Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis
Abstract
:1. Introduction
2. Literature Review
3. Methods
4. Data Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbass, R.A.; Kumar, P.; El-Gendy, A. An overview of monitoring and reduction strategies for health and climate change related emissions in the Middle East and North Africa region. Atmos. Environ. 2018, 175, 33–43. [Google Scholar] [CrossRef]
- Shahbaz, M.; Trabelsi, N.; Tiwari, A.K.; Abakah, E.J.A.; Jiao, Z. Relationship between green investments, energy markets, and stock markets in the aftermath of the global financial crisis. Energy Econ. 2021, 104, 105655. [Google Scholar] [CrossRef]
- Hak, T.; Janouskova, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indicat. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. The World Bank, Washington, D.C. 2022. Available online: https://databank.worldbank.org/source/worlddevelopment-indicators (accessed on 16 December 2022).
- Timmerberg, S.; Sanna, A.; Kaltschmitt, M.; Finkbeiner, M. Renewable electricity targets in selected MENA countries–Assessment of available resources, generation costs and GHG emissions. Energy Rep. 2019, 5, 1470–1487. [Google Scholar] [CrossRef]
- Cheng, Y.; Yao, X. Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity. Renew. Sustain. Energy Rev. 2021, 135, 110157. [Google Scholar] [CrossRef]
- Geels, F.W.; Schwanen, T.; Sorrell, S.; Jenkins, K.; Sovacool, B.K. Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Res. Soc. Sci. 2018, 40, 23–35. [Google Scholar] [CrossRef]
- Murphy, R. The emerging hyper carbon reality, technological and post-carbon utopias, and social innovation to low-carbon societies. Curr. Sociol. 2015, 63, 317–338. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of the North American Free Trade Agreement. In NBER Working Paper 3914; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Mahmood, H.; Furqan, M.; Hassan, M.S.; Rej, S. The Environmental Kuznets Curve (EKC) hypothesis in China: A review. Sustainability 2023, 15, 6110. [Google Scholar] [CrossRef]
- Bai, C.; Du, K.; Yu, Y.; Feng, C. Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis. Energy Econ. 2019, 81, 698–708. [Google Scholar] [CrossRef]
- Mo, J.Y. Do environmental policy and innovation improve carbon productivity? Evidence from the Korean Emission Trading Scheme. Energy Environ. 2023, 34, 445–462. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D. Three-dimensional decomposition models for carbon productivity. Energy 2012, 46, 179–187. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, K. Impact of environmental regulation and technical progress on industrial carbon productivity: An approach based on proxy measure. Sustainability 2016, 8, 819. [Google Scholar] [CrossRef] [Green Version]
- Bilal, A.; Li, X.; Zhu, N.; Sharma, R.; Jahanger, A. Green technology innovation, globalization, and CO2 emissions: Recent insights from the OBOR economies. Sustainability 2022, 14, 236. [Google Scholar] [CrossRef]
- Dauda, L.; Long, X.; Mehsah, C.; Salman, M. The Effects of Economic Growth and Innovation on CO2 Emissions in Different Regions. Environ. Sci. Pollut. Res. 2019, 26, 15028–15038. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhao, J.; Xi, X.; Zhang, Y. Evolution of regional low-carbon innovation systems with sustainable development: An empirical study with big-data. J. Clean. Prod. 2019, 209, 1545–1563. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Zhong, S. Does Green Innovation Suppress Carbon Emission Intensity? New Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 86722–86743. [Google Scholar] [CrossRef]
