An Evolutionary Analysis of Higher-Order Interaction Collaborative Innovation Networks in China’s New Energy Vehicle Industry
Abstract
:1. Introduction
2. Literature Review
2.1. New Energy Vehicle Industry
2.2. Patent Collaboration Network
2.3. Social Network Analysis
3. Construction of Higher-Order Interaction Cooperation Innovation Networks
3.1. Basic Properties of Higher-Order Networks
3.2. Generalized Degree
3.3. Spatial Analysis of Patent Cooperation Activities
4. Data and Life Cycle Division
5. Evolution Analysis of Higher-Order Network Structure
5.1. The Description of the Higher-Order Network
5.2. Structural Characteristics of the Higher-Order Collaboration Network
5.3. Generalized Degree Distribution of Nodes and Edges
6. Evolution Analysis of Key Nodes and Edges
6.1. Identification of Key Nodes and Links
6.2. Collaboration Breadth and Depth of Nodes and Edges
7. Evolutionary Analysis of Regional Cooperation
7.1. Evolution Analysis of Intra-Regional Cooperation
7.2. Evolution Analysis of Cross-Regional Cooperation
- (1)
- Evolution map of cross-regional patent collaboration network
- (2)
- Cooperation breadth and depth of cross-regional patent collaboration
8. Conclusions and Future Work
8.1. Conclusions
8.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffe, A.B.; de Rassenfosse, G. Patent citation data in social science research: Overview and best practices. J. Assoc. Inf. Sci. Technol. 2017, 68, 1360–1374. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, L.; Cao, B.; Fan, X. Benefit distribution and stability analysis of enterprises’ technological innovation cooperation alliance. Comput. Ind. Eng. 2021, 161, 107637. [Google Scholar] [CrossRef]
- Cho, R.L.-T.; Liu, J.S.; Ho, M.H.-C. The development of autonomous driving technology: Perspectives from patent citation analysis. Transp. Rev. 2021, 41, 685–711. [Google Scholar] [CrossRef]
- Alstott, J.; Triulzi, G.; Yan, B.; Luo, J. Mapping Technology Space by Normalizing Patent Networks. Scientometrics 2017, 110, 443–479. [Google Scholar] [CrossRef]
- Tsay, M.-Y.; Liu, Z.-W. Analysis of the patent cooperation network in global artificial intelligence technologies based on the assignees. World Pat. Inf. 2020, 63, 102000. [Google Scholar] [CrossRef]
- Liu, W.; Song, Y.; Bi, K. Exploring the patent collaboration network of China’s wind energy industry: A study based on patent data from CNIPA. Renew. Sustain. Energy Rev. 2021, 144, 110989. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G. Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China. Scientometrics 2019, 119, 561–593. [Google Scholar] [CrossRef]
- Liu, W.; Tao, Y.; Yang, Z.; Bi, K. Exploring and Visualizing the Patent Collaboration Network: A Case Study of Smart Grid Field in China. Sustainability 2019, 11, 465. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Gu, H.; Zhang, S. Measuring technological collaborations on carbon capture and storage based on patents: A social network analysis approach. J. Clean. Prod. 2020, 274, 122867. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Z.; Cheng, Y.; Ye, X. Exploring the Technological Collaboration Characteristics of the Global Integrated Circuit Manufacturing Industry. Sustainability 2018, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, S.; De Lellis, P.; del Genio, C.I.; Alfaro-Bittner, K.; Criado, R.; Jalan, S.; Romance, M. The structure and dynamics of networks with higher order interactions. Phys. Rep. 2023, 1018, 1–64. [Google Scholar] [CrossRef]
