Comparative Phycoremediation Performance of Three Microalgae Species in Two Different Magnitude of Pollutants in Wastewater from Farmhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Wastewaters
2.2. Chemical Analyses and Nutrient Removal Rate Determination
2.3. Microalgae Strains and Cultivation Conditions
2.4. Evaluation of Bacterial Removal Efficiency
2.5. Experimental Set-Up
2.6. Determination of Microalgal Growth
2.7. Statistical Analysis
3. Results
3.1. Dynamics of Microalgae Population
3.2. Nutrient Removal
3.3. E. coli Removal Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel Assessment of Water Scarcity under Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Saxena, S. Cultivation of Azolla Microphylla Biomass on Secondary-Treated Delhi Municipal Effluents. Biomass Bioenergy 2005, 29, 60–64. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Immobilized Microalgae for Removing Pollutants: Review of Practical Aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef]
- Chai, W.S.; Tan, W.G.; Halimatul Munawaroh, H.S.; Gupta, V.K.; Ho, S.-H.; Show, P.L. Multifaceted Roles of Microalgae in the Application of Wastewater Biotreatment: A Review. Environ. Pollut. 2021, 269, 116236. [Google Scholar] [CrossRef]
- Olguín, E.J. Phycoremediation: Key Issues for Cost-Effective Nutrient Removal Processes. Biotechnol. Adv. 2003, 22, 81–91. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs New Advanced Treatment Methods for the Removal of Contaminants of Emerging Concern from Urban Wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- La Bella, E.; Baglieri, A.; Fragalà, F.; Puglisi, I. Multipurpose Agricultural Reuse of Microalgae Biomasses Employed for the Treatment of Urban Wastewater. Agronomy 2022, 12, 234. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Safe Use of Wasterwater Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated Wastewater Reuse for Irrigation: Pros and Cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Łuczkiewicz, A.; Jankowska, K.; Fudala-Ksiazek, S.; Olańczuk-Neyman, K. Antimicrobial Resistance of Fecal Indicators in Municipal Wastewater Treatment Plant. Water Res. 2010, 44, 5089–5097. [Google Scholar] [CrossRef]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and Fate of Antibiotic Resistant Bacteria in Wastewater Treatment Plants: A Review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef]
- Novo, A.; André, S.; Viana, P.; Nunes, O.C.; Manaia, C.M. Antibiotic Resistance, Antimicrobial Residues and Bacterial Community Composition in Urban Wastewater. Water Res. 2013, 47, 1875–1887. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Ventura, D.; Consoli, S.; Barbagallo, S.; Marzo, A.; Vanella, D.; Licciardello, F.; Cirelli, G.L. How to Overcome Barriers for Wastewater Agricultural Reuse in Sicily (Italy)? Water 2019, 11, 335. [Google Scholar] [CrossRef] [Green Version]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.-P. Impact of Microalgae Characteristics on Their Conversion to Biofuel. Part II: Focus on Biomethane Production. Biofuels Bioprod. Biorefin. 2012, 6, 205–218. [Google Scholar] [CrossRef]
- Puglisi, I.; Barone, V.; Fragalà, F.; Stevanato, P.; Baglieri, A.; Vitale, A. Effect of Microalgal Extracts from Chlorella vulgaris and Scenedesmus quadricauda on Germination of Beta vulgaris Seeds. Plants 2020, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- La Bella, E.; Baglieri, A.; Rovetto, E.I.; Stevanato, P.; Puglisi, I. Foliar Spray Application of Chlorella vulgaris Extract: Effect on the Growth of Lettuce Seedlings. Agronomy 2021, 11, 308. [Google Scholar] [CrossRef]