- Bockstael, N. Modelling economics and ecology: The importance of a spatial perspective. Am. J. Agric. Econ. 1996, 40, 1168–1180. [Google Scholar] [CrossRef]
- Maddison, D. Modelling sulphur emissions in Europe: A spatial econometric approach. Oxf. Econ. Pap. 2007, 59, 726–743. [Google Scholar] [CrossRef]
- Anselin, L.; Le Gallo, J.; Jayet, H. Spatial panel econometrics. In The Econometrics of Panel Data; Matyas, L., Sevestre, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 625–660. [Google Scholar] [CrossRef]
- Cai, A.; Zheng, S.; Cai, L.; Yang, H.; Comite, U. How Does Green Technology Innovation Affect Carbon Emissions? A Spatial Econometric Analysis of China’s Provincial Panel Data. Front. Environ. Sci. 2021, 9, 630. [Google Scholar] [CrossRef]
- Sheng, Y.; Miao, Y.; Song, J.; Shen, H. The Moderating Effect of Innovation on the Relationship between Urbanization and CO2 Emissions: Evidence from Three Major Urban Agglomerations in China. Sustainability 2019, 11, 1633. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green Technology Innovation and CO2 Emission in China: Evidence from a Spatial-Temporal Analysis and a Nonlinear Spatial Durbin Model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Liang, H.; Lin, S.; Wang, J. Impact of Technological Innovation on Carbon Emissions in China’s Logistics Industry: Based on the Rebound Effect. J. Clean. Prod. 2022, 377, 134371. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X. Spatial and Nonlinear Effects of New-Type Urbanization and Technological Innovation on Industrial Carbon Dioxide Emission in Yangtze River Delta. Environ. Sci. Pollut. Res. 2022, 30, 29243–29257. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, C.; Li, S.; Usman, A. Energy Efficiency and Green Innovation and its Asymmetric Impact on CO2 Emission in China: A New Perspective. Environ. Sci. Pollut. Res. 2022, 29, 47810–47817. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Sun, H.; Lau, C.; Apergis, N.; Zhang, K. Role of Financial Development, Green Technology Innovation, and Macroeconomic Dynamics toward Carbon Emissions in China: Analysis Based on Bootstrap ARDL Approach. Front. Environ. Sci. 2022, 10, 407. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Vu, D.B.; Nguyen, T.H.Y.; Pham, C.D.; Huynh, T.N. Economic growth, financial development, transportation capacity, and environmental degradation: Empirical evidence from Vietnam. J. Asian Financ. Econ. Bus. 2021, 8, 93–104. [Google Scholar]
- Liu, X.; Chang, S.; Bae, J. Nonlinear Analysis of Technological Innovation and Electricity Generation on Carbon Dioxide Emissions in China. J. Clean. Prod. 2022, 343, 131021. [Google Scholar] [CrossRef]
- Ulucak, R. Analyzing Energy Innovation-Emissions Nexus in China: A Novel Dynamic Simulation Method. Energy 2022, 244, 123010. [Google Scholar]
- Jiemin, H.; Chen, W. The Impact of Private Sector Energy Investment, Innovation and Energy Consumption on China’s Carbon Emissions. Renew. Energy 2022, 195, 1291–1299. [Google Scholar] [CrossRef]
- Ma, Q.; Murshed, M.; Khan, Z. The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China. Energy Policy 2021, 155, 112345. [Google Scholar] [CrossRef]
- Kuang, H.; Akmal, Z.; Li, F. Measuring the Effects of Green Technology Innovations and Renewable Energy Investment for Reducing Carbon Emissions in China. Renew. Energy 2022, 197, 1–10. [Google Scholar] [CrossRef]
- Zhu, X. Have Carbon Emissions been Reduced Due to the Upgrading of Industrial Structure? Analysis of the Mediating Effect Based on Technological Innovation. Environ. Sci. Pollut. Res. 2022, 29, 54890–54901. [Google Scholar] [CrossRef]
- Gao, P.; Wang, Y.; Zou, Y.; Su, X.; Che, X.; Yang, X. Green Technology Innovation and Carbon Emissions Nexus in China: Does Industrial Structure Upgrading Matter. Front. Psychol. 2022, 13, 951172. [Google Scholar] [CrossRef]