- Gu, H.; Liu, Z.; Qing, Q. Optimal electric vehicle production strategy under subsidy and battery recycling. Energy Policy 2017, 109, 579–589. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, X.; Zuo, J. The development of new energy vehicles for a sustainable future: A review. Renew. Sustain. Energy Rev. 2015, 42, 298–305. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, L.; Liu, K. Does China’s new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach. Technol. Forecast. Soc. Chang. 2021, 173, 121161. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, K.; Hao, H.; Wang, S.; Liu, Z. Technology development for electric vehicles under new energy vehicle credit regulation in China: Scenarios through 2030. Clean Technol. Environ. Policy 2019, 21, 275–289. [Google Scholar] [CrossRef]
- Liu, J.; Chong, Z.; Lu, S. The Evolution and Determinants of Interorganizational Coinvention Networks in New Energy Vehicles: Evidence from Shenzhen, China. Complexity 2021, 2021, 6665945. [Google Scholar] [CrossRef]
- He, L.; Fan, F.; Hou, X.; Wu, H.; Wang, J.; Xu, H.; Sun, Y. 4(3H)-Quinazolone regulates innate immune signaling upon respiratory syncytial virus infection by moderately inhibiting the RIG-1 pathway in RAW264.7 cell. Int. Immunopharmacol. 2017, 52, 245–252. [Google Scholar] [CrossRef]
- Yang, S.; He, L.-Y. Fuel demand, road transport pollution emissions and residents’ health losses in the transitional China. Transp. Res. Part D Transp. Environ. 2016, 42, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Qin, Q. China’s new energy vehicle policies: Evolution, comparison and recommendation. Transp. Res. Part A Policy Pract. 2018, 110, 57–72. [Google Scholar] [CrossRef]
- Brendel, A.B.; Lichtenberg, S.; Brauer, B.; Nastjuk, I.; Kolbe, L.M. Improving Electric Vehicle Utilization in Carsharing: A Framework and Simulation of an E-Carsharing Vehicle Utilization Management System. Transp. Res. Part D Transp. Environ. 2018, 64, 230–245. [Google Scholar] [CrossRef]
- Qin, S.; Xiong, Y. Innovation strategies of Chinese new energy vehicle enterprises under the influence of non-financial policies: Effects, mechanisms and implications. Energy Policy 2022, 164, 112946. [Google Scholar] [CrossRef]
- Wang, X. Research on the impact mechanism of green finance on the green innovation performance of China’s manufacturing industry. Manag. Decis. Econ. 2022, 43, 2678–2703. [Google Scholar] [CrossRef]
- Marković, D.; Petković, D.; Nikolić, V.; Milovančević, M.; Denić, N. DETERMINATION OF IMPORTANT PARAMETERS FOR PATENT APPLICATIONS. Facta Univ. Series: Mech. Eng. 2017, 15, 307. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Chen, Z. Patent collaboration and international knowledge flow. Inf. Process. Manag. 2012, 48, 170–181. [Google Scholar] [CrossRef]
- Fleming, L.; King, C., III; Juda, A.I. Small Worlds and Regional Innovation. Organ. Sci. 2007, 18, 938–954. [Google Scholar] [CrossRef] [Green Version]
- Sternitzke, C.; Bartkowski, A.; Schramm, R. Visualizing patent statistics by means of social network analysis tools. World Pat. Inf. 2008, 30, 115–131. [Google Scholar] [CrossRef]
- Ramos, M. The relation between R&D spending and patents: The moderating effect of collaboration networks. J. Eng. Technol. Manag. 2017, 46, 26–38. [Google Scholar] [CrossRef]
- Xiang, J.Q.; Ma, F.; Wang, H. The effect of intellectual property treaties on international innovation collaboration: A study based on USPTO patents during 1976–2017. Libr. Hi Tech 2023, 41, 666–682. [Google Scholar] [CrossRef]
- Müller, M.; Kudic, M.; Vermeulen, B. The influence of the structure of technological knowledge on inter-firm R&D collaboration and knowledge discovery: An agent-based simulation approach. J. Bus. Res. 2021, 129, 570–579. [Google Scholar] [CrossRef]