- Puglisi, I.; La Bella, E.; Rovetto, E.I.; Stevanato, P.; Fascella, G.; Baglieri, A. Morpho-Biometric and Biochemical Responses in Lettuce Seedlings Treated by Different Application Methods of Chlorella vulgaris Extract: Foliar Spray or Root Drench? J. Appl. Phycol. 2022, 34, 889–901. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation Into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Vaz, B.D.S.; Moreira, J.B.; Morais, M.G.D.; Costa, J.A.V. Microalgae as a New Source of Bioactive Compounds in Food Supplements. Curr. Opin. Food. Sci. 2016, 7, 73–77. [Google Scholar] [CrossRef]
- Vanni, A.; Anfossi, L.; Cignetti, A.; Baglieri, A.; Gennari, M. Degradation of Pyrimethanil in Soil: Influence of Light, Oxygen, and Microbial Activity. J. Environ. Sci. Health B 2006, 41, 67–80. [Google Scholar] [CrossRef]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Dual Role of Microalgae: Phycoremediation of Domestic Wastewater and Biomass Production for Sustainable Biofuels Production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Colak, O.; Kaya, Z. A Study on the Possibilities of Biological Wastewater Treatment Using Algae. Doga Biyolji Serisi 1988, 12, 18–29. [Google Scholar]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and Wastewater Treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Zurano, A.; Lafarga, T.; Morales-Amaral, M.M.; Gómez-Serrano, C.; Fernández-Sevilla, J.M.; Acién-Fernández, F.G.; Molina-Grima, E. Wastewater Treatment Using Scenedesmus almeriensis: Effect of Operational Conditions on the Composition of the Microalgae-Bacteria Consortia. J. Appl. Phycol. 2021, 33, 3885–3897. [Google Scholar] [CrossRef]
- García, D.; Posadas, E.; Blanco, S.; Acién, G.; García-Encina, P.; Bolado, S.; Muñoz, R. Evaluation of the Dynamics of Microalgae Population Structure and Process Performance during Piggery Wastewater Treatment in Algal-Bacterial Photobioreactors. Bioresour. Technol. 2018, 248, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Law, X.N.; Cheah, W.Y.; Chew, K.W.; Ibrahim, M.F.; Park, Y.-K.; Ho, S.-H.; Show, P.L. Microalgal-Based Biochar in Wastewater Remediation: Its Synthesis, Characterization and Applications. Environ. Res. 2022, 204, 111966. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y.; Ruan, R. Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.K.; Yung, K.K.L.; Tsang, Y.F.; Xia, Y.; Wang, L.; Ho, K.C. Scenedesmus quadricauda for Nutrient Removal and Lipid Production in Wastewater. Water Environ. Res. 2015, 87, 2037–2044. [Google Scholar] [CrossRef]
- Baglieri, A.; Sidella, S.; Barone, V.; Fragalà, F.; Silkina, A.; Nègre, M.; Gennari, M. Cultivating Chlorella vulgaris and Scenedesmus quadricauda Microalgae to Degrade Inorganic Compounds and Pesticides in Water. Environ. Sci. Pollut. Res. 2016, 23, 18165–18174. [Google Scholar] [CrossRef]
- Ren, H.; Tuo, J.; Addy, M.M.; Zhang, R.; Lu, Q.; Anderson, E.; Chen, P.; Ruan, R. Cultivation of Chlorella vulgaris in a Pilot-Scale Photobioreactor Using Real Centrate Wastewater with Waste Glycerol for Improving Microalgae Biomass Production and Wastewater Nutrients Removal. Bioresour. Technol. 2017, 245, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Li, Z.; Haifeng, L.; Zhang, Y.; Shanshan, M.; Baoming, L.; Zhidan, L.; Na, D.; Minsheng, L.; Buchun, S.; Jianwen, L. Microalgae Production for Bioenergy from Post Hydrothermal Liquefaction Wastewater: Effects of Strain, Nutrients Concentration and Inoculum Size on Microalgae Culture. Int. J. Agric. Biol. Eng. 2017, 10, 194–204. [Google Scholar]
