 2400–2408. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, K.; Tong, Y.; Yue, T.; Wang, C.; Zuo, P.; Liu, J. Refined Spatio-Temporal Emission Assessment of Hg, As, Cd, Cr and Pb from Chinese Coal-Fired Industrial Boilers. Sci. Total Environ. 2021, 757, 143733. [Google Scholar] [CrossRef] [PubMed]
- NBSC (National Bureau of Statistics of China). China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- UN Environment. Minamata Convention on Mercury; UN Environment: Nairobi, Kenya, 2019. [Google Scholar]
- GB 13223-2011; Emission Standard of Air Pollutants for Thermal Power Plants. MEE (Ministry of Ecology and Environment of China): Beijing, China, 2012.
- GB 13271-2014; Emission Standard of Air Pollutants for Boiler. MEE (Ministry of Ecology and Environment of China): Beijing, China, 2014.
- MEE (Ministry of Ecology and Environment of China). Annual Report on the Prevention and Control of Environmental Pollution by Solid Waste in Large and Medium Cities in 2020; Ministry of Ecology and Environment of China: Beijing, China, 2020. [Google Scholar]
- Chang, L.; Zhao, Y.C.; Zhang, Y.; Yu, X.H.; Li, Z.H.; Gong, B.G.; Liu, H.; Wei, S.Z.; Wu, H.; Zhang, J.Y. Mercury Species and Potential Leaching in Sludge from Coal-Fired Power Plants. J. Hazard. Mater. 2021, 403, 123927. [Google Scholar] [CrossRef] [PubMed]
- Karlfeldt Fedje, K.; Ekberg, C.; Skarnemark, G.; Steenari, B.M. Removal of Hazardous Metals from MSW Fly Ash—An Evaluation of Ash Leaching Methods. J. Hazard. Mater. 2010, 173, 310–317. [Google Scholar] [CrossRef]
- Xu, M. Status of Trace Element Emission in a Coal Combustion Process: A Review. Fuel Process. Technol. 2004, 85, 215–237. [Google Scholar] [CrossRef]
- Konieczynski, J.; Zajusz-zubek, E. Distribution of Selected Trace Elements in Dust Containment and Flue Gas Desulphurisation Products from Coal-Fired Power Plants. Arch. Environ. Prot. 2011, 37, 3–14. [Google Scholar]
- Wang, X.; Yao, D.X.; Feng, Q.Y. Distribution characteristics and environmental impact of heavy metals during lignite combustion. Acta Sci. Circumstantiae 2013, 33, 1389–1395, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Querol, X.; Fernández-Turiel, J.L.; López-Soler, A. Trace Elements in Coal and Their Behaviour during Combustion in a Large Power Station. Fuel 1995, 74, 331–343. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.X.; Meng, Y.; Hao, J.M. Influence of Mercury and Chlorine Content of Coal on Mercury Emissions from Coal-Fired Power Plants in China. Environ. Sci. Technol. 2012, 46, 6385–6392. [Google Scholar] [CrossRef]
- Wang, C.B.; Zhang, Y.; Shi, Y.H.; Liu, H.M.; Zou, C.; Wu, H.C.; Kang, X. Research on Collaborative Control of Hg, As, Pb and Cr by Electrostatic-Fabric-Integrated Precipitator and Wet Flue Gas Desulphurization in Coal-Fired Power Plants. Fuel 2017, 210, 527–534. [Google Scholar] [CrossRef]
- Wen, M.N.; Wu, Q.R.; Li, G.L.; Wang, S.X.; Li, Z.J.; Tang, Y.; Xu, L.W.; Liu, T.H. Impact of Ultra-Low Emission Technology Retrofit on the Mercury Emissions and Cross-Media Transfer in Coal-Fired Power Plants. J. Hazard. Mater. 2020, 396, 122729. [Google Scholar] [CrossRef]