- Lee, C.; Kogler, D.F.; Lee, D. Capturing information on technology convergence, international collaboration, and knowledge flow from patent documents: A case of information and communication technology. Inf. Process. Manag. 2019, 56, 1576–1591. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, C. Intra- and inter-regional research collaboration across organizational boundaries: Evolving patterns in China. Technol. Forecast. Soc. Chang. 2015, 96, 215–231. [Google Scholar] [CrossRef]
- Sun, Y. The structure and dynamics of intra- and inter-regional research collaborative networks: The case of China (1985–2008). Technol. Forecast. Soc. Chang. 2016, 108, 70–82. [Google Scholar] [CrossRef]
- Han, G.; Zhang, Z. Regional innovation paths selection in complex environments of China: A configurational perspective. Manag. Decis. Econ. 2022, 43, 2598–2606. [Google Scholar] [CrossRef]
- Sun, H.; Geng, Y.; Hu, L.; Shi, L.; Xu, T. Measuring China’s new energy vehicle patents: A social network analysis approach. Energy 2018, 153, 685–693. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, N.; Cao, C. An evolutionary process of global nanotechnology collaboration: A social network analysis of patents at USPTO. Scientometrics 2017, 111, 1449–1465. [Google Scholar] [CrossRef]
- Lin, W.; Liu, X.; Xiao, R. Data-driven Product Functional Configuration: Patent Data and Hypergraph. Chin. J. Mech. Eng. 2022, 35, 57. [Google Scholar] [CrossRef]
- Estrada, E.; Rodríguez-Velázquez, J.A. Subgraph centrality and clustering in complex hyper-networks. Phys. A Stat. Mech. its Appl. 2006, 364, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, H.; Wu, W. Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork. Scientometrics 2019, 119, 657–685. [Google Scholar] [CrossRef]
- Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1–92. [Google Scholar] [CrossRef]
- Barabási, A.-L. Luck or reason. Nature 2012, 489, 507–508. [Google Scholar] [CrossRef]
- Bianconi, G. Higher-Order Networks, 1st ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Cinardi, N.; Rapisarda, A.; Bianconi, G. Quantum statistics in network geometry with fractional flavor. J. Stat. Mech. Theory Exp. 2019, 2019, 103403. [Google Scholar] [CrossRef] [Green Version]
- Iacopini, I.; Petri, G.; Barrat, A.; Latora, V. Simplicial models of social contagion. Nat. Commun. 2019, 10, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianconi, G.; Ziff, R.M. Topological Percolation on Hyperbolic Simplicial Complexes. Phys. Rev. E 2018, 98, 052308. [Google Scholar] [CrossRef] [Green Version]
- Courtney, O.T.; Bianconi, G. Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes. Phys. Rev. E 2016, 93, 062311. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Li, J.; Li, J. Urban innovation and intercity patent collaboration: A network analysis of China’s national innovation system. Technol. Forecast. Soc. Chang. 2020, 160, 120185. [Google Scholar] [CrossRef]
- Patania, A.; Petri, G.; Vaccarino, F. The shape of collaborations. EPJ Data Sci. 2017, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Liegsalz, J.; Wagner, S. Patent examination at the state intellectual property office in China. Res. Policy 2013, 42, 552–563. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Ahmad, S.Z.; Yang, D. Matthew effect, ABC analysis and project management of scale-free information systems. J. Syst. Softw. 2013, 86, 247–254. [Google Scholar] [CrossRef]
Symbol | Interpretation |
---|---|
G (V, E) | G represents the graph, V the set of nodes, E the set of edges |
d-simplex | Simplex of order d |
Generalized 1-degree of a node r | |
Generalized 2-degree of an edge | |