- Occhipinti, P.S.; Russo, N.; Foti, P.; Pino, A.; Randazzo, C.L.; Pollio, A.; Caggia, C. An indigenous microalgal pool from a constructed wetland as an alternative strategy for Esch-erichia coli removal in urban wastewater. J. Environ. Manag. 2023. submitted. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Liu, J.; Danneels, B.; Vanormelingen, P.; Vyverman, W. Nutrient Removal from Horticultural Wastewater by Benthic Filamentous Algae Klebsormidium sp., Stigeoclonium spp. and Their Communities: From Laboratory Flask to Outdoor Algal Turf Scrubber (ATS). Water Res. 2016, 92, 61–68. [Google Scholar] [CrossRef]
- Ruiz-Martinez, A.; Garcia, N.M.; Romero, I.; Seco, A.; Ferrer, J. Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresour. Technol. 2012, 126, 247–253. [Google Scholar] [CrossRef]
- Pham, M.; Schideman, L.; Scott, J.; Rajagopalan, N.; Plewa, M.J. Chemical and Biological Characterization of Wastewater Generated from Hydrothermal Liquefaction of Spirulina. Environ. Sci. Technol. 2013, 47, 2131–2138. [Google Scholar] [CrossRef]
- Baglieri, A.; Nègre, M.; Trotta, F.; Bracco, P.; Gennari, M. Organo-Clays and Nanosponges for Acquifer Bioremediation: Adsorption and Degradation of Triclopyr. J. Environ. Sci. Health B 2013, 48, 784–792. [Google Scholar] [CrossRef] [Green Version]
- Hammouda, O.; Gaber, A.; Abdel-Raouf, N. Microalgae and Wastewater Treatment. Ecotoxicol. Environ. Saf. 1995, 31, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Delrue, F.; Álvarez-Díaz, P.D.; Fon-Sing, S.; Fleury, G.; Sassi, J.-F. The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm. Energies 2016, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Nasr, M. Design considerations of algal systems for wastewater treatment. In Application of Microalgae in Wastewater Treatment: Volume 1: Domestic and Industrial Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 411–426. [Google Scholar]
- Nasr, M. Aquatic pollution and wastewater treatment system. In Algae and Aquatic Macrophytes in Cities; Elsevier: Amsterdam, The Netherlands, 2022; pp. 23–37. [Google Scholar]
- Škaloud, P.; Rindi, F. Ecological Differentiation of Cryptic Species within an Asexual Protist Morphospecies: A Case Study of Filamentous Green Alga Klebsormidium (Streptophyta). J. Eukaryot. Microbiol. 2013, 60, 350–362. [Google Scholar] [CrossRef]
- Rindi, F.; Mikhailyuk, T.I.; Sluiman, H.J.; Friedl, T.; López-Bautista, J.M. Phylogenetic Relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol. Phylogenet. Evol. 2011, 58, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Novis, P.M. Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand Streams and the Significance of Low-PH Habitats. Phycologia 2006, 45, 293–301. [Google Scholar] [CrossRef]
- Umetani, I.; Sposób, M.; Tiron, O. Indigenous Green Microalgae for Wastewater Treatment: Nutrient Removal and Resource Recovery for Biofuels and Bioproducts. Bioenergy Res. 2023, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Vyverman, W. Differences in Nutrient Uptake Capacity of the Benthic Filamentous Algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under Varying N/P Conditions. Bioresour. Technol. 2015, 179, 234–242. [Google Scholar] [CrossRef]
