Fatty Acid Profile and Oxidative Stability of Layers’ Egg Yolk as Affected by Dietary Supplementation with Fresh Purslane and Addition of Aromatic Plant Essential Oils to Drinking Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Housing
2.2. Birds
2.3. Diets
2.4. Egg Collection and Determinations
2.4.1. Egg Quality Traits
2.4.2. Materials and Reagents
2.4.3. Fatty Acid Profile of Egg Yolk
2.4.4. Oxidative Stability of Egg Yolk
2.4.5. Determination of MDA
2.5. Statistical Analysis
3. Results
3.1. Egg Production Rate and Egg Quality Traits
3.2. Fatty Acid Profile of Egg Yolk
3.3. Oxidative Stability of Egg Yolk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willett, W.C. Dietary fats and coronary heart disease. J. Intern. Med. 2012, 272, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Yu, S. Individual fatty acid effects on plasma lipids and lipoproteins: Human studies. Am. J. Clin. Nutr. 1997, 65, 1628S–1644S. [Google Scholar] [CrossRef] [Green Version]
- Calzada, C.; Colas, R.; Guillot, N.; Guichardant, M.; Laville, M.; Véricel, E.; Lagarde, M. Subgram daily supplementation with docosahexaenoic acid protects low-density lipoproteins from oxidation in healthy men. Atherosclerosis 2010, 208, 467–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, J.; Arita, M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016, 67, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kris-Etherton, P.M.; Grieger, J.A.; Etherton, T.D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 99–104. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 Fatty acids and cardiovascular disease: Evidence explained and mechanisms explored. Clin. Sci. 2004, 107, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.G.; Song, Z.X.; Yin, H.; Wang, Y.Y.; Shu, G.F.; Lu, H.X.; Wang, S.K.; Sun, G.J. Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids 2016, 51, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Aydin, R.; Dogan, I. Fatty acid profile and cholesterol content of egg yolk from chickens fed diets supplemented with purslane (Portulaca oleracea L.). J. Sci. Food Agric. 2010, 90, 1759–1763. [Google Scholar] [CrossRef]
- Moazedian, M.; Saemi, F. Effects of different levels of Portulaca oleracea seed in laying hens diets containing rice bran on performance, egg quality, fatty acids, and cholesterol. Comp. Clin. Pathol. 2018, 27, 1397–1403. [Google Scholar] [CrossRef]
- Kartikasari, L.R.; Nuhriawangsa, A.M.P.; Hertanto, B.S.; Swastike, W. Effect of supplementation purslane (Portulaca oleracea) as a source of alpha-linolenic acid on production performance and physical quality of egg of laying hens. Anim. Prod. 2015, 17, 149–153. [Google Scholar] [CrossRef]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and Egg-Derived Foods: Effects on Human Health and Use as Functional Foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef] [Green Version]