- Zheng, C.H.; Wang, L.; Zhang, Y.X.; Zhang, J.; Zhao, H.T.; Zhou, J.S.; Gao, X.; Cen, K.F. Partitioning of Hazardous Trace Elements among Air Pollution Control Devices in Ultra-Low-Emission Coal-Fired Power Plants. Energy Fuels 2017, 31, 6334–6344. [Google Scholar] [CrossRef]
- Zheng, C.H.; Wang, L.; Zhang, Y.X.; Weng, W.G.; Zhao, H.T.; Zhou, J.S.; Gao, X. Co-Benefit of Hazardous Trace Elements Capture in Dust Removal Devices of Ultra-Low Emission Coal-Fired Power Plants. J. Zhejiang Univ.-Sci. A 2018, 19, 68–79. [Google Scholar] [CrossRef]
- Ochoa-González, R.; Díaz-Somoano, M.; Martínez-Tarazona, M.R. The Capture of Oxidized Mercury from Simulated Desulphurization Aqueous Solutions. J. Environ. Manag. 2013, 120, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.L.; Duan, Y.F.; Tan, H.Z.; Liu, M.; Wang, X.B.; Wu, L.T.; Wang, C.P.; Lv, J.H.; Yao, T.; She, M.; et al. Migration and Emission Characteristics of Trace Elements in a 660 MW Coal-Fired Power Plant of China. Energy Fuels 2016, 30, 5937–5944. [Google Scholar] [CrossRef]
- Zhao, S.L.; Duan, Y.F.; Chen, L.; Li, Y.N.; Yao, T.; Liu, S.; Liu, M.; Lu, J.H. Study on Emission of Hazardous Trace Elements in a 350 MW Coal-Fired Power Plant. Part 2. Arsenic, Chromium, Barium, Manganese, Lead. Environ. Pollut. 2017, 226, 404–411. [Google Scholar] [CrossRef]
- Han, J.; Liang, Y.S.; Zhao, B.; Xiong, Z.J.; Qin, L.B.; Chen, W.S. In-Situ Reaction between Arsenic/Selenium and Minerals in Fly Ash at High Temperature during Blended Coal Combustion. J. Fuel Chem. Technol. 2020, 48, 1356–1364. [Google Scholar] [CrossRef]
- Deng, S.; Shi, Y.J.; Liu, Y.; Zhang, C.; Wang, X.F.; Cao, Q.; Li, S.G.; Zhang, F. Emission Characteristics of Cd, Pb and Mn from Coal Combustion: Field Study at Coal-Fired Power Plants in China. Fuel Process. Technol. 2014, 126, 469–475. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative Assessment of Worldwide Contamination of Air, Water and Soils by Trace Metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Pacyna, J.M. Estimation of the Atmospheric Emissions of Trace Elements from Anthropogenic Sources in Europe. Atmos. Environ. 1984, 18, 41–50. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Tian, H.Z.; Cheng, K.; Liu, K.Y.; Wang, K.; Hua, S.B.; Gao, J.J.; Zhou, J.R. Potentials of Whole Process Control of Heavy Metals Emissions from Coal-Fired Power Plants in China. J. Clean. Prod. 2016, 114, 343–351. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Tian, H.Z.; Hao, J.M. Global Anthropogenic Atmospheric Emission Inventory of Twelve Typical Hazardous Trace Elements, 1995–2012. Atmos. Environ. 2020, 220, 117061. [Google Scholar] [CrossRef]
- Wu, Q.R.; Wang, S.X.; Li, G.L.; Liang, S.; Lin, C.J.; Wang, Y.F.; Cai, S.Y.; Liu, K.Y.; Hao, J.M. Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China during 1978–2014. Environ. Sci. Technol. 2016, 50, 13428–13435. [Google Scholar] [CrossRef]