- Markou, G.; Wang, L.; Ye, J.; Unc, A. Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnol. Adv. 2018, 36, 1238–1254. [Google Scholar] [CrossRef] [PubMed]
- Ansa, E.D.O.; Lubberding, H.J.; Ampofo, J.A.; Gijzen, H.J. The role of algae in the removal of Escherichia coli in a tropical eutrophic lake. Ecol. Eng. 2011, 37, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.H.; Wolny, J.; Kase, J.A.; Unno, T.; Pachepsky, Y. Interactions of E. coli with algae and aquatic vegetation in natural waters. Water Res. 2022, 209, 117952. [Google Scholar] [CrossRef]
- Slompo, N.D.M.; Quartaroli, L.; Fernandes, T.V.; Silva, G.H.R.D.; Daniel, L.A. Nutrient and Pathogen Removal from Anaerobically Treated Black Water by Microalgae. J. Environ. Manag. 2020, 268, 110693. [Google Scholar] [CrossRef]
- Amaro, H.M.; Salgado, E.M.; Nunes, O.C.; Pires, J.C.M.; Esteves, A.F. Microalgae Systems-Environmental Agents for Wastewater Treatment and Further Potential Biomass Valorisation. J. Environ. Manag. 2023, 337, 117678. [Google Scholar] [CrossRef]
- Kube, M.; Mohseni, A.; Fan, L.; Roddick, F. Impact of Alginate Selection for Wastewater Treatment by Immobilised Chlorella vulgaris. Chem. Eng. J. 2019, 358, 1601–1609. [Google Scholar] [CrossRef]
- Singh, D.V.; Upadhyay, A.K.; Singh, R.; Singh, D.P. Implication of Municipal Wastewater on Growth Kinetics, Biochemical Profile, and Defense System of Chlorella vulgaris and Scenedesmus vacuolatus. Environ. Technol. Innov. 2022, 26, 102334. [Google Scholar] [CrossRef]
Wastewater 1 (MW 1) | Wastewater 2 (MW 2) | |
---|---|---|
pH | 7.24 | 7.25 |
EC (mS cm−1) | 3.95 | 5.35 |
TN (mg L−1) | 10 | 50.7 |
TP (mg L−1) | 3.2 | 10.67 |
COD (mg L−1) | 550 | 753 |
Zn (mg L−1) | nd * | nd |
Cu (mg L−1) | nd | nd |
Cd (mg L−1) | nd | nd |
Pb (mg L−1) | nd | nd |
Ni (mg L−1) | nd | nd |
Hg (mg L−1) | nd | nd |
E. coli (log CFU 100 mL−1) | 235 | 440 |
Photobioreactors | Substrate | Microalgae Species | Microalgae Biomass (g L−1) | Inoculum Size (n. Cells 109 L−1) |
---|---|---|---|---|
1 | MW 1 | 0 | - | - |
2 | MW 1 | C. vulgaris | 0.42 | 1.6 |
3 | MW 1 | S. quadricauda | 0.44 | 2.2 |
4 | MW 1 | Klebsormidium sp. K39 | 0.45 | 1.8 |
5 | MW 2 | 0 | - | - |
6 | MW 2 | C. vulgaris | 0.42 | 1.6 |
7 | MW 2 | S. quadricauda | 0.44 | 2.2 |
8 | MW 2 | Klebsormidium sp. K39 | 0.45 | 1.8 |
Factor | Daily Productivity | Fresh Weight of Biomass Collected | Dry Weight of Biomass Collected | |||
---|---|---|---|---|---|---|
F | p Value | F | p Value | F | p Value | |
Species | 0.95 | 0.437 | 1.23 | 0.356 | 0.43 | 0.667 |
Factor | Daily Productivity | Fresh Weight of Biomass Collected | Dry Weight of Biomass Collected | |||
---|---|---|---|---|---|---|
F | p Value | F | p Value | F | p Value | |
Species | 0.21 | 0.813 | 0.18 | 0.84 | 1.58 | 0.281 |
Microalgae Species | Daily Productivity (g L−1·d−1) | Fresh Weight of Biomass Collected (g L−1) | Dry Weight of Biomass Collected (g L−1) | |||
---|---|---|---|---|---|---|
MW 1 | MW 2 | MW 1 | MW 2 | MW 1 | MW 2 | |
C. vulgaris | 0.017 ± 0.003 | 0.016 ± 0.001 | 5.5 ± 0.4 | 5.4 ± 0.4 | 1.10 ± 0.2 | 1.08 ± 0.06 |
S. quadricauda | 0.015 ± 0.002 | 0.016 ± 0.002 | 5.3 ± 0.3 | 5.3 ± 0.3 | 1.00 ± 0.1 | 1.07 ± 0.04 |
Klebsormidium sp. K39 | 0.018 ± 0.03 | 0.015 ± 0.003 | 5.8 ± 0.3 | 5.2 ± 0.5 | 1.08 ± 0.09 | 0.98 ± 0.11 |
Factor(s) | TKN | TP | COD | BOD5 | ||||
---|---|---|---|---|---|---|---|---|
F | p Value | F | p Value | F | p Value | F | p Value | |
Species | 2388.08 | <0.0001 | 620.74 | <0.0001 | 338.13 | <0.0001 | 41.85 | <0.0001 |