- Gu, J. Sharing Economy, Technological Innovation, and Carbon Emissions: Evidence from Chinese Cities. J. Innov. Knowl. 2022, 7, 100228. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, X.; Zhang, M.; Hu, C. Innovation Incentives and Urban Carbon Dioxide Emissions: A Quasi-Natural Experiment based on Fast-Tracking Green Patent Applications in China. J. Clean. Prod. 2022, 382, 135444. [Google Scholar] [CrossRef]
- You, X.; Chen, Z. Interaction and Mediation Effects of Economic Growth and Innovation Performance on Carbon Emissions: Insights from 282 Chinese Cities. Sci. Total Environ. 2022, 831, 154910. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, Y.; Zhang, C. The Impact of Population Factors and Low-Carbon Innovation on Carbon Dioxide Emissions: A Chinese City Perspective. Environ. Sci. Pollut. Res. 2022, 29, 72853–72870. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. Green Technology Innovations, Urban Innovation Environment and CO2 Emission Reduction in China: Fresh Evidence from a Partially Linear Functional-coefficient Panel Model. Technol. Forecast. Soc. Chang. 2022, 176, 121434. [Google Scholar] [CrossRef]
- Dong, X.; Zhong, Y.; Liu, M.; Xiao, W.; Qin, C. Research on the Impacts of Dual Environmental Regulation on Regional Carbon Emissions under the Goal of Carbon Neutrality-the Intermediary Role of Green Technology Innovation. Front. Environ. Sci. 2022, 10, 1709. [Google Scholar] [CrossRef]
- Li, W.; Elheddad, M.; Doytch, N. The Impact of Innovation on Environmental Quality: Evidence for the Non-Linear Relationship of Patents and CO2 Emissions in China. J. Environ. Manag. 2021, 292, 112781. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Yu, S.; Li, M.; Cheng, Y. Coupling Coordination and Spatiotemporal Evolution between Carbon Emissions, Industrial Structure, and Regional Innovation of Countries in Shandong Province. Sustainability 2022, 14, 7484. [Google Scholar] [CrossRef]
- Yuan, B.; Li, C.; Yin, H.; Zeng, M. Green Innovation and China’s CO2 Emissions-The Moderating Effect of Institutional Quality. J. Environ. Plan. Manag. 2022, 65, 877–906. [Google Scholar] [CrossRef]
- Zheng, R.; Cheng, Y.; Liu, H.; Chen, W.; Chen, X.; Wang, Y. The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation. Int. J. Environ. Res. Public Health 2022, 19, 9111. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, T.; Oladipupo, S.; Adeshola, I.; Rjoub, H. Walvet Analysis of Impact of Renewable Energy Consumption and Technological Innovation on CO2 Emissions: Evidence from Portugal. Environ. Sci. Pollut. Res. 2022, 29, 23887–23904. [Google Scholar] [CrossRef]
- Xin, D.; Ahmad, M.; Lei, H.; Khattak, S. Do Innovation in Environmental-Related Technologies Asymmetrically Affect Carbon Dioxide Emissions in the US? Technol. Soc. 2021, 67, 101761. [Google Scholar] [CrossRef]
- Su, C.; Pang, D.; Tao, R.; Shao, X.; Umar, M. Renewable Energy and Technological Innovation: Which One is the Winner in Promoting Net-Zero Emissions? Technol. Forecast. Soc. Chang. 2022, 182, 121798. [Google Scholar] [CrossRef]
- Adebayo, T.; Adedoyin, F.; Kirikkaleli, D. Toward a Sustainable Environment: Nexus between Consumption-based Carbon Emissions, Economic Growth, and Renewable Energy and Technological Innovation in Brazil. Environ. Sci. Pollut. Res. 2021, 28, 52272–52282. [Google Scholar] [CrossRef]
- Jordaan, S.; Romo-Rabago, E.; McLeary, R.; Reidy, L.; Nazari, J.; Herremans, I. The Role of Energy Technology Innovation in Reducing Greenhouse Gas Emissions: A Case Study of Canada. Renew. Sustain. Energy Rev. 2017, 78, 1397–1409. [Google Scholar] [CrossRef]