- Han, D.M.; Xu, L.W.; Wu, Q.R.; Wang, S.X.; Duan, L.; Wen, M.N.; Li, Z.J.; Tang, Y.; Li, G.L.; Liu, K.Y. Potential Environmental Risk of Trace Elements in Fly Ash and Gypsum from Ultra–Low Emission Coal–Fired Power Plants in China. Sci. Total Environ. 2021, 798, 149116. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.G.; Hao, J.; Wang, S.; Wu, Y. Mercury Emissions from Coal Combustion in China. In Mercury Fate and Transport in the Global Atmosphere; Mason, R., Pirrone, N., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Zhao, S.L.; Duan, Y.F.; Lu, J.C.; Gupta, R.; Pudasainee, D.; Liu, S.; Liu, M.; Lu, J.H. Thermal Stability, Chemical Speciation and Leaching Characteristics of Hazardous Trace Elements in FGD Gypsum from Coal-Fired Power Plants. Fuel 2018, 231, 94–100. [Google Scholar] [CrossRef]
- Agarwalla, H.; Senapati, R.N.; Das, T.B. Mercury Emissions and Partitioning from Indian Coal-Fired Power Plants. J. Environ. Sci. 2021, 100, 28–33. [Google Scholar] [CrossRef]
- Chou, C.P.; Chiu, C.H.; Chang, T.C.; Hsi, H.C. Mercury Speciation and Mass Distribution of Coal-Fired Power Plants in Taiwan Using Different Air Pollution Control Processes. J. Air Waste Manag. Assoc. 2021, 71, 553–563. [Google Scholar] [CrossRef]
- Gong, H.; Huang, Y.; Hu, H.; Fu, B.; Ma, T.; Li, S.; Xie, K.; Luo, G.; Yao, H. Insight of Particulate Arsenic Removal from Coal-Fired Power Plants. Fuel 2019, 257, 116018. [Google Scholar] [CrossRef]
- Contreras, M.L.; Arostegui, J.M.; Armesto, L. Arsenic Interactions during Co-Combustion Processes Based on Thermodynamic Equilibrium Calculations. Fuel 2009, 88, 539–546. [Google Scholar] [CrossRef]
- Sterling, R.O.; Helble, J.J. Reaction of Arsenic Vapor Species with Fly Ash Compounds: Kinetics and Speciation of the Reaction with Calcium Silicates. Chemosphere 2003, 51, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, F.; Huggins, F.E.; Sanei, H. Assessment of Elements, Speciation of As, Cr, Ni and Emitted Hg for a Canadian Power Plant Burning Bituminous Coal. Int. J. Coal Geol. 2008, 74, 1–12. [Google Scholar] [CrossRef]
- Czech, T.; Marchewicz, A.; Sobczyk, A.T.; Krupa, A.; Jaworek, A.; Rosiak, D. Heavy Metals Partitioning in Fly Ashes between Various Stages of Electrostatic Precipitator after Combustion of Different Types of Coal. Process Saf. Environ. Prot. 2020, 133, 18–31. [Google Scholar] [CrossRef]
- Fu, B.; Liu, G.; Mian, M.M.; Sun, M.; Wu, D. Characteristics and Speciation of Heavy Metals in Fly Ash and FGD Gypsum from Chinese Coal-Fired Power Plants. Fuel 2019, 251, 593–602. [Google Scholar] [CrossRef]
- Al-Abed, S.R.; Jegadeesan, G.; Scheckel, K.G.; Tolaymat, T. Speciation, Characterization, and Mobility of As, Se, and Hg in Flue Gas Desulphurization Residues. Environ. Sci. Technol. 2008, 42, 1693–1698. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Shang, P.F.; Wang, J.W.; Norris, P.; Romero, C.E.; Pan, W.P. Trace Element (Hg, As, Cr, Cd, Pb) Distribution and Speciation in Coal-Fired Power Plants. Fuel 2017, 208, 647–654. [Google Scholar] [CrossRef]