- Herron, K.L.; Fernandez, M.L. Are the current dietary guidelines regarding egg consumption appropriate? J. Nutr. 2004, 134, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Sirri, F.; Meluzzi, A. Modifying egg lipids for human health. In Improving the Safety and Quality of Eggs and Egg Products; Woodhead Publishing: Cambridge, UK, 2011; pp. 272–288. [Google Scholar]
- Dalle Zotte, A.; Pranzo, G. Effects of dried Portulaca oleracea supplementation to the laying hen diet on productive performance, egg physical traits, fatty acid composition, and cholesterol content. Czech J. Anim. Sci. 2022, 67, 114–123. [Google Scholar] [CrossRef]
- Kartikasari, L.R.; Hertanto, B.S.; Nuhriawangsa, A.M.P. External and Sensory Qualities of Brown Laying Hen Eggs Fed Diets Supplemented with Purslane (Portulaca oleracea) Meal Rich in Omega-3 Fatty Acids. J. Ilmu Teknol. Has. Ternak 2019, 14, 78–89. [Google Scholar] [CrossRef]
- Ezekwe, M.O.; Omara-Alwala, T.R.; Membrahtu, T. Nutritive characterization of purslane accessions as influenced by planting date. Plant Foods Hum. Nutr. 1999, 54, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P.; Norman, H.A.; Gillaspy, J.E.; Duke, J.A. Common purslane: A source of omega-3 fatty acids and antioxidants. J. Am. Coll. Nutr. 1992, 11, 374–382. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560s–569s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omara-Alwala, T.R.; Mebrahtu, T.; Prior, D.E.; Ezekwe, M.O. Omega-three fatty acids in purslane (Portulaca oleracea) tissues. J. Am. Oil Chem. Soc. 1991, 68, 198–199. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Hossain, M.S.; Nahar, M.A.U.; Ali, M.E.; Rahman, M.M. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci. World J. 2014, 951019. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, M.B.; Cherian, G. Use of flaxseed in poultry feeds to meet the human need for n-3 fatty acids. World’s Poult. Sci. J. 2017, 73, 803–812. [Google Scholar] [CrossRef]
- Rehman, R.; Hanif, M.A.; Mushtaq, Z.; Al-Sadi, A.M. Biosynthesis of essential oils in aromatic plants: A review. Food Rev. Int. 2016, 32, 117–160. [Google Scholar] [CrossRef]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Alexopoulos, A.; Panopoulou, M.; Stavropoulou, E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 23289. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.; Hippenstiel, F.; Abdel-Wareth, A.A.A.; Kehraus, S.; Küçükyilmaz, K.; Südekum, K.H. Effects of Selected Herbs and Essential Oils on Performance, Egg Quality and Some Metabolic Activities in Laying Hens—A Review. Eur. Poult. Sci. 2014, 78, 49. [Google Scholar] [CrossRef]
- Skoufogianni, E.; Solomou, A.D.; Danalatos, N.G. Ecology, cultivation and utilization of the aromatic Greek oregano (Origanum vulgare L.): A review. Not. Bot. Horti Agrobot. 2019, 47, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Galamatis, D.; Papadopoulos, G.A.; Lazari, D.; Fletouris, D.; Petridou, E.; Arsenos, G.I.; Fortomaris, P. Effects of dietary supplementation of salvia officinalis l. in organic laying hens on egg quality, yolk oxidative stability and eggshell microbiological counts. Animals 2021, 11, 2502. [Google Scholar] [CrossRef]
