Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Set and Sources
2.2.1. Precipitation
2.2.2. Soils
2.2.3. Land Use/Land Cover (LLUC)
2.2.4. Lithology
2.2.5. Lineament Density (LD)
2.2.6. Drainage Density (DD)
2.2.7. Slope
2.3. Multi-Criteria Decision Analysis Using AHP
- The layers were selected according to the past literature review, which are precipitation, LULC, geology, slope, LD, DD, and soil;
Scale of Importance | Definition | Explanation |
---|---|---|
1 | Equal importance | Two criteria/sub-criteria each contribute equally to the level above. |
3 | Moderate importance | The judgement mildly favors one criterion/sub-criterion over another. |
5 | Strong importance | One criterion/sub-criterion is strongly favored in the judgement. |
7 | Very strong importance | One criterion/sub-criterion is substantially preferred over another. |
9 | Absolute/Extreme importance | There is evidence to support the preference of one criterion/sub-criterion over another. |
2, 4, 6, 8 | Immediate values between the above scale values | There can be no absolute judgment; hence, a compromise is essential. |
3. Results
3.1. Multi-Criteria Decision Analysis Results by AHP
3.2. Groundwater Potential Zone Delineation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pathmanandakumar, V.; Thasarathan, N.; Ranagalage, M. An approach to delineate potential groundwater zones in Kilinochchi District, Sri Lanka, using GIS techniques. ISPRS Int. J. Geo-Inf. 2021, 10, 730. [Google Scholar] [CrossRef]
- Shekhar, S.; Pandey, A.C. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int. 2015, 30, 402–421. [Google Scholar] [CrossRef]
- Arkoprovo, B.; Adarsa, J.; Prakash, S.S. Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: A case study from Ganjam district, Orissa, India. Res. J. Recent Scien 2012, 1, 59–66. [Google Scholar]
- Agarwal, E.; Agarwal, R.; Garg, R.D.; Garg, P.K. Delineation of groundwater potential zone: An AHP/ANP approach. J. Earth Syst. Sci. 2013, 122, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Bera, A.; Mukhopadhyay, B.P.; Barua, S. Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques. Arab. J. Geosci. 2020, 13, 1–21. [Google Scholar] [CrossRef]
- Ikirri, M.; Boutaleb, S.; Ibraheem, I.M.; Abioui, M.; Echogdali, F.Z.; Abdelrahman, K.; Id-Belqas, M.; Abu-Alam, T.; El Ayady, H.; Essoussi, S. Delineation of Groundwater Potential Area using an AHP, Remote Sensing, and GIS Techniques in the Ifni Basin, Western Anti-Atlas, Morocco. Water 2023, 15, 1436. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; ElKashouty, M.; Tian, F. Mapping Groundwater Potential Zones Using Analytical Hierarchical Process and Multicriteria Evaluation in the Central Eastern Desert, Egypt. Water 2022, 14, 1041. [Google Scholar] [CrossRef]
- Seyam, M.; Alagha, J.S.; Abunama, T.; Mogheir, Y.; Affam, A.C.; Heydari, M.; Ramlawi, K. Investigation of the influence of excess pumping on groundwater salinity in the Gaza Coastal Aquifer (Palestine) using three predicted future scenarios. Water 2020, 12, 2218. [Google Scholar] [CrossRef]
- Zghibi, A.; Mirchi, A.; Msaddek, M.H.; Merzougui, A.; Zouhri, L.; Taupin, J.-D.; Chekirbane, A.; Chenini, I.; Tarhouni, J. Using analytical hierarchy process and multi-influencing factors to map groundwater recharge zones in a semi-arid Mediterranean coastal aquifer. Water 2020, 12, 2525. [Google Scholar] [CrossRef]