- Cetin, B.; Aydilek, A.H. PH and Fly Ash Type Effect on Trace Metal Leaching from Embankment Soils. Resour. Conserv. Recycl. 2013, 80, 107–117. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.H.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Sci. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Deng, S.; Shu, Y.; Li, S.G.; Tian, G.; Huang, J.Y.; Zhang, F. Chemical Forms of the Fluorine, Chlorine, Oxygen and Carbon in Coal Fly Ash and Their Correlations with Mercury Retention. J. Hazard. Mater. 2016, 301, 400–406. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Q.; Pan, Y.; Liu, Z.X.; Wu, S.M.; Xu, Y.B.; Qian, G.R. Heavy Metals Distribution Characteristics of FGD Gypsum Samples from Shanxi Province 12 Coal-Fired Power Plants and Its Potential Environmental Impacts. Fuel 2017, 209, 238–245. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Zhao, S.L.; Duan, Y.F.; Lu, J.C.; Gupta, R.; Pudasainee, D.; Liu, S.; Liu, M.; Lu, J.H. Chemical Speciation and Leaching Characteristics of Hazardous Trace Elements in Coal and Fly Ash from Coal-Fired Power Plants. Fuel 2018, 232, 463–469. [Google Scholar] [CrossRef]
- Bloom, N.S.; Preus, E.; Katon, J.; Hiltner, M. Selective Extractions to Assess the Biogeochemically Relevant Fractionation of Inorganic Mercury in Sediments and Soils. Anal. Chim. Acta 2003, 479, 233–248. [Google Scholar] [CrossRef]
- Wang, S.X.; Zhang, L.; Li, G.H.; Wu, Y.; Hao, J.M.; Pirrone, N.; Sprovieri, F.; Ancora, M.P. Mercury Emission and Speciation of Coal-Fired Power Plants in China. Atmos. Chem. Phys. 2010, 10, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Diao, X.; Yuan, C.G.; Wu, J.J.; Zhang, K.G.; Zhang, C.; Gui, B. Mercury Fractions in Gypsum and Estimation of Mercury Emission from Coal-Fired Power Plants. Fuel 2018, 226, 298–306. [Google Scholar] [CrossRef]
- Sun, M.Y.; Hou, J.A.; Cheng, G.H.; Baig, S.A.; Tan, L.S.; Xu, X.H. The Relationship between Speciation and Release Ability of Mercury in Flue Gas Desulfurization (FGD) Gypsum. Fuel 2014, 125, 66–72. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, S.M.; Pan, Y.; Li, Q.; Zhou, J.Z.; Xu, Y.B.; Qian, G.R. Characterization and Leaching Toxicities of Mercury in Flue Gas Desulfurization Gypsum from Coal-Fired Power Plants in China. Fuel 2016, 177, 157–163. [Google Scholar] [CrossRef]
- Wu, J.J.; Wu, X.L.; Wang, J.W.; Wang, T.; Zhang, Y.S.; Pan, W.P. Speciation Analysis of Hg, As, Pb, Cd, and Cr in Fly Ash at Different ESP’s Hoppers. Fuel 2020, 280, 118688. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, H.; Hu, H.; Fu, B.; Yuan, B.; Li, S.; Luo, G.; Yao, H. Migration and Emission Behavior of Arsenic and Selenium in a Circulating Fluidized Bed Power Plant Burning Arsenic/Selenium-Enriched Coal. Chemosphere 2021, 263, 127920. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Hu, H.; Xu, M.; Liu, H.; Li, X.; Wang, X.; Yao, H. A Deep Insight into Arsenic Adsorption over γ-Al2O3 in the Presence of SO2/NO. Proc. Combust. Inst. 2019, 37, 2951–2957. [Google Scholar] [CrossRef]