The set of all possible and distinct d-dimensional simplexes including N nodes | |
Adjacency tensor of d-simplex | |
Generalized d-degree of m-simplex |
Dimension | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Patent applications | 2446 | 883 | 277 | 46 | 19 | 9 | 4 |
Period | 2012–2015 | 2016–2018 | 2019–2021 | |||
---|---|---|---|---|---|---|
Dimension | d = 1 | d = 2 | d = 1 | d = 2 | d = 1 | d = 2 |
Nodes | 277 | 237 | 418 | 250 | 671 | 525 |
Number of simplexes | 183 | 91 | 269 | 141 | 455 | 193 |
Number of patents | 704 | 259 | 754 | 279 | 986 | 345 |
Maximum node Generalized degree | 20 | 49 | 19 | 93 | 14 | 88 |
Maximum link Generalized degree | - | 8 | - | 11 | - | 15 |
2016–2018 | 2019–2021 | 2012–2021 | |||||||
---|---|---|---|---|---|---|---|---|---|
Intra-Regional Patents | Collaboration Patents | Ratio | Intra-Regional Patents | Collaboration Patents | Ratio | Intra-Regional Patents | Collaboration Patents | Ratio | |
Beijing | 250 | 354 | 70.62% | 126 | 351 | 35.90% | 309 | 424 | 72.88% |
Tianjin | 5 | 35 | 14.29% | 6 | 88 | 6.82% | 3 | 12 | 25.00% |
Shanghai | 48 | 62 | 77.42% | 55 | 77 | 71.43% | 61 | 70 | 87.14% |
Chongqing | 16 | 30 | 53.33% | 21 | 43 | 48.84% | 11 | 22 | 50.00% |
Hebei | 1 | 8 | 12.50% | 8 | 14 | 57.14% | 1 | 19 | 5.26% |
Shanxi | 4 | 5 | 80.00% | 15 | 33 | 45.45% | 6 | 8 | 75.00% |
Liaoning | 5 | 15 | 33.33% | 2 | 9 | 22.22% | 2 | 5 | 40.00% |
Jilin | 0 | 0 | 0.00% | 1 | 11 | 9.09% | 2 | 3 | 66.67% |
Heilongjiang | 0 | 0 | 0.00% | 1 | 7 | 14.29% | 0 | 0 | 0.00% |
Jiangsu | 35 | 60 | 58.33% | 77 | 140 | 55.00% | 20 | 44 | 45.45% |
Zhejiang | 101 | 115 | 87.83% | 143 | 167 | 85.63% | 76 | 82 | 92.68% |
Anhui | 6 | 10 | 60.00% | 10 | 20 | 50.00% | 2 | 6 | 33.33% |
Fujian | 7 | 10 | 70.00% | 11 | 17 | 64.71% | 5 | 5 | 100.00% |
Jiangxi | 0 | 0 | 0.00% | 1 | 7 | 14.29% | 0 | 0 | 0.00% |
Shandong | 10 | 30 | 33.33% | 19 | 42 | 45.24% | 2 | 38 | 5.26% |
Henan | 2 | 8 | 25.00% | 17 | 38 | 44.74% | 4 | 7 | 57.14% |
Hubei | 6 | 31 | 19.35% | 13 | 40 | 32.50% | 1 | 30 | 3.33% |
Hunan | 13 | 25 | 52.00% | 13 | 19 | 68.42% | 9 | 10 | 90.00% |
Guangdong | 25 | 41 | 60.98% | 50 | 83 | 60.24% | 13 | 33 | 39.39% |
Sichuan | 8 | 26 | 30.77% | 8 | 30 | 26.67% | 2 | 21 | 9.52% |
Guizhou | 0 | 0 | 0.00% | 4 | 5 | 80.00% | 0 | 0 | 0.00% |
Yunnan | 1 | 6 | 16.67% | 3 | 4 | 75.00% | 1 | 1 | 100.00% |
Shaanxi | 1 | 10 | 10.00% | 15 | 26 | 57.69% | 1 | 4 | 25.00% |
Gansu | 3 | 4 | 75.00% | 6 | 9 | 66.67% | 2 | 4 | 50.00% |
Inner Mongolia | 0 | 0 | 0.00% | 1 | 9 | 11.11% | 0 | 0 | 0.00% |
Guangxi | 2 | 2 | 100.00% | 13 | 13 | 100.00% | 0 | 0 | 0.00% |
Sum | 549 | 887 | 62% | 639 | 1302 | 49% | 533 | 848 | 63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Guo, J.; Guo, Z. An Evolutionary Analysis of Higher-Order Interaction Collaborative Innovation Networks in China’s New Energy Vehicle Industry. Sustainability 2023, 15, 11478. https://doi.org/10.3390/su151511478
Yuan Y, Guo J, Guo Z. An Evolutionary Analysis of Higher-Order Interaction Collaborative Innovation Networks in China’s New Energy Vehicle Industry. Sustainability. 2023; 15(15):11478. https://doi.org/10.3390/su151511478
Chicago/Turabian StyleYuan, Yuan, Jinli Guo, and Zhaohua Guo. 2023. "An Evolutionary Analysis of Higher-Order Interaction Collaborative Innovation Networks in China’s New Energy Vehicle Industry" Sustainability 15, no. 15: 11478. https://doi.org/10.3390/su151511478
APA StyleYuan, Y., Guo, J., & Guo, Z. (2023). An Evolutionary Analysis of Higher-Order Interaction Collaborative Innovation Networks in China’s New Energy Vehicle Industry. Sustainability, 15(15), 11478. https://doi.org/10.3390/su151511478