Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Soil and Environmental Conditions
2.1.2. Physicochemical Properties of Soil
2.1.3. Photosynthetic Responses and Chlorophyll Contents
2.1.4. Growth Characteristics
2.1.5. Chlorophyll a Fluorescence
2.2. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soil
3.2. Photosynthetic Responses and Chlorophyll Contents
3.3. Growth Characteristics
3.4. Chlorophyll a Fluorescence under Drought Condition
4. Discussion
4.1. Physicochemical Properties of Soil
4.2. Photosynthetic Responses and Chlorophyll Contents
4.3. Growth Characteristics
4.4. Chlorophyll a Fluorescence under Drought Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Migoń, P.; Kasprzak, M.; Woo, K.S. Granite landform diversity and dynamics underpin geoheritage values of seoraksan mountains, Republic of Korea. Geoheritage 2019, 11, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Yeon, M.; Kim, S.; Shin, H.; An, H.; Lee, D.; Jung, S.; Lee, G. Analysis of net erosion using a physics-based erosion model for the doam dam basin in Korea. Water 2021, 13, 2663. [Google Scholar] [CrossRef]
- Singh, M.; Hartsch, K. Basics of soil erosion. In Watershed Hydrology, Management and Modeling; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–61. [Google Scholar]
- Choi, Y.; Lim, J.; Jung, Y.; Lee, S.; Ok, Y. Best management practices for sloping upland erosion control: Feasibility of pam and biopolymer application. J. Agric. Life Environ. Sci. 2012, 24, 30–39. [Google Scholar]
- Oh, D.K.; Kim, P.L.; Yoon, Y.H.; Kim, W.T. Growth characteristic of Pinus densiflora by soil generated at civil works site. J. Environ. Sci. Int. 2019, 28, 655–667. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, M.I.; Lee, M.S.; Hwang, E.S. Regression equations for estimating landslide-triggering factors using soil characteristics. Appl. Sci. 2020, 10, 3560. [Google Scholar] [CrossRef]
- Heo, S.; Jun, M.; Park, S.; Kim, K.S.; Kang, S.; Ok, Y.; Lim, K.J. Analysis of soil erosion reduction ratio with changes in soil reconditioning amount for highland agricultural crops. J. Korean Soc. Water Environ. 2008, 2, 185–194. [Google Scholar]
- Kim, J.; Park, B.; Choi, J.; Park, M.; Lee, J.M.; Kim, K.; Kim, Y. Optimum detailed standards to control non-point source pollution priority management areas: Centered on highland agriculture watershed. Sustainability 2021, 13, 9842. [Google Scholar] [CrossRef]
- Lee, J.; Lim, C.H.; Kim, G.S.; Markandya, A.; Chowdhury, S.; Kim, S.J.; Lee, W.K.; Son, Y. Economic viability of the national-scale forestation program: The case of success in the Republic of Korea. Ecosyst. Serv. 2018, 29, 40–46. [Google Scholar] [CrossRef]
- Yang, K. Preliminary Study on Improvement of Strategic Environmental Assessment for Soil Resource Management: Focusing on Urban Development Projects; Korea Environment Institute: Sejong, Republic of Korea, 2016. [Google Scholar]
- Kang, T.; Jang, C.L.; Kimura, I.; Lee, N. Numerical simulation of debris flow and driftwood with entrainment of sediment. Water 2022, 14, 3673. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Seo, J.; Lee, C.; Woo, C.; Kang, M.; Jeong, S.; Lee, D. Evaluating stability and functionality of hybrid erosion control dam for reducing debris flow damage in forested catchment nearby urban area. J. Korean Soc. For. Sci. 2018, 107, 59–70. [Google Scholar] [CrossRef]
- Pradhan, A.M.S.; Lee, S.R.; Kim, Y.T. A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan, Korea. Landslides 2019, 16, 647–659. [Google Scholar] [CrossRef]