- da Silva, E.B.; Li, S.; de Oliveira, L.M.; Gress, J.; Dong, X.; Wilkie, A.C.; Townsend, T.; Ma, L.Q. Metal Leachability from Coal Combustion Residuals under Different PHs and Liquid/Solid Ratios. J. Hazard. Mater. 2018, 341, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Tang, Y.G.; Li, R.Q.; Guo, X.; Hurley, J.P.; Finkelman, R.B. Measurements of the Leachability of Potentially Hazardous Trace Elements from Solid Coal Gasification Wastes in China. Sci. Total Environ. 2021, 759, 143463. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Nemerow, N.L. Scientific Stream Pollution Analysis; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Guan, B.R. Comment on the pollution index of Nemerow. Environ. Sci. 1979, 67–71, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, T.; Lou, Y.B.; Jiang, S.C.; Wang, J.W.; Zhang, Y.S.; Pan, W.P. Distribution Characteristics and Environmental Risk Assessment of Trace Elements in Desulfurization Sludge from Coal-Fired Power Plants. Fuel 2022, 314, 122771. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanette, M.L.; Orio, A.A. Heavy Metal Speciation in the Sediments of Northern Adriatic Sea. In A New Approach for Environmental Toxicity Determination; CEP Consultants: Edinburgh, UK, 1985. [Google Scholar]
- Baba, A.; Kaya, A. Leaching Characteristics of Solid Wastes from Thermal Power Plants of Western Turkey and Comparison of Toxicity Methodologies. J. Environ. Manag. 2004, 73, 199–207. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X. Leaching Behaviour of Elements from Coal Combustion Fly Ash: An Overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Dai, S.F.; Finkelman, R.B.; French, D.; Graham, I.T.; Yang, Y.C.; Li, J.X.; Yang, P. Leaching Behavior of Trace Elements from Fly Ashes of Five Chinese Coal Power Plants. Int. J. Coal Geol. 2020, 219, 103381. [Google Scholar] [CrossRef]
- Dudas, M.J. Long-Term Leachability of Selected Elements from Fly Ash. Environ. Sci. Technol. 1981, 15, 840–843. [Google Scholar] [CrossRef]
- Georgakopoulos, A.; Filippidis, A.; Kassoli-Fournaraki, A.; Fernández-Turiel, J.L.; Llorens, J.F.; Mousty, F. Leachability of Major and Trace Elements of Fly Ash from Ptolemais Power Station, Northern Greece. Energy Sources 2002, 24, 103–113. [Google Scholar] [CrossRef]
- Hassett, D.J.; Pflughoeft-Hassett, D.F.; Heebink, L.V. Leaching of CCBs: Observations from over 25 Years of Research. Fuel 2005, 84, 1378–1383. [Google Scholar] [CrossRef]
- Zandi, M.; Russell, N.V. Design of a Leaching Test Framework for Coal Fly Ash Accounting for Environmental Conditions. Environ. Monit. Assess. 2007, 131, 509–526. [Google Scholar] [CrossRef] [PubMed]
- USEPA (US Environmental Protection Administration). Method 1312 Synthetic Precipitation Leaching Procedure. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-1312-synthetic-precipitation-leaching-procedure (accessed on 24 July 2023).
- USEPA (US Environmental Protection Administration). Method 1311 Toxicity Characteristic Leaching Procedure. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure (accessed on 24 July 2023).
- USEPA (US Environmental Protection Administration). Method 13020 Multiple Extraction Procedure. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-1320-multiple-extraction-procedure (accessed on 24 July 2023).
- USEPA (US Environmental Protection Administration). Leaching Environmental Assessment Framework (LEAF) Methods and Guidance. Available online: https://www.epa.gov/hw-sw846/leaching-environmental-assessment-framework-leaf-methods-and-guidance (accessed on 24 July 2023).