- Ghiasvand, A.R.; Khatibjoo, A.; Mohammadi, Y.; Akbari Gharaei, M.; Shirzadi, H. Effect of fennel essential oil on performance, serum biochemistry, immunity, ileum morphology and microbial population, and meat quality of broiler chickens fed corn or wheat-based diet. Br. Poult. Sci. 2021, 62, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Buğdayci, K.E.; Oğuz, F.K.; Oğuz, M.N.; Kuter, E. Effects of fennel seed supplementation of ration on performance, egg quality, serum cholesterol, and total phenol content of egg yolk of laying quails. Rev. Bras. Zootec. 2018, 47. [Google Scholar] [CrossRef] [Green Version]
- Panaite, T.D.; Nour, V.; Saracila, M.; Turcu, R.P.; Untea, A.E.; Vlaicu, P.A. Effects of linseed meal and carotenoids from different sources on egg characteristics, yolk fatty acid and carotenoid profile and lipid peroxidation. Foods 2021, 10, 1246. [Google Scholar] [CrossRef]
- Wu, H.; Richards, M.P.; Undeland, I. Lipid oxidation and antioxidant delivery systems in muscle food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1275–1299. [Google Scholar] [CrossRef]
- Barriuso, B.; Astiasarán, I.; Ansorena, D. A review of analytical methods measuring lipid oxidation status in foods: A challenging task. Eur. Food Res. Technol. 2013, 236, 1–15. [Google Scholar] [CrossRef]
- Botsoglou, N.; Florou-Paneri, P.; Botsoglou, E.; Dotas, V.; Giannenas, I.; Koidis, A.; Mitrakos, P. The effect of feeding rosemary, oregano, saffron and α-tocopheryl acetate on hen performance and oxidative stability of eggs. S. Afr. J. Anim. Sci. 2005, 35, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Yannakopoulos, A.L.; Tserveni-Gousi, A.S.; Yannakakis, S.; Yamoustaris, A. Yolk fatty acid composition of ω-3 eggs during the laying period. In Proceedings of the XIth European Symposium on the Quality of Eggs and Egg Products, Doorwerth, The Netherlands, 23–26 May 2005. [Google Scholar]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic plants as a source of bioactive compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Giannenas, I.; Grigoriadou, K.; Sidiropoulou, E.; Bonos, E.; Cheilari, A.; Vontzalidou, A.; Karaiskou, C.; Aligiannis, N.; Florou-Paneri, P.; Christaki, E. Untargeted UHPLC-MS metabolic profiling as a valuable tool for the evaluation of eggs quality parameters after dietary supplementation with oregano, thyme, sideritis tea and chamomile on brown laying hens. Metabolomics 2021, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Florou-Paneri, P.; Nikolakakis, I.; Giannenas, I.; Dotas, V.; Botsoglou, E.N.; Aggelopoulos, S. Effect of dietary saffron (Crocus sativus L.) on the oxidative stability of egg yolk. Br. Poult. Sci. 2005, 46, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Kornbrust, D.J.; Mavis, R.D. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: Correlation with vitamin E content. Lipids 1980, 15, 315–322. [Google Scholar] [CrossRef]