- Choi, S.K.; Lee, J.M.; Jeong, H.B.; Kim, J.H.; Kwon, T.H. Effect of arrangement of slit-type barriers on debris flow behavior: Laboratory-scaled experiment. J. Korean Soc. Hazard Mitig. 2015, 15, 223–228. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Liu, X.J.; Xiao, L.; Li, Z.N.; Wu, H.; Zhou, S.X.; Ren, M.X. Tracer elements revealed the soil organic carbon sources in a dam-controlled watershed. Soil Tillage Res. 2022, 216, 105184. [Google Scholar] [CrossRef]
- Kang, H.M.; Choi, S.H.; Kim, D.H.; Song, J.T. A study on the restoration effects of vegetation restoration types. Korean J. Environ. Ecol. 2017, 31, 174–187. [Google Scholar] [CrossRef]
- Kim, N.C.; Kang, J.; Lee, J.W.; Nam, S.J.; Lee, W. Study on the revesetation technology for the ecological restoration of the decomposed granite roadside slopes-the application of the natural topsoil restoration methods (ntrm)-. J. Korean Soc. Environ. Restor. Technol. 2001, 4, 84–95. [Google Scholar]
- Yeo, H.J.; Lee, S.P.; Paek, N.Y.; Lee, J.K. A study on ecological restoration characteristics of nangido landfill slope-focused on region constructed by sf and codra. J. Korean Soc. Environ. Restor. Technol. 2005, 8, 1–12. [Google Scholar]
- Park, J.K.; Song, C.S.; Yu, C.; Lim, S.Y. Analysis of Sediment according to Land Type. J. Agric. Life Sci. 2013, 48, 149–159. [Google Scholar] [CrossRef]
- Ko, S.; Kim, N.K.; Park, J.S.; Hong, J.S.; Jeong, R.D. First report of cucumber mosaic virus infecting Aster scaber in Korea. J. Plant Pathol. 2020, 102, 1373–1374. [Google Scholar] [CrossRef]
- Oh, I.N.; Kim, J.E.; Kwak, J.Y.; Jo, H.J.; Yoo, M.J.; Jung, D.H.; Kim, Y.M.; Park, K.B.; Nguyen, P.C.; Park, J.T. Quality assessment of Aster scaber cultured at different conditions for processed food production. Korean J. Food Sci. Technol. 2018, 50, 371–376. [Google Scholar]
- Lee, E.H.; Park, H.; Kim, N.H.; Hong, E.J.; Park, M.J.; Lee, S.H.; Kim, M.U.; An, B.J.; Cho, Y.J. Biological activities of Aster scaber extracts. Korean J. Food Preserv. 2016, 23, 393–401. [Google Scholar] [CrossRef]
- Choi, N.S.; Oh, S.S.; Lee, J.M. Changes of biologically functional compounds and quality properties of Aster scaber (chamchwi) by blanching conditions. Korean J. Food Sci. Technol. 2001, 33, 745–752. [Google Scholar]
- Choi, S.C.; Ahn, M.S.; Ahn, S.Y.; Ok, Y.S.; Son, J.S.; Joo, J.H. Effect of Nitrogen Application Rate on Growth and Yields of Aster scaber Thunb. and Ligularia fischeri Turcz. in the First Year after Transplanting. Korean J. Environ. Agric. 2009, 28, 243–248. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Agricultural Science and Technology (NIAST). Analysis Methods of Soil and Plant; National Institute of Agricultural Science and Technology. Rural Development Administration: Suwon, Korea, 2000. [Google Scholar]
- Lee, A.L.; Koo, N. Comparison of soil physicochemical properties according to the sensitivity of forest soil to acidification in the Republic of Korea. J. Korean Soc. For. Sci. 2020, 109, 157–168. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Bernacchi, C.J.; Farquhar, G.D.; Singsaas, E.L. Fitting photosynthetic carbon dioxide response curves for c3 leaves. Plant Cell Environ. 2007, 30, 1035–1040. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanisms, Regulation and Adaptation; Taylor and Francis: London, UK, 2000; pp. 445–483. [Google Scholar]
- Wang, Z.; Chen, L.; Ai, J.; Qin, H.; Liu, Y.; Xu, P.; Jiao, Z.; Zhao, Y.; Zhang, Q. Photosynthesis and activity of photosystem II in response to drought stress in amur grape (Vitis amurensis rupr.). Photosynthetica 2012, 50, 189–196. [Google Scholar] [CrossRef]