- Hot, J.; Sow, M.; Tribout, C.; Cyr, M. An Investigation of the Leaching Behavior of Trace Elements from Spreader Stoker Coal Fly Ashes-Based Systems. J. Build. Eng. 2016, 110, 218–226. [Google Scholar] [CrossRef]
- Luo, H.W.; Cheng, Y.; He, D.Q.; Yang, E.H. Review of Leaching Behavior of Municipal Solid Waste Incineration (MSWI) Ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, P.; Castro, I.; Maroto-Valer, M.; Querol, X. The Potential Leaching and Mobilization of Trace Elements from FGD-Gypsum of a Coal-Fired Power Plant under Water Re-Circulation Conditions. J. Environ. Sci. 2015, 32, 72–80. [Google Scholar] [CrossRef]
- Fang, W.; Qi, G.; Wei, Y.; Kosson, D.S.; van der Sloot, H.A.; Liu, J. Leaching Characteristic of Toxic Trace Elements in Soils Amended by Sewage Sludge Compost: A Comparison of Field and Laboratory Investigations. Environ. Pollut. 2018, 237, 244–252. [Google Scholar] [CrossRef]
- Neupane, G.; Donahoe, R.J. Leachability of Elements in Alkaline and Acidic Coal Fly Ash Samples during Batch and Column Leaching Tests. Fuel 2013, 104, 758–770. [Google Scholar] [CrossRef]
- Zhou, C.C.; Liu, G.J.; Fang, T.; Wu, D.; Lam, P.K.S. Partitioning and Transformation Behavior of Toxic Elements during Circulated Fluidized Bed Combustion of Coal Gangue. Fuel 2014, 135, 1–8. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, H.M.; Zhao, X.H.; Miao, C.H.; Yang, P.P.; Zhou, Z.K.; Ji, Q.Z.; Chen, L. Speciation, Bioaccessibility and Human Health Risk Assessment of Chromium in Solid Wastes from an Ultra-Low Emission Coal-Fired Power Plant, China. Environ. Pollut. 2022, 315, 120400. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.B.; Ruppert, L.F.; Swanson, S.M. Leaching of Elements from Bottom Ash, Economizer Fly Ash, and Fly Ash from Two Coal-Fired Power Plants. Int. J. Coal Geol. 2012, 94, 337–348. [Google Scholar] [CrossRef]
- Jones, K.B.; Ruppert, L.F. Leaching of Trace Elements from Pittsburgh Coal Mill Rejects Compared with Coal Combustion Products from a Coal-Fired Power Plant in Ohio, USA. Int. J. Coal Geol. 2017, 171, 130–141. [Google Scholar] [CrossRef]
- Gong, X.; Wu, T.; Qiao, Y.; Xu, M.H. In Situ Leaching of Trace Elements in a Coal Ash Dump and Time Dependence Laboratory Evaluation. Energy Fuels 2010, 24, 84–90. [Google Scholar] [CrossRef]
Type | Country or Region | Hg (t) | As (t) | Cd (t) | Cr (t) | Pb (t) | Year | Reference |
---|---|---|---|---|---|---|---|---|
CFPPs & CFIBs | Word | 2081 | 2037 | 673 | 12,683 | 11,690 | 1995 | Pacyna (1988) [1] |
Europe | 186 | 143 | 109 | 1999 | 2683 | 1995 | Pacyna and Pacyna, 2001 [6] | |
Africa | 197 | 41 | 40 | 746 | 1116 | 1995 | ||
Asia | 860 | 342 | 237 | 4282 | 4845 | 1995 | ||
CFPP | Word | 292 | — | — | — | — | 2015 | UN Environment (2018) [10] |
China | 73 | — | — | — | — | 2015 | Liu et al., 2018 [19] | |
Japan | 0.638 | 0.251 | 0.00702 | 0.243 | 0.518 | 2000 | Ito et al., 2006 [2] | |
CFIB | China | 171 | 821.3 | 104.0 | 5317.6 | 5449.5 | 2012 | Tian et al., 2015 [4] |
25.46 | 115.33 | 7.04 | 371.40 | 589.76 | 2017 | Gao et al., 2021 [20] |
Type | Waste | Boiler Type | APCDs | HM | Chemical Fractionations | Reference |
---|---|---|---|---|---|---|
CFPP | Gypsum | Pulverised coal furnace | SCR + EFF + WFGD | Hg | F4 > F3 > F2 > F1 | Zhao et al. [49] |
As | F3 > F4 > F2 > F1 | |||||
Cr | F4 > F2 > F3 > F1 | |||||
Cd | F4 > F1 > F2 > F3 | |||||
Pb | F4 > F2 > F1 > F3 | |||||