- Botsoglou, E.; Govaris, A.; Fletouris, D.; Iliadis, S. Olive leaves (Olea europea L.) and α-tocopheryl acetate as feed antioxidants for improving the oxidative stability of α-linolenic acid-enriched eggs. J. Anim. Physiol. Anim. Nutr. 2013, 97, 740–753. [Google Scholar] [CrossRef]
- SPSS. SPSS Statistics for Windows; Release 20.0; IBM: Armonk, NY, USA, 2018. [Google Scholar]
- Evaris, E.; Sarmiento-Franco, L.A.; Segura-Correa, J.; Capetillo-Leal, C. Effect of dietary inclusion of purslane (Portulaca oleracea L.) on yolk omega-3 fatty acids content, egg quality and productive performance of rhode island red hens. Trop. Subtrop. Agroecosyst. 2015, 18, 33–38. [Google Scholar]
- Kartikasari, L.R.; Hertanto, B.S.; Nuhriawangsa, A.M. Egg Quality of Laying Hens Fed Different Diets Supplemented with Purslane (Portulaca oleracea L.) Meal Rich in Alpha-linolenic Acid (ALA): Egg Quality of Hens Fed diets with Purslane Meal. Proc. Pak. Acad. Sci. B Life Environ. Sci. 2020, 57, 27–33. [Google Scholar]
- Shehata, M.; El-Krim, A. Role of dried purslane leaves meal and essential phospholipids in laying hen diets in reducing cholesterol biosynthesis. J. Prod. Dev. 2011, 16, 177–199. [Google Scholar]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Siriamornpun, S.; Suttajit, M. Microchemical components and antioxidant activity of different morphological parts of Thai wild purslane (Portulaca oleracea). Weed Sci. 2010, 58, 182–188. [Google Scholar] [CrossRef]
- Najib, H.; Al-Yousef, Y.M. Essential fatty acid content of eggs and performance of layer hens fed with different levels of full-fat flaxseed. J. Cell Anim. Biol. 2010, 4, 58–63. [Google Scholar]
- Dalle Zotte, A.; Tomasello, F.; Andrighetto, I. The dietary inclusion of Portulaca oleracea to the diet of laying hens increases the n-3 fatty acids content and reduces the cholesterol content in the egg yolk. Ital. J. Anim. Sci. 2012, 4, 157–159. [Google Scholar] [CrossRef]
- Harlina, P.W.; Ma, M.; Shahzad, R.; Gouda, M.M.; Qiu, N. Effect of clove extract on lipid oxidation, antioxidant activity, volatile compounds and fatty acid composition of salted duck eggs. J. Food Sci. Technol. 2018, 55, 4719–4734. [Google Scholar] [CrossRef]
- Migliorini, M.J.; Boiago, M.M.; Stefani, L.M.; Zampar, A.; Roza, L.F.; Barreta, M.; Arno, A.; Robazza, W.S.; Giuriatti, J.; Galvão, A.C.; et al. Oregano essential oil in the diet of laying hens in winter reduces lipid peroxidation in yolks and increases shelf life in eggs. J. Therm. Biol. 2019, 85, 102409. [Google Scholar] [CrossRef]
- Florou-Paneri, P.; Nikolakakis, I.; Giannenas, I.; Koidis, A.; Botsoglou, E.; Dotas, V.; Mitsopoulos, I. Hen performance and egg quality as affected by dietary oregano essential oil and tocopheryl acetate supplementation. Int. J. Poult. Sci. 2005, 4, 449–454. [Google Scholar]