- Gibert, O.; Abenza, M.; Reig, M.; Vecino, X.; Sánchez, D.; Arnaldos, M.; Cortina, J.L. Removal of nitrate from groundwater by nano-scale zero-valent iron injection pulses in continuous-flow packed soil columns. Sci. Total Environ. 2022, 810, 152300. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Y.J.; Zhang, L. Watershed scale spatiotemporal nitrogen transport and source tracing using dual isotopes among surface water, sediments and groundwater in the Yiluo River Watershed, Middle of China. Sci. Total Environ. 2022, 833, 155180. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Jia, S.; Mao, B. Multi-methods to investigate spatiotemporal variations of nitrogen-nitrate and its risks to human health in China’s largest fresh water lake (Poyang Lake). Sci. Total Environ. 2023, 863, 160975. [Google Scholar] [CrossRef]
- Pholkern, K.; Saraphirom, P.; Srisuk, K. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand. Sci. Total Environ. 2018, 633, 1518–1535. [Google Scholar] [CrossRef] [PubMed]
- Ostovari, Y.; Beigi-Harchegani, H.; Asgari, K. A fuzzy logic approach for assessment and mapping of groundwater irrigation quality: A case study of Marvdasht aquifer, Iran. Arch. Agron. Soil Sci. 2015, 61, 711–723. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. Groundwater potential modelling using remote sensing and GIS: A case study of the Al Dhaid area, United Arab Emirates. Geocarto Int. 2014, 29, 433–450. [Google Scholar] [CrossRef]
- Krishnamurthy, J.; Venkatesa Kumar, N.; Jayaraman, V.; Manivel, M. An approach to demarcate ground water potential zones through remote sensing and a geographical information system. Int. J. Remote Sens. 1996, 17, 1867–1884. [Google Scholar] [CrossRef]
- Manap, M.A.; Nampak, H.; Pradhan, B.; Lee, S.; Sulaiman, W.N.A.; Ramli, M.F. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab. J. Geosci. 2014, 7, 711–724. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, P.; Roy, B.; Sarma, B.; Vijay, S.; Choudhury, S. GIS based surface hydrological modelling in identification of groundwater recharge zones. Int. J. Remote Sens. 2004, 25, 5759–5770. [Google Scholar] [CrossRef]
- Wu, B.; Liu, L. Social capital for rural revitalization in China: A critical evaluation on the government’s new countryside programme in Chengdu. Land Use Policy 2020, 91, 104268. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 1–27. [Google Scholar] [CrossRef]
- Lee, S.; Hyun, Y.; Lee, S.; Lee, M.-J. Groundwater potential mapping using remote sensing and GIS-based machine learning techniques. Remote Sens. 2020, 12, 1200. [Google Scholar] [CrossRef] [Green Version]
- Elbeih, S.F. An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng. J. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Alcaide, S.; Martínez-Santos, P. Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324. [Google Scholar] [CrossRef]
- Das, S. Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundw. Sustain. Dev. 2019, 8, 617–629. [Google Scholar] [CrossRef]
- Agarwal, R.; Garg, P.K. Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resour. Manag. 2016, 30, 243–260. [Google Scholar]
- Fashae, O.A.; Tijani, M.N.; Talabi, A.O.; Adedeji, O.I. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Appl. Water Sci. 2014, 4, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Gnanachandrasamy, G.; Ramkumar, T.; Chen, J.; Venkatramanan, S.; Vasudevan, S.; Selvam, S. Evaluation of vulnerability zone of a coastal aquifer through GALDIT GIS index techniques. GIS Geostat. Tech. Groundw. Sci. 2019, 209–221. [Google Scholar]
- Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour. Manag. 2011, 25, 1359–1386. [Google Scholar] [CrossRef]
- Azma, A.; Narreie, E.; Shojaaddini, A.; Kianfar, N.; Kiyanfar, R.; Seyed Alizadeh, S.M.; Davarpanah, A. Statistical modeling for spatial groundwater potential map based on gis technique. Sustainability 2021, 13, 3788. [Google Scholar] [CrossRef]