Gypsum | — | ESP + WFGD | Hg | F4 > F5 > F1 > F2 > F3 | Al-Abed et al. [58] | |
Fly ash | Pulverised coal furnace | SCR + ESP + WFGD + WESP | Hg | F4 > F2 = F3 > F1 | Zhao et al. [65] | |
As | F2 > F1 > F4 > F3 | |||||
Cr | F4 > F1 > F2 > F3 | |||||
Cd | F2 > F3 = F1 > F4 | |||||
Pb | F2 > F4 > F3 > F1 | |||||
CFIB | Fly ash | Circulating fluidised bed furnace | LNB − SCR + ESP + WFGD + WESP | Hg | F4 > F5 > F3 > F2 > F1 | Tong et al. [15] |
As | F3 > F1 > F2 > F4 | |||||
Cr | F4 > F3 > F1 > F2 | |||||
Cd | F4 > F3 > F1 > F2 | |||||
Pb | F4 > F3 > F2 > F1 | |||||
Slag | Pulverised coal furnace | LNB − SCR + EFF + WFGD | Hg | F4 > F5 > F3 > F1 > F2 | ||
As | F3 > F2 > F4 > F1 | |||||
Cr | F4 > F3 > F2 > F1 | |||||
Cd | F4 > F1 > F3 > F2 | |||||
Pb | F4 > F3 > F2 > F1 | |||||
Gypsum | Circulating fluidised bed furnace | SNCR + FF + WFGD | Hg | F4 > F5 > F3 > F2 > F1 | ||
As | F4 > F1 > F3 > F2 | |||||
Cr | F4 > F1 > F3 > F2 | |||||
Cd | F4 > F1 > F3 > F2 | |||||
Pb | F4 > F1 > F3 > F2 |
Method Name | Feature | Calculation Formula | Classification | Application Field |
---|---|---|---|---|
Geo-accumulation Index method | Consider HM content level | Where Igeo is the Geo-accumulation Index; c is the HM content level; S is the standard value of HM content; i is HM. | Seven level | Soil, agricultural land, municipal sludge, sediment, and atmospheric particulate matter |
Nemerow Index method | Introduce average and maximum values | Where P is the Nemerow Index; w is the HM content level; S is the standard value of HM content; i is HM. | Five level | Soil, agricultural land, municipal sludge, sediment, and gypsum |
Potential Ecological Risk Index method | Introduce toxicity response factors | Where Er is the Potential Ecological Risk Index; Tr is the toxicity response factor; cf is the pollution index; ci the HM content level; cd is the standard value of HM content; i is HM. | Five level | Soil, agricultural land, municipal sludge, and sediment |
Risk Assessment Code method | Consider HM chemical fractionation | Where RAC is the Risk Assessment Code; F is the amount of chemical fractionation; x is the potentially releasable HM; n is the total number of chemical fractionation. | Five level | Soil, sediment, and solid waste |
Leaching toxicity method | Consider cross-media migration capability | Concentration of HM in the leaching solution or leaching rate of HM | / | Solid waste |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Gao, J.; Ma, J. Emission Characteristics, Speciation, and Potential Environmental Risks of Heavy Metals from Coal-Fired Boilers: A Review. Sustainability 2023, 15, 11653. https://doi.org/10.3390/su151511653
Tong Y, Gao J, Ma J. Emission Characteristics, Speciation, and Potential Environmental Risks of Heavy Metals from Coal-Fired Boilers: A Review. Sustainability. 2023; 15(15):11653. https://doi.org/10.3390/su151511653
Chicago/Turabian StyleTong, Yali, Jiajia Gao, and Jingyun Ma. 2023. "Emission Characteristics, Speciation, and Potential Environmental Risks of Heavy Metals from Coal-Fired Boilers: A Review" Sustainability 15, no. 15: 11653. https://doi.org/10.3390/su151511653
APA StyleTong, Y., Gao, J., & Ma, J. (2023). Emission Characteristics, Speciation, and Potential Environmental Risks of Heavy Metals from Coal-Fired Boilers: A Review. Sustainability, 15(15), 11653. https://doi.org/10.3390/su151511653