- Botsoglou, N.A.; Govaris, A.; Botsoglou, E.N.; Grigoropoulou, S.H.; Papageorgiou, G. Antioxidant activity of dietary oregano essential oil and α-tocopheryl acetate supplementation in long-term frozen stored turkey meat. J. Agric. Food Chem. 2003, 51, 2930–2936. [Google Scholar] [CrossRef]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanima, M.M.A.; Alagawany, M.; Abd El-Hack, M.E.; Taha, A.; Elnesr, S.S.; Ajarem, J.; Allam, A.A.; Mahmoud, A.M. Consequences of various housing systems and dietary supplementation of thymol, carvacrol, and euganol on performance, egg quality, blood chemistry, and antioxidant parameters. Poult. Sci. 2020, 99, 4384–4397. [Google Scholar] [CrossRef]
- Khan, R.U.; Fatima, A.; Naz, S.; Ragni, M.; Tarricone, S.; Tufarelli, V. Perspective, Opportunities and Challenges in Using Fennel (Foeniculum vulgare) in Poultry Health and Production as an Eco-Friendly Alternative to Antibiotics: A Review. Antibiotics 2022, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Barakat, H.; Alkabeer, I.A.; Aljutaily, T.; Almujaydil, M.S.; Algheshairy, R.M.; Alhomaid, R.M.; Almutairi, A.S.; Mohamed, A. Phenolics and Volatile Compounds of Fennel (Foeniculum vulgare) Seeds and Their Sprouts Prevent Oxidative DNA Damage and Ameliorates CCl4-Induced Hepatotoxicity and Oxidative Stress in Rats. Antioxidants 2022, 11, 2318. [Google Scholar] [CrossRef] [PubMed]
- Gharaghani, H.; Shariatmadari, F.; Torshizi, M.A. Effect of fennel (Foeniculum vulgare Mill.) used as a feed additive on the egg quality of laying hens under heat stress. Braz. J. Poult. Sci. 2015, 17, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Abou-Elkhair, R.; Selim, S.; Hussein, E. Effect of supplementing layer hen diet with phytogenic feed additives on laying performance, egg quality, egg lipid peroxidation and blood biochemical constituents. Anim. Nutr. 2018, 4, 394–400. [Google Scholar] [CrossRef]
Control Diet | |
---|---|
Ingredients (%) | |
Corn | 63.25 |
Soybean meal (45% crude protein) | 23.90 |
Soybean oil | 1.70 |
Limestone (calcium carbonate) | 9.50 |
Monocalcium phosphate | 0.80 |
Salt | 0.30 |
Sodium carbonate | 0.30 |
DL-methionine | 0.15 |
Vitamin and mineral premix 1 | 0.10 |
Total | 100.00 |
Nutrient content | |
Metabolizable energy (kcal/kg) | 2750.00 |
Dry matter (%) | 89.02 |
Crude protein (%) | 16.00 |
Digestible protein (%) | 13.32 |
Crude fat (%) | 4.40 |
Crude fiber (%) | 2.83 |
Total lysine (%) | 0.82 |
Total methionine (%) | 0.41 |
Ash (%) | 12.73 |
Calcium (%) | 3.92 |
Total phosphorus (%) | 0.51 |
Available phosphorus (%) | 0.38 |
Variable | Egg Production Rate | Egg Weight | Egg Mass Production | Longitudinal Axis | Transverse Axis | Specific Gravity |
---|---|---|---|---|---|---|
(%) | (g) | (g/hen/day) | (mm) | (mm) | (g/cm3) | |
Diet (D) | ||||||
C | 68.5 | 68.5 b | 46.8 b | 59.1 b | 48.7 b | 1.077 |
P | 68.4 | 70.7 a | 48.4 a | 62.5 a | 50.0 a | 1.078 |
SEM | 0.253 | 0.494 | 0.374 | 0.827 | 0.297 | 0.004 |
Essential Oils (EO) | ||||||