- de Sousa, C.A.F.; de Paiva, D.S.; Casari, R.A.D.C.N.; de Oliveira, N.G.; Molinari, H.B.C.; Kobayashi, A.K.; Magalhães, P.C.; Gomide, R.L.; Souza, M.T. A procedure for maize genotypes discrimination to drought by chlorophyll fluorescence imaging rapid light curves. Plant Methods 2017, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Molina, A.; Lehmann, M.; Schneider, K.; Klingl, A.; Leister, D. Inactivation of cytosolic fumarase2 enhances growth and photosynthesis under simultaneous copper and iron deprivation in arabidopsis. Plant J. 2021, 106, 766–784. [Google Scholar] [CrossRef]
- Wang, X.; Huang, R.; Quan, R. Mutation in Mg-protoporphyrin ix monomethyl ester cyclase decreases photosynthesis capacity in rice. PLoS ONE 2017, 12, e0171118. [Google Scholar] [CrossRef] [Green Version]
- Ceusters, N.; Valcke, R.; Frans, M.; Claes, J.E.; Van den Ende, W.; Ceusters, J. Performance index and psii connectivity under drought and contrasting light regimes in the cam orchid phalaenopsis. Front. Plant Sci. 2019, 10, 1012. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.X.; Chen, L.S.; Zheng, J.G.; Han, S.; Tang, N.; Smith, B.R. Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol. 2008, 28, 1863–1871. [Google Scholar] [CrossRef]
- Lee, K.C.; Kweon, H.; Sung, J.W.; Kim, Y.S.; Song, Y.G.; Cha, S.; Koo, N. Physiological response analysis for the diagnosis of drought and waterlogging damage in Prunus yedoensis. For. Sci. Technol. 2022, 18, 14–25. [Google Scholar] [CrossRef]
- Kim, J.G.; Lee, K.B.; Lee, S.B.; Lee, D.B.; Kim, S.J. The effect of long-term application of different organic material sources on chemical properties of upland soil. Korean J. Soil Sci. Fert. 1999, 32, 239–253. [Google Scholar]
- Baiamonte, G.; De Pasquale, C.; Marsala, V.; Cimò, G.; Alonzo, G.; Crescimanno, G.; Conte, P. Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sediments 2015, 15, 816–824. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.; Novak, J.; Collins, H.; Ippolito, J.; Karlen, D.; Lentz, R.; Sistani, K.; Spokas, K.; Van Pelt, R. Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma 2017, 289, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Kim, L.Y.; Cho, H.J.; Han, K.H. Changes of physical properties of soils by organic material application. Korean J. Soil Sci. Fert. 2004, 37, 304–314. [Google Scholar]
- Nam, Y.; Yong, S.H.; Song, K.K. Evaluating quality of fertilizer manufactured (livestock manure compost) with different sources in Korea. Korean J. Soil Sci. Fert. 2010, 43, 644–649. [Google Scholar]
- Lee, K. Photosynthetic responses and growth performances affected by organic compost level in seedling of Synurus deltoides(aiton) nakai. J. Agric. Life Sci. 2017, 51, 65–78. [Google Scholar]
- Kang, C.S.; Roh, A.S.; Kim, S.K.; Park, K.Y. Effects of the application of livestock manure compost on reducing the chemical fertilizer use for the lettuce cultivation in green house. Korean J. Soil Sci. Fert. 2011, 44, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, G.W. Introduction to Plant Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Chang. Biol. 2009, 15, 976–991. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Woodward, F.; Smith, T. Predictions and measurements of the maximum photosynthetic rate, Amax, at the global scale. Ecophysiol. Photosynth. 1995, 100, 491–509. [Google Scholar]
- Eo, H.J.; Son, Y.H.; Park, S.H.; Park, G.H.; Lee, K.C.; Son, H.J. Growth and physiological characteristics of containerized seedlings of Sageretia thea at different fertilization treatments. J. Korean Soc. For. Sci. 2021, 110, 189–197. [Google Scholar]