- Ifediegwu, S.I. Assessment of groundwater potential zones using GIS and AHP techniques: A case study of the Lafia district, Nasarawa State, Nigeria. Appl. Water Sci. 2022, 12, 10. [Google Scholar] [CrossRef]
- Nampak, H.; Pradhan, B.; Abd Manap, M. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 2014, 513, 283–300. [Google Scholar] [CrossRef]
- Priya, U.; Iqbal, M.A.; Salam, M.A.; Nur-E-Alam, M.; Uddin, M.F.; Islam, A.R.M.T.; Sarkar, S.K.; Imran, S.I.; Rak, A.E. Sustainable groundwater potential zoning with integrating GIS, remote sensing, and AHP model: A case from North-Central Bangladesh. Sustainability 2022, 14, 5640. [Google Scholar] [CrossRef]
- Rahmati, O.; Nazari Samani, A.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab. J. Geosci. 2015, 8, 7059–7071. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, Z.; Zhang, W.; Dilawar, A. Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geosci. Front. 2020, 11, 1805–1819. [Google Scholar] [CrossRef]
- Oh, H.-J.; Kim, Y.-S.; Choi, J.-K.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J. Hydrol. 2011, 399, 158–172. [Google Scholar] [CrossRef]
- Razandi, Y.; Pourghasemi, H.R.; Neisani, N.S.; Rahmati, O. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci. Inform. 2015, 8, 867–883. [Google Scholar] [CrossRef]
- Rather, A.F.; Ahmed, R.; Wani, G.F.; Ahmad, S.T.; Dar, T.; Javaid, S.; Ahmed, P. Mapping of groundwater potential zones in Pohru Watershed of Jhelum Basin-Western Himalaya, India using integrated approach of remote sensing, GIS and AHP. Earth Sci. Inform. 2022, 15, 2091–2107. [Google Scholar] [CrossRef]
- Tahmassebipoor, N.; Rahmati, O.; Noormohamadi, F.; Lee, S. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab. J. Geosci. 2016, 9, 1–18. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Ha, D.H.; Nguyen, H.D.; Van Phong, T.; Trinh, P.T.; Al-Ansari, N.; Le, H.V.; Pham, B.T.; Ho, L.S.; Prakash, I. Improvement of credal decision trees using ensemble frameworks for groundwater potential modeling. Sustainability 2020, 12, 2622. [Google Scholar] [CrossRef] [Green Version]
- Park, I.; Kim, Y.; Lee, S. Groundwater productivity potential mapping using evidential belief function. Groundwater 2014, 52, 201–207. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A.; Lee, S. Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J. Hydrol. 2019, 579, 124172. [Google Scholar] [CrossRef]
- Ghosh, B. Spatial mapping of groundwater potential using data-driven evidential belief function, knowledge-based analytic hierarchy process and an ensemble approach. Environ. Earth Sci. 2021, 80, 625. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Rahmati, O.; Falah, F.; Shojaei, S.; Al-Ansari, N.; Shahabi, H.; Shirzadi, A.; Górski, K.; Nguyen, H.; Ahmad, B.B. Mapping of groundwater spring potential in karst aquifer system using novel ensemble bivariate and multivariate models. Water 2020, 12, 985. [Google Scholar] [CrossRef] [Green Version]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Groundwater potential mapping using an integrated ensemble of three bivariate statistical models with random forest and logistic model tree models. Water 2019, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Hong, S.-M.; Jung, H.-S. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto Int. 2018, 33, 847–861. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Ha, D.H.; Jaafari, A.; Nguyen, H.D.; Van Phong, T.; Al-Ansari, N.; Prakash, I.; Le, H.V.; Pham, B.T. Groundwater potential mapping combining artificial neural network and real AdaBoost ensemble technique: The DakNong province case-study, Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvis, B.W.W.; Arsene, M.; Théophile, N.M.; Bruno, K.M.E.; Olivier, O.A. Integration of shannon entropy (SE), frequency ratio (FR) and analytical hierarchy process (AHP) in GIS for suitable groundwater potential zones targeting in the Yoyo river basin, Méiganga area, Adamawa Cameroon. J. Hydrol. Reg. Stud. 2022, 39, 100997. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the analytic hierarchy process? Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- SYGM. Kızılırmak Havzası Kuraklık Yönetim Planı [Kızılırmak Basin Drought Management Plan]. Gen. Dir. Water Manag. 2022. [Google Scholar]
- Ersoy, A.F.; Turan, N.A.; Özgül, H.Y. Kızılırmak Delta Kıyı Alanındaki Tuzlanma Sürecinin Stuyfzand Hidrojeokimyasal Modelleme Sistemi ile Değerlendirilmesi. Gümüşhane Üniversitesi Fen Bilim. Derg. 2020, 10, 949–960. [Google Scholar]
- Arslan, H.; Demir, Y. BAFRA OVASI DA DE İZ SUYU GİRİŞİMİ İ YERALTI SUYU KALİTESİ. Anadolu Tarım Bilim. Derg. 2011, 26, 136–144. [Google Scholar]
- Arıman, S.; Gümüş, H. Radioactivity levels and health risks due to radionuclides in the soil and sediment of mid-Black Sea: Kızılırmak Deltas-Turkey. Radiochim. Acta 2018, 106, 927–937. [Google Scholar] [CrossRef]
- Arıman, S. Determination of inactive water quality variables by MODIS data: A case study in the Kızılırmak Delta-Balik Lake, Turkey. Estuar. Coast. Shelf Sci. 2021, 260, 107505. [Google Scholar] [CrossRef]
- Arslan, H.; Ayyildiz Turan, N.; Ersin Temizel, K.; Kuleyin, A.; Sait Kiremit, M.; Güngör, A.; Yildiz Özgül, H. Evaluation of heavy metal contamination and pollution indices through geostatistical methods in groundwater in Bafra Plain, Turkey. Int. J. Environ. Sci. Technol. 2022, 19, 8385–8396. [Google Scholar] [CrossRef]
- Achu, A.; Thomas, J.; Reghunath, R. Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundw. Sustain. Dev. 2020, 10, 100365. [Google Scholar] [CrossRef]
- Yadav, B.; Malav, L.C.; Jangir, A.; Kharia, S.K.; Singh, S.V.; Yeasin, M.; Nogiya, M.; Meena, R.L.; Meena, R.S.; Tailor, B.L. Application of analytical hierarchical process, multi-influencing factor, and geospatial techniques for groundwater potential zonation in a semi-arid region of western India. J. Contam. Hydrol. 2023, 253, 104122. [Google Scholar] [CrossRef]
- Bhadran, A.; Girishbai, D.; Jesiya, N.; Gopinath, G.; Krishnan, R.G.; Vijesh, V. A GIS based fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosystems Geoenvironment 2022, 1, 100093. [Google Scholar] [CrossRef]
- Upwanshi, M.; Damry, K.; Pathak, D.; Tikle, S.; Das, S. Delineation of potential groundwater recharge zones using remote sensing, GIS, and AHP approaches. Urban Clim. 2023, 48, 101415. [Google Scholar] [CrossRef]
- Moodley, T.; Seyam, M.; Abunama, T.; Bux, F. Delineation of groundwater potential zones in KwaZulu-Natal, South Africa using remote sensing, GIS and AHP. J. Afr. Earth Sci. 2022, 193, 104571. [Google Scholar] [CrossRef]
- Guduru, J.U.; Jilo, N.B. Groundwater potential zone assessment using integrated analytical hierarchy process-geospatial driven in a GIS environment in Gobele watershed, Wabe Shebele river basin, Ethiopia. J. Hydrol. Reg. Stud. 2022, 44, 101218. [Google Scholar] [CrossRef]
- Allafta, H.; Opp, C. GIS-based multi-criteria analysis for flood prone areas mapping in the trans-boundary Shatt Al-Arab basin, Iraq-Iran. Geomat. Nat. Hazards Risk 2021, 12, 2087–2116. [Google Scholar] [CrossRef]
- Keblouti, M.; Ouerdachi, L.; Boutaghane, H. Spatial interpolation of annual precipitation in Annaba-Algeria-comparison and evaluation of methods. Energy Procedia 2012, 18, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Katipoğlu, O.M. Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey. Acta Geophys. 2022, 70, 859–878. [Google Scholar] [CrossRef]