0 | 68.4 | 69.7 | 47.8 | 60.6 | 49.4 | 1.080 |
ORE | 68.2 | 69.8 | 47.5 | 60.9 | 49.2 | 1.075 |
BLEND | 68.9 | 69.4 | 47.7 | 60.9 | 49.6 | 1.076 |
SEM | 0.208 | 0.120 | 0.088 | 0.100 | 0.115 | 0.002 |
D × EO | ||||||
C-0 | 68.5 | 68.2 b | 46.7 b | 58.9 b | 49.0 b | 1.080 |
C-ORE | 68.2 | 68.8 b | 46.8 b | 59.2 b | 48.4 b | 1.074 |
C-BLEND | 68.8 | 68.6 b | 47.0 b | 59.1 b | 48.8 b | 1.077 |
P-0 | 68.3 | 71.1 a | 48.8 a | 62.3 a | 49.8 a | 1.079 |
P-ORE | 68.1 | 70.7 a | 48.1 a | 62.6 a | 49.9 a | 1.076 |
P-BLEND | 68.9 | 70.2 a | 48.4 a | 62.7 a | 50.3 a | 1.075 |
SEM | 0.203 | 0.327 | 0.261 | 0.759 | 0.192 | 0.002 |
p-value | ||||||
D | 0.372 | 0.023 | 0.028 | 0.039 | 0.018 | 0.817 |
EO | 0.277 | 0.090 | 0.240 | 0.428 | 0.317 | 0.587 |
D × EO | 0.130 | 0.038 | 0.042 | 0.032 | 0.036 | 0.256 |
Variable | Haugh Units | Yolk Weight | Yolk Diameter | Yolk Height | Yolk pH | Yolk Color |
(g) | (mm) | (mm) | (DSM Scale) | |||
Diet (D) | ||||||
C | 62.70 | 19.8 | 42.6 | 18.7 | 6.26 | 9.1 b |
P | 64.04 | 20.3 | 43.3 | 18.3 | 6.28 | 10.1 a |
SEM | 0.451 | 0.162 | 0.256 | 0.134 | 0.024 | 0.231 |
Essential Oils (EO) | ||||||
0 | 63.33 | 20.0 | 43.6 | 18.6 | 6.27 | 9.5 |
ORE | 62.18 | 20.2 | 42.7 | 18.9 | 6.31 | 9.6 |
BLEND | 64.60 | 19.9 | 42.7 | 18.1 | 6.24 | 9.7 |
SEM | 0.699 | 0.088 | 0.300 | 0.233 | 0.020 | 0.058 |
D × EO | ||||||
C-0 | 62.45 | 19.4 | 42.7 | 19.1 | 6.25 | 9.2 b |
C-ORE | 60.73 | 20.0 | 41.4 | 18.8 | 6.32 | 9.0 b |
C-BLEND | 64.91 | 19.9 | 43.7 | 18.1 | 6.21 | 9.1 b |
P-0 | 64.21 | 20.5 | 44.4 | 18.0 | 6.29 | 9.8 a |
P-ORE | 63.62 | 20.4 | 43.9 | 18.9 | 6.29 | 10.1 a |
P-BLEND | 64.29 | 19.9 | 41.6 | 18.0 | 6.26 | 10.3 a |
SEM | 1.187 | 0.362 | 0.852 | 0.306 | 0.031 | 0.137 |
p-value | ||||||
D | 0.412 | 0.068 | 0.317 | 0.343 | 0.849 | 0.035 |
EO | 0.435 | 0.121 | 0.695 | 0.258 | 0.712 | 0.329 |
D × EO | 0.347 | 0.062 | 0.512 | 0.480 | 0.743 | 0.027 |
Variable | Albumen Weight | Albumen Height | Albumen pH | Shell Weight | Shell Thickness | Shell Hardness |
(g) | (mm) | (g) | (mm) | (N) | ||
Diet (D) | ||||||
C | 41.9 | 7.5 | 8.75 | 6.7 | 0.45 | 37.6 |
P | 43.3 | 7.4 | 8.74 | 6.9 | 0.43 | 36.3 |
SEM | 0.433 | 0.040 | 0.032 | 0.063 | 0.016 | 0.434 |
Essential Oils (EO) | ||||||
0 | 42.7 | 7.5 | 8.69 | 6.9 | 0.44 | 37.3 |
ORE | 42.4 | 7.6 | 8.83 | 7.0 | 0.45 | 38.3 |
BLEND | 42.8 | 7.3 | 8.75 | 6.5 | 0.44 | 35.4 |
SEM | 0.120 | 0.088 | 0.041 | 0.153 | 0.006 | 0.850 |
D × EO | ||||||
C-0 | 42.0 | 7.5 | 8.66 | 6.6 | 0.45 | 38.3 |
C-ORE | 41.7 | 7.7 | 8.84 | 6.9 | 0.45 | 39.2 |
C-BLEND | 42.0 | 7.3 | 8.76 | 6.5 | 0.44 | 35.4 |
P-0 | 43.3 | 7.5 | 8.71 | 7.1 | 0.42 | 36.3 |
P-ORE | 43.1 | 7.5 | 8.81 | 7.0 | 0.44 | 37.3 |
P-BLEND | 43.6 | 7.2 | 8.74 | 6.5 | 0.43 | 35.3 |
SEM | 0.516 | 0.142 | 0.052 | 0.199 | 0.009 | 1.247 |
p-value | ||||||
D | 0.072 | 0.856 | 0.912 | 0.574 | 0.833 | 0.517 |
EO | 0.133 | 0.647 | 0.737 | 0.483 | 0.819 | 0.344 |
D × EO | 0.057 | 0.494 | 0.549 | 0.639 | 0.754 | 0.612 |