- Kim, J.J.; Lee, S.H.; Song, K.S.; Jeon, K.S.; Choi, J.Y.; Choi, K.S.; Lee, S.N.; Sung, H.I. Growth and physiological responses of indeciduous quercus l. in container by fertilizing treatment. Korean J. Environ. Agric. 2014, 33, 372–380. [Google Scholar] [CrossRef]
- Oktavia, D.; Setiadi, Y.; Hilwan, I. The comparison of soil properties in heath forest and post-tin mined land: Basic for ecosystem restoration. Procedia Environ. Sci. 2015, 28, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Hur, B.K.; Choung, N.H.; Kim, Z.H.; Oh, O.J.; Son, S.G.; Kang, D.Y. Effects of various composts and npk fertilizers application to the yacon (Polymnia sonchifolia poepp) growth. Korean J. Med. Crop Sci. 2007, 15, 17–20. [Google Scholar]
- Sorensen, R.B.; Lamb, M.C. Crop yield response to increasing biochar rates. J. Crop Improv. 2016, 30, 703–712. [Google Scholar] [CrossRef]
- Yun, B.; Yoo, Y.; Hou, W.; Kim, Y. Effect of application levels of wood charcoal powder on onion (Allium cepa L.) growth and soil physico-chemical properties. J. Korean Soc. Int. Agric. 2004, 16, 162–167. [Google Scholar]
- Lee, H. Growth Characteristics of Allium microdictyon in Forest Cultivation. J. People Plants Environ. 2023, 26, 59–66. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, Y.; Liu, J. Systematic salt tolerance-related physiological mechanisms of wild soybean and their role in the photosynthetic activity and Na+ distribution of grafted soybean plants. Photosynthetica 2022, 60, 400–407. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, P.; Yang, W.; Sui, X.; Li, X.; Li, W.; Zhang, R.; Gu, S.; Xu, N. Effects of flooding stress on the photosynthetic apparatus of leaves of two physocarpus cultivars. J. For. Res. 2018, 29, 1049–1059. [Google Scholar] [CrossRef]
- Begovic, L.; Galic, V.; Abicic, I.; Loncaric, Z.; Lalic, A.; Mlinaric, S. Implications of intra-seasonal climate variations on chlorophyll a fluorescence and biomass in winter barley breeding program. Photosynthetica 2020, 58, 995–1008. [Google Scholar] [CrossRef]
- Wang, Z.; Li, G.; Sun, H.; Ma, L.; Guo, Y.; Zhao, Z.; Gao, H.; Mei, L. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol. Open 2018, 7, bio035279. [Google Scholar] [CrossRef] [Green Version]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [Green Version]
Treatment | Soil Texture (%) | pH | EC | OM | CEC | Av. P2O5 | T-N | Exchangeable Cations (cmol·kg−1) | BS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | (1:5) | (dS·m−1) | (g·kg−1) | (cmolc·kg−1) | (mg·kg−1) | (%) | Ca++ | Mg++ | K+ | Na+ | (%) | |
SS100 | 93.5 | 6.2 | 0.3 | 6.4 | 0.09 | 2.81 | 5.66 | 105.43 | 0.02 | 0.17 | 2.57 | 0.38 | 0.01 | 55.3 |
SS70 | 90.8 | 8.3 | 0.9 | 6.8 | 0.19 | 4.62 | 6.32 | 172.94 | 0.04 | 0.27 | 3.47 | 0.49 | 0.01 | 67.1 |
SS50 | 86.7 | 10.2 | 3.1 | 7.1 | 0.30 | 5.95 | 7.14 | 308.78 | 0.05 | 0.42 | 4.19 | 0.52 | 0.01 | 72.0 |
CS | 80.9 | 14.9 | 4.2 | 7.1 | 0.41 | 7.86 | 8.62 | 482.92 | 0.08 | 0.86 | 4.94 | 0.6 | 0.02 | 74.5 |
Bc5 | 93.5 | 6.4 | 0.1 | 6.7 | 0.11 | 3.72 | 5.54 | 119.08 | 0.02 | 0.19 | 2.86 | 0.47 | 0.03 | 64.1 |
Bc10 | 93.4 | 5.0 | 1.6 | 6.3 | 0.08 | 5.57 | 6.32 | 106.90 | 0.02 | 0.21 | 2.73 | 0.53 | n.d. | 54.9 |
Comp | 92.6 | 4.8 | 2.6 | 7.5 | 1.35 | 13.00 | 6.90 | 873.59 | 0.1 | 2.48 | 6.53 | 1.84 | 0.44 | 163.6 |
Month | Treatment | E | A | gs | ITE | WUEi | SPAD |
---|---|---|---|---|---|---|---|
(mmol·m−2·s−1) | (µmol·m−2·s−1) | (mmol·m−2·s−1) | (µmol·mmol−1) | (µmol·mmol−1) | |||
May | SS100 | 1.7(0.7) | 5.7(0.3) | 101.6(48.5) | 3.8(1.3) | 63.6(23.8) | 36.0(5.0) |
SS70 | 2.4(0.4) | 9.9(0.4) | 149.0(29.0) | 4.3(0.6) | 68.0(11.0) | 34.9(3.2) | |
SS50 | 1.6(0.3) | 8.6(1.3) | 92.1(17.4) | 5.6(0.2) | 94.1(5.6) | 35.8(3.5) | |