- Jiang, Q.; Khattak, S. Modeling the Impact of Innovation in Marine Energy Generation-related Technologies on Carbon Dioxide Emissions in South Korea. J. Environ. Manag. 2023, 326, 116818. [Google Scholar] [CrossRef]
- Raihan, A.; Begam, R.; Said, M.; Pereira, J. Relationship between Economic Growth, Renewable Energy Use, Technological Innovation, and Carbon Emission toward Achieving Malaysia’s Paris Agreement. Environ. Syst. Decis. 2022, 42, 586–607. [Google Scholar] [CrossRef]
- Udeagha, M.; Ngepah, N. The Asymmetric Effect of Technological Innovation on CO2 Emissions in South Africa: New Evidence from the QARDL Approach. Front. Environ. Sci. 2022, 10, 985719. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do Green Technology Innovations Contribute to Carbon Dioxide Emission Reduction? Empirical Evidence from Patent Data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Yu, D.; Soh, W.; Noordin, A.; Yahya, D.H.; Latif, B. The Impact of Innovation on CO2 Emissions: The Threshold Effect of Financial Development. Front. Environ. Sci. 2022, 10, 980267. [Google Scholar] [CrossRef]
- Liobikienė, G.; Butkus, M. Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions. Renew. Energy 2019, 132, 1310–1322. [Google Scholar] [CrossRef]
- Saqib, N. Asymmetric linkages between renewable energy, technological innovation, and carbon-dioxide emission in developed economies: Non-linear ARDL analysis. Environ. Sci. Pollut. Res. 2022, 29, 60744–60758. [Google Scholar] [CrossRef]
- Awan, A.; Alnour, M.; Jahanger, A.; Onwe, J. Do Technological Innovation and Urbanization Mitigate Carbon Dioxide Emissions from the Transport Sector? Technol. Soc. 2022, 71, 102128. [Google Scholar] [CrossRef]
- Vitenu-Sackey, P.; Acheampong, T. Impact of Economic Policy Uncertainty, Energy Intensity, Technological Innovation and R&D on CO2 Emissions: Evidence from a Panel of 18 Developed Economies. Environ. Sci. Pollut. Res. 2022, 29, 87426–87445. [Google Scholar]
- Rahman, M.; Alam, K.; Velayutham, E. Reduction of CO2 Emissions: The Role of Renewable Energy, Technological Innovation and Export Quality. Energy Rep. 2022, 8, 2793–2805. [Google Scholar] [CrossRef]
- Abid, A.; Mehmood, U.; Haq, Z.; Tariq, S. The Effect of Technological Innovation, FDI, and Financial Development on CO2 Emission: Evidence from the G8 Countries. Environ. Sci. Pollut. Res. 2022, 29, 11654–11662. [Google Scholar] [CrossRef]
- Rehman, E.; Rehman, S.; Mumtaz, A.; Jianglin, Z.; Shahiman, M. The Influencing Factors of CO2 Emissions and the Adoption of Eco-Innovation across G-7 Economies: A Novel Hybrid Mathematical and Statistical Approach. Front. Environ. Sci. 2022, 10, 98892. [Google Scholar] [CrossRef]
- Shah, M.; Foglia, M.; Shahzad, U.; Fareed, Z. Green Innovation, Resource Price and Carbon Emissions during the COVID-19 Times: New Findings from Wavelet Local Multiple Correlation Analysis. Technol. Forecast. Soc. Chang. 2022, 184, 121957. [Google Scholar] [CrossRef]
- Ostadzad, A. Innovation and Carbon Emissions: Fixed-Effects Panel Threshold Model Estimation for Renewable Energy. Renew. Energy 2022, 198, 602–617. [Google Scholar] [CrossRef]
- Qureshi, M.; Ahsan, T.; Gull, A. Does Country-Level Eco-Innovation Help Reduce Corporate CO2 Emissions? Evidence from Europe. J. Clean. Prod. 2022, 379, 134732. [Google Scholar] [CrossRef]
- Khurshid, A.; Rauf, A.; Qayyum, S.; Calin, A.; Duan, W. Green Innovation and Carbon Emissions: The Role of Carbon Pricing and Environmental Policies in Attaining Sustainable Development Targets of Carbon Mitigation—Evidence from Central-Eastern Europe. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Ahmed, N.; Areche, F.; Nieto, D.; Borda, R.; Gonzales, B.; Senkus, P.; Skrzypek, A. Nexus between Cyclical Innovation in Green Technologies and CO2 Emissions in Nordic Countries: Consent toward Environment Sustainability. Sustainability 2022, 14, 11768. [Google Scholar] [CrossRef]