- Etikala, B.; Golla, V.; Li, P.; Renati, S. Deciphering groundwater potential zones using MIF technique and GIS: A study from Tirupati area, Chittoor District, Andhra Pradesh, India. HydroResearch 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Musa, J.J.; Anijofor, S.; Obasa, P.; Avwevuruvwe, J. Effects of soil physical properties on erodibility and infiltration parameters of selected areas in Gidan Kwano. Niger. J. Technol. Res. 2017, 12, 46. [Google Scholar] [CrossRef]
- Nolan, B.; Taber, P. DigitalCommons@ University of Nebraska-Lincoln Factors Influencing Ground-Water Recharge in the Eastern United States; University of Nebraska-Lincoln: Lincoln, NE, USA, 2007. [Google Scholar]
- Yifru, B.A.; Chung, I.-M.; Kim, M.-G.; Chang, S.W. Assessing the effect of land/use land cover and climate change on water yield and groundwater recharge in East African Rift Valley using integrated model. J. Hydrol. Reg. Stud. 2021, 37, 100926. [Google Scholar] [CrossRef]
- Marie Mireille, N.; Mwangi, H.; K. Mwangi, J.; Mwangi Gathenya, J. Analysis of land use change and its impact on the hydrology of Kakia and Esamburmbur sub-watersheds of Narok county, Kenya. Hydrology 2019, 6, 86. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, S.; Shakya, N.M. Shallow aquifer groundwater dynamics due to land use/cover change in highly urbanized basin: The case of Kathmandu Valley. J. Hydrol. Reg. Stud. 2020, 30, 100707. [Google Scholar] [CrossRef]
- Ouyang, Y.; Jin, W.; Grace, J.M.; Obalum, S.E.; Zipperer, W.C.; Huang, X. Estimating impact of forest land on groundwater recharge in a humid subtropical watershed of the Lower Mississippi River Alluvial Valley. J. Hydrol. Reg. Stud. 2019, 26, 100631. [Google Scholar] [CrossRef]
- Ayazi, M.H.; Pirasteh, S.; Arvin, A.; Pradhan, B.; Nikouravan, B.; Mansor, S. Disasters and risk reduction in groundwater: Zagros Mountain Southwest Iran using geoinformatics techniques. Disaster Adv. 2010, 3, 51–57. [Google Scholar]
- Sarkar, S.K.; Esraz-Ul-Zannat, M.; Das, P.C.; Ekram, K.M.M. Delineating the groundwater potential zones in Bangladesh. Water Supply 2022, 22, 4500–4516. [Google Scholar] [CrossRef]
- Chepchumba, M.C.; Raude, J.M.; Sang, J.K. Geospatial delineation and mapping of groundwater potential in Embu County, Kenya. Acque Sotter. Ital. J. Groundw. 2019, 8. [Google Scholar] [CrossRef]
- Lentswe, G.B.; Molwalefhe, L. Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. J. Hydrol. Reg. Stud. 2020, 28, 100674. [Google Scholar] [CrossRef]
- Sapkota, S.; Pandey, V.P.; Bhattarai, U.; Panday, S.; Shrestha, S.R.; Maharjan, S.B. Groundwater potential assessment using an integrated AHP-driven geospatial and field exploration approach applied to a hard-rock aquifer Himalayan watershed. J. Hydrol. Reg. Stud. 2021, 37, 100914. [Google Scholar] [CrossRef]
- Sar, N.; Khan, A.; Chatterjee, S.; Das, A. Hydrologic delineation of ground water potential zones using geospatial technique for Keleghai river basin, India. Model. Earth Syst. Environ. 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Doke, A.B.; Zolekar, R.B.; Patel, H.; Das, S. Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecol. Indic. 2021, 127, 107685. [Google Scholar] [CrossRef]
- Rajaveni, S.; Brindha, K.; Rajesh, R.; Elango, L. Spatial and temporal variation of groundwater level and its relation to drainage and intrusive rocks in a part of Nalgonda District, Andhra Pradesh, India. J. Indian Soc. Remote Sens. 2014, 42, 765–776. [Google Scholar] [CrossRef]