CS | 1.8(0.2) | 7.9(1.3) | 108.6(15.0) | 4.4(0.5) | 72.7(8.6) | 32.0(3.9) | |
Bc5 | 2.6(0.3) | 8.5(1.0) | 166.6(19.9) | 3.3(0.1) | 51.0(1.6) | 35.1(2.8) | |
Bc10 | 2.4(0.4) | 9.1(1.9) | 154.4(29.2) | 3.8(0.6) | 59.8(10.5) | 34.2(3.7) | |
Comp | 1.5(0.5) | 9.5(1.6) | 91.4(32.2) | 6.4(0.9) | 108.4(19.1) | 33.2(3.0) | |
June | SS100 | 3.4(0.1) | 11.8(1.5) | 228.5(8.1) | 3.5(0.3) | 51.4(5.2) | 37.9(4.4) |
SS70 | 3.0(0.9) | 10.5(1.0) | 205.2(74.0) | 3.6(0.7) | 54.8(15.0) | 37.3(5.5) | |
SS50 | 1.9(0.5) | 10.0(1.2) | 115.6(34.3) | 5.4(0.7) | 89.7(14.2) | 42.7(2.8) | |
CS | 2.2(0.4) | 10.0(1.9) | 135.8(32.0) | 4.6(0.5) | 74.9(10.4) | 37.1(3.4) | |
Bc5 | 2.6(0.9) | 11.6(1.7) | 167.5(69.5) | 4.8(1.1) | 75.8(22.9) | 35.1(1.4) | |
Bc10 | 3.3(0.1) | 12.0(1.2) | 225.3(10.3) | 3.6(0.3) | 53.3(3.7) | 36.7(2.6) | |
Comp | 3.0(1.1) | 13.9(2.2) | 208.5(95.6) | 4.8(1.0) | 72.9(21.3) | 34.7(3.2) | |
July | SS100 | 3.7(0.5) | 12.1(1.5) | 278.8(50.9) | 3.3(0.7) | 44.7(11.1) | 41.9(6.5) |
SS70 | 3.3(0.9) | 12.4(2.0) | 253.8(81.3) | 3.8(0.8) | 51.1(11.8) | 41.2(3.6) | |
SS50 | 3.2(1.4) | 13.4(2.6) | 229.5(126.9) | 4.6(1.1) | 66.2(22.2) | 41.5(5.8) | |
CS | 3.3(0.9) | 14.4(0.5) | 235.6(78.9) | 4.6(1.1) | 65.4(20.1) | 47.7(4.9) | |
Bc5 | 3.6(1.4) | 10.8(1.7) | 260.4(110.9) | 3.3(1.0) | 46.2(17.0) | 37.2(7.2) | |
Bc10 | 2.0(0.2) | 8.7(0.4) | 135.8(5.1) | 4.3(0.5) | 64.1(5.0) | 42.1(5.0) | |
Comp | 4.0(0.9) | 14.6(2.0) | 310.5(91.3) | 3.8(1.1) | 50.2(16.8) | 39.0(4.5) | |
Between subjects | |||||||
Treatment (T) | <0.049 | 0.055 | <0.047 | <0.017 | <0.025 | <0.001 | |
Within subjects | |||||||
Month (M) | <0.000 | < 0.000 | <0.000 | <0.034 | <0.00 | <0.000 | |
M × T | <0.019 | < 0.001 | 0.051 | <0.013 | <0.008 | <0.001 |
Parameters | Description |
---|---|
VJ | Relative variable fluorescence at the J-step |
VK | Relative variable fluorescence at the k-step |
Fv/Fm | Maximum quantum yield of PSII photochemistry measured in the dark-adapted state |
Y(II) | PSII actual photochemical quantum yield |
Y(NPQ) | Quantum yield of regulated energy dissipation in PSII |
Y(NO) | Quantum yield of non-regulated energy dissipation in PSII |
ΦEO | Probability that an absorbed photon leads to electron transport further than QA- |
ΨEO | Probability that an electron moves further than QA- |
ABS/RC | Absorption flux per reaction center |
TRo/RC | Trapping of electrons per reaction center |
ETo/RC | Electron flux per reaction center beyond QA- |
DIo/RC | Energy dissipation flux per reaction center |
REo/RC | Electron transport flux until PSI acceptors per reaction center |
PIabs | Performance index on absorption basis. |
DFIabs | Driving force on absorption basis. |
SFIabs | The structure function index on absorption basis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Kim, S.; Koo, H.; Kim, H.; Kim, K.; Lee, J.; Jang, S.; Lee, K.C. Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture. Sustainability 2023, 15, 11477. https://doi.org/10.3390/su151511477
Song Y, Kim S, Koo H, Kim H, Kim K, Lee J, Jang S, Lee KC. Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture. Sustainability. 2023; 15(15):11477. https://doi.org/10.3390/su151511477
Chicago/Turabian StyleSong, Yeonggeun, Sukwoo Kim, Haeun Koo, Hyeonhwa Kim, Kidae Kim, Jaeuk Lee, Sujin Jang, and Kyeong Cheol Lee. 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture" Sustainability 15, no. 15: 11477. https://doi.org/10.3390/su151511477
APA StyleSong, Y., Kim, S., Koo, H., Kim, H., Kim, K., Lee, J., Jang, S., & Lee, K. C. (2023). Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture. Sustainability, 15(15), 11477. https://doi.org/10.3390/su151511477