- Ma, X.; Arif, A.; Kaur, P.; Jain, V.; Refiana, S.; Mughal, N. Revealing the Effectiveness of Technological Innovation Shocks on CO2 Emissions in BRICS: Emerging Challenges and Implications. Environ. Sci. Pollut. Res. 2022, 29, 47373–47381. [Google Scholar] [CrossRef]
- Abbas, S.; Gui, P.; Chen, A.; Ali, N. The Effect of Renewable Energy Development, Market Regulation, and Environmental Innovation on CO2 Emissions in BRICS Countries. Environ. Sci. Pollut. Res. 2022, 29, 59483–59501. [Google Scholar] [CrossRef]
- Khan, H.; Weili, L.; Khan, I. Examining the Effect of Information and Communication Technology, Innovations, and Renewable Consumption on CO2 Emission: Evidence from BRICS Countries. Environ. Sci. Pollut. Res. 2023, 29, 47696–47712. [Google Scholar] [CrossRef]
- Zhang, H. Technology Innovation, Economic Growth, and Carbon Emissions in the Context of Carbon Neutrality: Evidence from BRICS. Sustainability 2021, 13, 11138. [Google Scholar] [CrossRef]
- Jiang, Q.; Rahman, Z.; Zhang, X.; Islam, M. An Assessment of the Effect of Green Innovation, Income, and Energy Use on Consumption-based CO2 Emissions: Empirical Evidence from Emerging Nations BRICS. J. Clean. Prod. 2022, 365, 132636. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, H.; Wang, Y.; Duan, Y. International Trade Diversification, Green Innovation, and Consumption-based Carbon Emissions: The Role of Renewable Energy for Sustainable Development in BRICST Countries. Renew. Energy 2022, 198, 1243–1253. [Google Scholar] [CrossRef]
- Jiang, Y.; Khan, H. The relationship between renewable energy consumption, technological innovations, and carbon dioxide emission: Evidence from two-step system GMM. Environ. Sci. Pollut. Res. 2022, 30, 4187–4202. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Raza, A.; Si, R.; Huo, X. International Trade, Chinese Foreign Direct Investment and Green Innovation Impact on Consumption-based CO2 Emissions: Empirical Estimation Focusing on BRI Countries. Environ. Sci. Pollut. Res. 2022, 29, 89014–89028. [Google Scholar] [CrossRef] [PubMed]
- Mensah, C.; Long, X.; Dauda, L.; Boamah, K.; Salman, M. Innovation and CO2 Emissions: The Complimentary Role of Eco-Patent and Trademark in the OECD Economies. Environ. Sci. Pollut. Res. 2019, 26, 22878–22891. [Google Scholar] [CrossRef]
- Yildirim, D.; Esen, O.; Yildirim, S. The Nonlinear Effects of Environmental Innovation on Energy Sector-based Carbon Dioxide Emissions in OECD Countries. Technol. Forecast. Soc. Chang. 2022, 182, 121800. [Google Scholar] [CrossRef]
- Khattak, S.; Ahmad, M. The Cyclical Impact of Innovation in Green and Sustainable Technologies on Carbon Dioxide Emissions in OECD Economies. Environ. Sci. Pollut. Res. 2022, 29, 33809–33825. [Google Scholar] [CrossRef]
- Alvarez-Herranz, A.; Balsalobre, D.; Cantos, J.; Shahbaz, M. Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries. Energy Policy 2017, 100, 90–100. [Google Scholar] [CrossRef]
- Mensah, C.; Long, X.; Boamah, K.; Bediako, I.; Dauda, L.; Salman, M. The Effect of Innovation on CO2 Emissions of OECD Countries from 1990-2014. Environ. Sci. Pollut. Res. 2018, 25, 29678–29698. [Google Scholar] [CrossRef]
- Ganda, F. The Impact of Innovation and Technology Investments on Carbon Emissions in Selected Organization for Economic Co-Operation and Development Countries. J. Clean. Prod. 2019, 217, 469–483. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Jahanger, A.; Usman, M.; Ning, Y. The Impact of Green Investment, Technological Innovation and Globalization on CO2 Emissions: Evidence from MINT Countries. Front. Environ. Sci. 2022, 10, 156. [Google Scholar] [CrossRef]