FA (% of Total FA) | C14:0 | C16:0 | C16:1n-7 | C18:0 | C18:1n-9 | C18:1n-7 |
---|---|---|---|---|---|---|
(Myristic) | (Palmitic) | (Palmitoleic) | (Stearic) | (Oleic) | (Vaccenic) | |
Diet (D) | ||||||
C | 0.40 | 28.29 | 3.55 | 9.32 a | 39.47 | 3.66 |
P | 0.35 | 27.76 | 3.10 | 7.26 b | 39.14 | 3.79 |
SEM | 0.014 | 0.184 | 0.130 | 0.395 | 0.173 | 0.040 |
Essential Oils (EO) | ||||||
0 | 0.39 | 27.87 | 3.38 | 8.18 | 39.58 | 3.58 |
ORE | 0.34 | 27.61 | 3.19 | 8.44 | 39.67 | 3.70 |
BLEND | 0.39 | 28.60 | 3.41 | 8.26 | 38.67 | 3.89 |
SEM | 0.017 | 0.296 | 0.069 | 0.077 | 0.319 | 0.090 |
D × EO | ||||||
C-0 | 0.43 | 28.17 | 3.63 | 9.18 a | 39.74 | 3.56 |
C-ORE | 0.34 | 27.94 | 3.34 | 9.46 a | 39.83 | 3.54 |
C-BLEND | 0.42 | 28.75 | 3.67 | 9.33 a | 38.84 | 3.88 |
P-0 | 0.35 | 27.57 | 3.12 | 7.18 b | 39.41 | 3.60 |
P-ORE | 0.33 | 27.28 | 3.04 | 7.41 b | 39.51 | 3.86 |
P-BLEND | 0.36 | 28.44 | 3.15 | 7.18 b | 38.49 | 3.90 |
SEM | 0.029 | 0.383 | 0.190 | 0.405 | 0.356 | 0.121 |
p-value | ||||||
D | 0.612 | 0.654 | 0.411 | 0.007 | 0.797 | 0.487 |
EO | 0.593 | 0.599 | 0.519 | 0.378 | 0.676 | 0.313 |
D × EO | 0.585 | 0.613 | 0.427 | 0.008 | 0.387 | 0.421 |
FA (% of Total FA) | C18:2n-6 | C18:3n-3 | C20:1n-9 | C20:4n-6 | C22:4n-6 | C22:6n-3 |
(Linoleic, LA) | (α-Linolenic, ALA) | (Gondoic) | (Arachidonic) | (Adrenic) | (Docosahexaenoic, DHA) | |
Diet (D) | ||||||
C | 10.69 b | 0.18 b | 0.18 | 2.64 | 0.27 | 1.64 |
P | 12.74 a | 0.85 a | 0.19 | 2.84 | 0.29 | 1.65 |
SEM | 0.463 | 0.123 | 0.004 | 0.059 | 0.009 | 0.006 |
Essential Oils (EO) | ||||||
0 | 11.79 | 0.48 | 0.18 | 2.75 | 0.29 | 1.63 |
ORE | 11.97 | 0.54 | 0.19 | 2.67 | 0.27 | 1.60 |
BLEND | 11.39 | 0.50 | 0.21 | 2.82 | 0.30 | 1.69 |
SEM | 0.171 | 0.027 | 0.009 | 0.043 | 0.009 | 0.026 |
D × EO | ||||||
C-0 | 10.60 b | 0.18 b | 0.18 | 2.57 | 0.27 | 1.62 |
C-ORE | 11.06 b | 0.17 b | 0.19 | 2.52 | 0.26 | 1.59 |
C-BLEND | 10.41 b | 0.18 b | 0.20 | 2.84 | 0.29 | 1.70 |
P-0 | 12.97 a | 0.77 a | 0.17 | 2.92 | 0.31 | 1.63 |
P-ORE | 12.88 a | 0.96 a | 0.19 | 2.81 | 0.27 | 1.61 |
P-BLEND | 12.36 a | 0.81 a | 0.21 | 2.79 | 0.30 | 1.68 |
SEM | 0.303 | 0.116 | 0.013 | 0.131 | 0.015 | 0.034 |
p-value | ||||||
D | 0.008 | <0.001 | 0.873 | 0.085 | 0.713 | 0.878 |
EO | 0.135 | 0.221 | 0.855 | 0.150 | 0.694 | 0.139 |
D × EO | 0.007 | <0.001 | 0.843 | 0.079 | 0.633 | 0.216 |
Grouped FA (%) | SFA | MUFA | PUFA | Omega-3 FA | Omega-6 FA |
---|---|---|---|---|---|
Diet (D) | |||||
C | 37.8 a | 47.0 | 15.3 b | 1.8 b | 13.5 b |
P | 35.2 b | 46.4 | 18.3 a | 2.5 a | 15.8 a |
SEM | 0.622 | 0.244 | 0.568 | 0.152 | 0.516 |
Essential Oils (EO) | |||||
0 | 36.5 | 46.7 | 16.9 | 2.1 | 14.8 |
ORE | 36.2 | 46.8 | 17.1 | 2.2 | 14.9 |
BLEND | 36.9 | 46.5 | 16.6 | 2.2 | 14.4 |
SEM | 0.203 | 0.088 | 0.145 | 0.033 | 0.265 |
D × EO | |||||
C-0 | 37.8 a | 47.1 | 15.1 b | 1.8 b | 13.3 b |
C-ORE | 37.4 a | 47.0 | 15.6 b | 1.8 b | 13.8 b |
C-BLEND | 38.2 a | 46.8 | 15.3 b | 1.9 b | 13.4 b |