- Dar, T.; Rai, N.; Bhat, A. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol. Ecol. Landsc. 2021, 5, 292–307. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Mishra, P.; Mahapatra, S.C. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J. Clean. Prod. 2018, 172, 2485–2502. [Google Scholar] [CrossRef]
- Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K. A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 2015, 525, 197–208. [Google Scholar] [CrossRef]
- Biswas, S.; Mukhopadhyay, B.P.; Bera, A. Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: A case study from Uttar Dinajpur district, West Bengal. Environ. Earth Sci. 2020, 79, 1–25. [Google Scholar] [CrossRef]
N | RI | N | RI | N | RI |
---|---|---|---|---|---|
1 | 0.00 | 6 | 1.24 | 11 | 1.51 |
2 | 0.00 | 7 | 1.32 | 12 | 1.48 |
3 | 0.58 | 8 | 1.41 | 13 | 1.56 |
4 | 0.90 | 9 | 1.45 | 14 | 1.57 |
5 | 1.12 | 10 | 1.49 | 15 | 1.59 |
Matrix | P | LULC | G | LD | S | DD | S | NW | |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
P | 1 | 1 | 3 | 3 | 5 | 7 | 8 | 9 | 40.9% |
LULC | 2 | 1/3 | 1 | 2 | 3 | 5 | 5 | 7 | 22.5% |
L | 3 | 1/3 | 1/2 | 1 | 3 | 3 | 5 | 5 | 16.3% |
LD | 4 | 1/5 | 1/3 | 1/3 | 1 | 2 | 1 | 3 | 7.4% |
Sp | 5 | 1/7 | 1/5 | 1/3 | 1/2 | 1 | 2 | 1 | 5.1% |
DD | 6 | 1/8 | 1/5 | 1/5 | 1 | 1/2 | 1 | 1 | 4.2% |
S | 7 | 1/9 | 1/7 | 1/5 | 1/3 | 1 | 1 | 1 | 3.6% |
Thematic Layer | Normalized Weights | Classes | Rank | |
---|---|---|---|---|
1 | Precipitation | 40.9% | 716–749.9 | 5 |
750–811.1 | 5 | |||
811.2–877.5 | 7 | |||
877.6–934.7 | 8 | |||
934.8–1048 | 9 | |||
2 | LULC | 22.5% | Settlement | 7 |
Industrial zone | 1 | |||
Mining zone | 3 | |||
Agricultural zone | 7 | |||
Rice field | 9 | |||
Orchard | 5 | |||
Pastureland | 7 | |||
Forest | 9 | |||
Grassland | 7 | |||
Moor | 5 | |||
Sand dunes | 9 | |||
Sparse vegetation | 7 | |||
Wetland | 9 | |||
Water bodies | 9 | |||
3 | Lithology | 16.3% | Alluvion | 1 |
Andesitebasalt | 5 | |||
Wetland | 9 | |||
Limestone | 7 | |||
Sand | 7 | |||
Water body | 9 | |||
Volcanic sediment | 3 | |||
Conglomerate sandstone | 5 | |||
4 | Lineament density | 7.4% | 0–0.226 | 1 |
0.227–0.452 | 3 | |||
0.453–0.677 | 5 | |||
0.678–0.903 | 7 | |||
0.904–1.13 | 9 | |||
5 | Slope | 5.1% | 0–9.6 | 9 |
9.7–24 | 7 | |||
25–39 | 5 | |||
40–56 | 3 | |||
57–180 | 1 | |||
6 | Drainage density | 4.2% | 0–0.43 | 9 |
0.44–0.86 | 7 | |||
0.87–1.3 | 5 | |||
1.4–1.7 | 3 | |||
1.8–2.1 | 1 | |||
7 | Soil type | 3.6% | Brown forest soil | 7 |
Podzolic soil | 9 | |||
Colluvial soil | 5 | |||
Settlement | 7 | |||
Water bodies | 9 | |||
Coastal dunes | 5 | |||
Alluvial soil | 9 | |||
Floodplains | 1 | |||
No data | 1 | |||
Hydromorphic soil | 3 |
Groundwater Potential Categories | |
---|---|
1 | Poor |
2 | Moderate |
3 | High |
4 | Very high |
Groundwater Potential | Percentage Area Coverage (%) | Area (km2) |
---|---|---|
Poor | 3.78 | 68.41 |
Moderate | 38.82 | 702.38 |
High | 19.37 | 350.44 |
Very high | 30.01 | 387.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beden, N.; Soydan-Oksal, N.G.; Arıman, S.; Ahmadzai, H. Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes. Sustainability 2023, 15, 10964. https://doi.org/10.3390/su151410964
Beden N, Soydan-Oksal NG, Arıman S, Ahmadzai H. Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes. Sustainability. 2023; 15(14):10964. https://doi.org/10.3390/su151410964
Chicago/Turabian StyleBeden, Neslihan, Nazire Göksu Soydan-Oksal, Sema Arıman, and Hayatullah Ahmadzai. 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes" Sustainability 15, no. 14: 10964. https://doi.org/10.3390/su151410964
APA StyleBeden, N., Soydan-Oksal, N. G., Arıman, S., & Ahmadzai, H. (2023). Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes. Sustainability, 15(14), 10964. https://doi.org/10.3390/su151410964