- Du, L.; Jiang, H.; Adebayo, T.S.; Awosusi, A.A.; Razzaq, A. Asymmetric effects of high-tech industry and renewable energy on consumption-based carbon emissions in MINT countries. Renew. Energy 2022, 196, 1269–1280. [Google Scholar] [CrossRef]
- Chhabra, M.; Giri, A.; Kumar, A. Do Technological Innovations and Trade Openness Reduce CO2 Emissions? Evidence from Selected Middle-Income Countries. Environ. Sci. Pollut. Res. 2022, 29, 65723–65738. [Google Scholar] [CrossRef]
- Obovisa, E.; Chen, H.; Mensah, I. The Impact of Green Technological Innovation and Institutional Quality on CO2 Emissions in African Countries. Technol. Forecast. Soc. Chang. 2022, 180, 121670. [Google Scholar] [CrossRef]
- Dauda, L.; Long, X.; Mensah, C.; Salman, M.; Boumah, K.; Ampon-Wireko, S.; Dodbe, C. Innovation, Trade Openness, and CO2 Emissions in Selected Countries in Africa. J. Clean. Prod. 2021, 281, 125143. [Google Scholar] [CrossRef]
- Habiba, U.; Xinbang, C.; Anwar, A. Do Green Technology Innovations, Financial Development, and Renewable Energy Use Help to Curb Carbon Emissions? Renew. Energy 2022, 193, 1082–1093. [Google Scholar] [CrossRef]
- Hafeez, M.; Rehman, S.; Faisal, C.; Yang, J.; Ullah, S.; Kaium, M.; Malik, M. Financial Efficiency and Its Impact on Renewable Energy Demand and CO2 Emissions: Do Eco-Innovations Matter for Highly Polluted Asian Economies? Sustainability 2022, 14, 10950. [Google Scholar] [CrossRef]
- Amin, M.; Zhou, S.; Safi, A. The Nexus between Consumption-based Carbon Emissions, Trade, Eco-Innovation, and Energy Productivity: Empirical Evidence from N-11 Economies. Environ. Sci. Pollut. Res. 2022, 29, 39239–39248. [Google Scholar] [CrossRef] [PubMed]
- Yunzhao, L. Modelling the Role of Eco-Innovation, Renewable Energy and Environmental Taxes in Carbon Emissions Reduction in E-7 Economies: Evidence from Advance Panel Estimations. Renew. Energy 2022, 190, 309–318. [Google Scholar] [CrossRef]
- Lingyan, M.; Zhao, Z.; Malik, H.; Razzaq, A.; An, H.; Hassan, M. Asymmetric Impact of Fiscal Decentralization and Environmental Innovation on Carbon Emissions: Evidence from Highly Decentralized Countries. Energy Environ. 2022, 33, 752–782. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, P. Do Renewable Energy Consumption and Green Innovation Help Curb CO2 Emissions? Evidence from E7 Countries. Environ. Sci. Pollut. Res. 2022, 30, 21115–21131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Cole, M.; Sun, J.; Wang, S. Innovation, Carbon Emissions and the Pollution Haven Hypothesis: Climate Capitalism and Global Re-Interpretations. J. Environ. Manag. 2022, 307, 114465. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yi, L.; Du, K.; Yang, Z. Impacts of Low-Carbon Innovation and its Heterogeneous Components on CO2 Emissions. Sustainability 2017, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Wenlong, Z.; Tien, N.; Sibghatullah, A.; Asih, D.; Soelton, M.; Ramli, Y. Impact of Energy Efficiency, Technology Innovation, Institutional Quality, and Trade Openness on Greenhouse Gas Emissions in Ten Asian Economies. Environ. Sci. Pollut. Res. 2023, 30, 43024–43039. [Google Scholar] [CrossRef]
- Luo, R.; Ullah, S.; Ali, K. Pathway towards Sustainability in Selected Asian Countries: Influence of Green Investment, Technology Innovations, and Economic Growth on CO2 Emissions. Sustainability 2021, 13, 12873. [Google Scholar] [CrossRef]