Time | 2618.61 | <0.0001 | 1337.53 | <0.0001 | 16,601.52 | <0.0001 | 1962.83 | <0.0001 |
Species × time | 214.24 | <0.0001 | 174.96 | <0.0001 | 17.87 | <0.0001 | 2.53 | 0.08 |
Factor(s) | TKN | TP | COD | BOD5 | ||||
---|---|---|---|---|---|---|---|---|
F | p Value | F | p Value | F | p Value | F | p Value | |
Specie | 9247.55 | <0.0001 | 968.86 | <0.0001 | 1492.78 | <0.0001 | 164.25 | <0.0001 |
Time | 5798.76 | <0.0001 | 2806.37 | <0.0001 | 22,354.06 | <0.0001 | 2353.97 | <0.0001 |
Specie × time | 416.51 | <0.0001 | 229.33 | <0.0001 | 109.62 | <0.0001 | 13.12 | <0.0001 |
Microalga Species | Wastewater Type | Starting Values (mg L−1) | Treatment Efficiency (%) | Reference |
---|---|---|---|---|
C. vulgaris | Municipal wastewater 1 | N: 10 P: 3.2 | N: 57 P: 65 | Present study |
C. vulgaris | Municipal wastewater 2 | N: 50.7 P: 10.7 | N: 95 P: 69 | Present study |
C. vulgaris | Agricultural wastewater | NH4+: 1.4 NO3−: 210.0 P: 4.0 | NH4+: 99 NO3−: 83 P: 88 | [33] |
C. vulgaris | Synthetic effluent | NO3−: 20.2 PO43−: 4.7 | NO3−~50 PO43− > 98 | [55] |
C. vulgaris | Municipal wastewater (25%) | NO3−: 8.2 PO43−: 3.2 | NO3−: 88 PO43−: 91 | [56] |
C. vulgaris | Municipal wastewater (50%) | NO3−: 16.4 PO43−: 6.3 | NO3−: 79 PO43−: 88 | [56] |
C. vulgaris | Municipal wastewater (75%) | NO3−: 24.6 PO43−: 9.5 | NO3−: 63 PO43−: 85 | [56] |
C. vulgaris | Municipal wastewater (100%) | NO3−: 32.8 PO43−: 12.6 | NO3−: 54 PO43−: 83 | [56] |
S. quadricauda | Municipal wastewater 1 | N: 10.0 P: 3.2 | N: 62 P: 92 | Present study |
S. quadricauda | Municipal wastewater 2 | N: 50.7 P: 10.7 | N: 93 P: 62 | Present study |
S. quadricauda | Agricultural wastewater | NH4+: 1.4 NO3−: 210 P: 4.0 | NH4+: 99 NO3−: 83 P: 88 | [33] |
S. quadricauda | Sewage treatment works | N~30.0 P~3.0 | N > 95 P > 90 | [32] |
Klebsormidium sp. K39 | Municipal wastewater 1 | N: 10 P: 3.2 | N: 63 P: 69 | Present study |
Klebsormidium sp. K39 | Municipal wastewater 2 | N: 50.7 P: 10.7 | N: 96 P: 74 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Bella, E.; Occhipinti, P.S.; Puglisi, I.; Fragalà, F.; Saccone, R.; Russo, N.; Randazzo, C.L.; Caggia, C.; Baglieri, A. Comparative Phycoremediation Performance of Three Microalgae Species in Two Different Magnitude of Pollutants in Wastewater from Farmhouse. Sustainability 2023, 15, 11644. https://doi.org/10.3390/su151511644
La Bella E, Occhipinti PS, Puglisi I, Fragalà F, Saccone R, Russo N, Randazzo CL, Caggia C, Baglieri A. Comparative Phycoremediation Performance of Three Microalgae Species in Two Different Magnitude of Pollutants in Wastewater from Farmhouse. Sustainability. 2023; 15(15):11644. https://doi.org/10.3390/su151511644
Chicago/Turabian StyleLa Bella, Emanuele, Paride Salvatore Occhipinti, Ivana Puglisi, Ferdinando Fragalà, Rossella Saccone, Nunziatina Russo, Cinzia Lucia Randazzo, Cinzia Caggia, and Andrea Baglieri. 2023. "Comparative Phycoremediation Performance of Three Microalgae Species in Two Different Magnitude of Pollutants in Wastewater from Farmhouse" Sustainability 15, no. 15: 11644. https://doi.org/10.3390/su151511644
APA StyleLa Bella, E., Occhipinti, P. S., Puglisi, I., Fragalà, F., Saccone, R., Russo, N., Randazzo, C. L., Caggia, C., & Baglieri, A. (2023). Comparative Phycoremediation Performance of Three Microalgae Species in Two Different Magnitude of Pollutants in Wastewater from Farmhouse. Sustainability, 15(15), 11644. https://doi.org/10.3390/su151511644