P-0 | 35.1 b | 46.3 | 18.6 a | 2.4 a | 16.2 a |
P-ORE | 34.9 b | 46.6 | 18.5 a | 2.6 a | 15.9 a |
P-BLEND | 35.5 b | 46.2 | 17.9 a | 2.5 a | 15.4 a |
SEM | 0.453 | 0.250 | 0.531 | 0.112 | 0.356 |
p-value | |||||
D | 0.037 | 0.156 | <0.001 | 0.007 | 0.005 |
EO | 0.364 | 0.413 | 0.271 | 0.815 | 0.402 |
D × EO | 0.042 | 0.274 | <0.001 | 0.008 | 0.007 |
Nutritional Indices of FA | MUFA/SFA | PUFA/SFA | UFA/SFA | Omega-6 FA/Omega-3 FA |
---|---|---|---|---|
Diet (D) | ||||
C | 1.24 b | 0.40 b | 1.65 b | 7.56 a |
P | 1.32 a | 0.52 a | 1.84 a | 6.34 b |
SEM | 0.020 | 0.026 | 0.047 | 0.299 |
Essential Oils (EO) | ||||
0 | 1.29 | 0.46 | 1.75 | 7.06 |
ORE | 1.29 | 0.48 | 1.77 | 6.99 |
BLEND | 1.27 | 0.46 | 1.72 | 6.81 |
SEM | 0.007 | 0.007 | 0.015 | 0.074 |
D × EO | ||||
C-0 | 1.25 b | 0.39 b | 1.65 b | 7.58 a |
C-ORE | 1.24 b | 0.42 b | 1.67 b | 7.76 a |
C-BLEND | 1.23 b | 0.40 b | 1.63 b | 7.35 a |
P-0 | 1.32 a | 0.53 a | 1.85 a | 6.54 b |
P-ORE | 1.34 a | 0.53 a | 1.87 a | 6.21 b |
P-BLEND | 1.30 a | 0.51 a | 1.80 a | 6.26 b |
SEM | 0.012 | 0.021 | 0.028 | 0.193 |
p-value | ||||
D | 0.041 | 0.006 | 0.043 | 0.030 |
EO | 0.673 | 0.483 | 0.224 | 0.184 |
D × EO | 0.038 | 0.006 | 0.041 | 0.033 |
p-Value | |
---|---|
Main effects | |
D | 0.482 |
EO | <0.001 |
T | <0.001 |
Interactions | |
D × EO | <0.001 |
D × T | <0.001 |
EO × T | <0.001 |
D × EO × T | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dotas, V.; Gourdouvelis, D.; Symeon, G.; Hatzizisis, L.; Mitsopoulos, I.; Galamatis, D.; Ioannidou, M.; Sossidou, E. Fatty Acid Profile and Oxidative Stability of Layers’ Egg Yolk as Affected by Dietary Supplementation with Fresh Purslane and Addition of Aromatic Plant Essential Oils to Drinking Water. Sustainability 2023, 15, 11539. https://doi.org/10.3390/su151511539
Dotas V, Gourdouvelis D, Symeon G, Hatzizisis L, Mitsopoulos I, Galamatis D, Ioannidou M, Sossidou E. Fatty Acid Profile and Oxidative Stability of Layers’ Egg Yolk as Affected by Dietary Supplementation with Fresh Purslane and Addition of Aromatic Plant Essential Oils to Drinking Water. Sustainability. 2023; 15(15):11539. https://doi.org/10.3390/su151511539
Chicago/Turabian StyleDotas, Vassilios, Dimitrios Gourdouvelis, George Symeon, Lampros Hatzizisis, Ioannis Mitsopoulos, Dimitrios Galamatis, Maria Ioannidou, and Evangelia Sossidou. 2023. "Fatty Acid Profile and Oxidative Stability of Layers’ Egg Yolk as Affected by Dietary Supplementation with Fresh Purslane and Addition of Aromatic Plant Essential Oils to Drinking Water" Sustainability 15, no. 15: 11539. https://doi.org/10.3390/su151511539
APA StyleDotas, V., Gourdouvelis, D., Symeon, G., Hatzizisis, L., Mitsopoulos, I., Galamatis, D., Ioannidou, M., & Sossidou, E. (2023). Fatty Acid Profile and Oxidative Stability of Layers’ Egg Yolk as Affected by Dietary Supplementation with Fresh Purslane and Addition of Aromatic Plant Essential Oils to Drinking Water. Sustainability, 15(15), 11539. https://doi.org/10.3390/su151511539