- Hao, W.; Rasul, F.; Bhatti, Z.; Hassan, M.S.; Ahmed, I.; Asghar, N. A technological innovation and economic progress enhancement: An assessment of sustainable economic and environmental management. Environ. Sci. Pollut. Res. 2021, 28, 28585–28597. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, K. Effects of Corruption, Technological Innovation, Globalization, and Renewable Energy on Carbon Emissions in Asian Countries. Util. Policy 2022, 79, 101448. [Google Scholar] [CrossRef]
- Naz, A.; Aslam, M. Green innovation, globalization, financial development, and CO2 emissions: The role of governance as a moderator in South Asian countries. Environ. Sci. Pollut. Res. 2023, 30, 57358–57377. [Google Scholar] [CrossRef]
- Zhong, M.; Xia, J.; He, R. Spatial Effects of Analysis of Heterogeneous Green Technology Innovations on Pollution Emission Reduction: Evidence from China’s Power Industry. Environ. Sci. Pollut. Res. 2022, 29, 67336–67352. [Google Scholar] [CrossRef]
- Salehi, M.; Fahimifard, S.H.; Zimon, G.; Bujak, A.; Sadowski, A. The Effect of CO2 Gas Emissions on the Market Value, Price and Shares Returns. Energies 2022, 15, 9221. [Google Scholar] [CrossRef]
- Debarsy, N.; Ertur, C. Testing for spatial autocorrelation in a fixed–effects panel data model. Reg. Sci. Urban Econ. 2010, 40, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Elhorst, J.P. Matlab software for spatial panels. Int. Reg. Sci. Rev. 2012, 35, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kelejian, H.; Prucha, I. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Econom. 2010, 157, 53–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhorst, J.P. Spatial panel data models. In Handbook of Applied Spatial Analysis; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010; pp. 377–407. [Google Scholar] [CrossRef]
- Belotti, F.; Hughes, G.; Mortari, A.P. Spatial panel-data models using Stata. Stata J. 2017, 17, 139–180. [Google Scholar] [CrossRef] [Green Version]
Variable | Variable Construction | Sample Period | Data Source |
---|---|---|---|
CO2it | Natural logarithm of CO2 per capita. CO2 emissions per capita are measured as CO2 emissions in metric tons divided by the total population. | 2000–2019 | World Bank [4] |
GDPCit | Natural logarithm of GDP per capita. GDP per capita is measured as GDP in constant 2015 US dollars divided by the total population. | 2000–2019 | World Bank [4] |
GDPCit2 | Square of the GDPCit. | 2000–2019 | World Bank [4] |
PATit | The total number of applied patents by residents and nonresidents in all categories is in the thousands. | 2000–2019 | World Bank [4] |
IVAit | The percentage of the total industrial value added, including construction (outputs minus intermediate inputs), in the total GDP. | 2000–2019 | World Bank [4] |
URBit | The percentage of the urban population in the total population. | 2000–2019 | World Bank [4] |
Variable | GDPCit | GDPCit2 | PATit | IVAit | URBit |
---|---|---|---|---|---|
GDPCit | - | ||||
GDPCit2 | 3.18 | - | |||
PATit | 1.02 | 1.01 | - | ||
IVAit | 1.06 | 1.02 | 1.00 | - | |
URBit | 3.16 | 1.02 | 1.00 | 1.00 | - |
Variable | Pooled Regression | FE-Country | FE-Time | FE-Both |
---|---|---|---|---|
GDPCit | 0.5179 (0.168) | 3.7187 (0.000) | 0.4007 (0.298) | 3.5906 (0.000) |
GDPCit2 | 0.0076 (0.704) | −0.1672 (0.000) | 0.0130 (0.524) | −0.1599 (0.000) |
PATit | −0.0080 (0.285) | 0.0039 (0.344) | 0.0039 (0.614) | 0.0068 (0.100) |
IVAit | 0.0035 (0.004) | −0.0021 (0.000) | 0.0041 (0.001) | −0.0019 (0.000) |
URBit | 0.0170 (0.000) | −0.0044 (0.062) | 0.0183 (0.000) | 0.0064 (0.060) |
Diagnostic tests | ||||
LM Spatial Lag | 797.350 (0.000) | 401.011 (0.000) | 780.669 (0.000) | 374.212 (0.000) |
Robust LM Spatial Lag | 21.458 (0.000) | 90.634 (0.000) | 27.322 (0.000) | 93.808 (0.000) |
LM Spatial Error | 808.140 (0.000) | 321.346 (0.000) | 787.886 (0.000) | 293.192 (0.000) |
Robust LM Spatial Error | 32.249 (0.000) | 10.969 (0.001) | 34.539 (0.000) | 12.789 (0.000) |
0.1436 | 0.0105 | 0.1485 | 0.0099 | |
R2 | 0.8862 | 0.9921 | 0.8890 | 0.9929 |
LR test | 905.61 (0.000) | 8.61 (0.979) | 944.41 (0.000) | |
No. of Observations | 340 | 340 | 340 | 340 |
SDM | SDM | SAR | SAR | |
---|---|---|---|---|
FE | RE | FE | RE | |
Parameter (p-Value) | Parameter (p-Value) | Parameter (p-Value) | Parameter (p-Value) | |
Coefficient Estimates | ||||
GDPCit | 3.4577 (0.000) | 3.3227 (0.000) | 3.4693 (0.000) | 3.6977 (0.000) |
GDPCit2 | −0.1524 (0.000) | −0.1446 (0.000) | −0.1545 (0.000) | −0.1661 (0.000) |
PATit | 0.0086 (0.060) | 0.0054 (0.183) | 0.0082 (0.031) | 0.0045 (0.267) |
IVAit | −0.1836 (0.000) | −0.1249 (0.002) | −0.1663 (0.000) | −0.1941 (0.000) |
URBit | 0.3942 (0.282) | 0.8219 (0.002) | 0.5689 (0.066) | 0.4135 (0.069) |
Direct Estimates | ||||
GDPCit | 3.4955 (0.000) | 3.3593 (0.000) | 3.5057 (0.000) | 3.7127 (0.000) |
GDPCit2 | −0.1549 (0.000) | −0.1467 (0.000) | −0.1563 (0.000) | −0.1669 (0.000) |
PATit | 0.0083 (0.035) | 0.0071 (0.067) | 0.0087 (0.019) | 0.0049 (0.205) |
IVAit | 0.1815 (0.000) | 0.1359 (0.000) | 0.1678 (0.000) | 0.1947 (0.000) |
URBit | 0.4773 (0.144) | 0.8513 (0.001) | 0.5677 (0.058) | 0.4212 (0.050) |
Indirect Estimates | ||||
GDPCit | −0.5894 (0.213) | −0.7484 (0.004) | −0.8371 (0.010) | −0.3301 (0.317) |
GDPCit2 | 0.0420 (0.047) | 0.0380 (0.013) | 0.0373 (0.011) | 0.0148 (0.319) |
PATit | 0.0267 (0.564) | −0.0391 (0.042) | −0.0213 (0.101) | −0.0477 (0.712) |
IVAit | −0.0551 (0.798) | 0.3469 (0.001) | 0.3941 (0.023) | 0.1612 (0.360) |
URBit | −3.2234 (0.301) | −1.0494 (0.031) | −1.3488 (0.123) | −3.4988 (0.444) |
Total Estimates | ||||
GDPCit | 2.9061 (0.000) | 2.6109 (0.000) | 2.6686 (0.000) | 3.3827 (0.000) |
GDPCit2 | −0.1129 (0.000) | −0.1087 (0.000) | −0.1190 (0.000) | −0.1522 (0.000) |
PATit | 0.0349 (0.459) | −0.0320 (0.099) | −0.0126 (0.021) | −0.0428 (0.296) |
IVAit | −0.2366 (0.303) | 0.4828 (0.056) | 0.5619 (0.000) | 0.1785 (0.000) |
URBit | −2.7461 (0.395) | −0.1981 (0.651) | −0.7811 (0.726) | −3.0776 (0.633) |
Weights | ||||
W × GDPCit | 0.4771 (0.200) | 0.1951 (0.332) | ||
W × PATit | 0.0337 (0.565) | −0.0503 (0.039) | ||
W × IVAit | −0.1384 (0.673) | 0.4009 (0.004) | ||
W × URBit | −4.1771 (0.308) | −1.0745 (0.059) | ||
W × CO2it | −0.3819 (0.077) | −0.3637 (0.037) | −0.3294 (0.026) | −0.1107 (0.272) |
Diagnostic tests | ||||
R2 | 0.8723 | 0.8749 | 0.8673 | 0.8159 |
0.0083 (0.000) | 0.0093 (0.000) | 0.0083 (0.000) | 0.0097 (0.000) | |
Spatial Lag-Wald Test | 47.96 (0.000) | 42.09 (0.000) | ||
Spatial Error-Wald Test | 41.65 (0.000) | 31.37 (0.000) | ||
Spatial Lag-LR Test | 45.36 (0.000) | 39.28 (0.000) | ||
Spatial Error-LR Test | 51.23 (0.000) | 40.14 (0.000) | ||
Hausman Test | 9.01 (0.531) | 3.89 (0.761) | ||
No. of Observations | 340 | 340 | 340 | 340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, H.; Furqan, M.; Saqib, N.; Adow, A.H.; Abbas, M. Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis. Sustainability 2023, 15, 10729. https://doi.org/10.3390/su151310729
Mahmood H, Furqan M, Saqib N, Adow AH, Abbas M. Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis. Sustainability. 2023; 15(13):10729. https://doi.org/10.3390/su151310729
Chicago/Turabian StyleMahmood, Haider, Maham Furqan, Najia Saqib, Anass Hamadelneel Adow, and Muzaffar Abbas. 2023. "Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis" Sustainability 15, no. 13: 10729. https://doi.org/10.3390/su151310729
APA StyleMahmood, H., Furqan, M., Saqib, N., Adow, A. H., & Abbas, M. (2023). Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis. Sustainability, 15(13), 10729. https://doi.org/10.3390/su151310729