Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis
Abstract
1. Introduction
2. Literature Review
3. Methods
4. Data Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbass, R.A.; Kumar, P.; El-Gendy, A. An overview of monitoring and reduction strategies for health and climate change related emissions in the Middle East and North Africa region. Atmos. Environ. 2018, 175, 33–43. [Google Scholar] [CrossRef]
- Shahbaz, M.; Trabelsi, N.; Tiwari, A.K.; Abakah, E.J.A.; Jiao, Z. Relationship between green investments, energy markets, and stock markets in the aftermath of the global financial crisis. Energy Econ. 2021, 104, 105655. [Google Scholar] [CrossRef]
- Hak, T.; Janouskova, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indicat. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. The World Bank, Washington, D.C. 2022. Available online: https://databank.worldbank.org/source/worlddevelopment-indicators (accessed on 16 December 2022).
- Timmerberg, S.; Sanna, A.; Kaltschmitt, M.; Finkbeiner, M. Renewable electricity targets in selected MENA countries–Assessment of available resources, generation costs and GHG emissions. Energy Rep. 2019, 5, 1470–1487. [Google Scholar] [CrossRef]
- Cheng, Y.; Yao, X. Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity. Renew. Sustain. Energy Rev. 2021, 135, 110157. [Google Scholar] [CrossRef]
- Geels, F.W.; Schwanen, T.; Sorrell, S.; Jenkins, K.; Sovacool, B.K. Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Res. Soc. Sci. 2018, 40, 23–35. [Google Scholar] [CrossRef]
- Murphy, R. The emerging hyper carbon reality, technological and post-carbon utopias, and social innovation to low-carbon societies. Curr. Sociol. 2015, 63, 317–338. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of the North American Free Trade Agreement. In NBER Working Paper 3914; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Mahmood, H.; Furqan, M.; Hassan, M.S.; Rej, S. The Environmental Kuznets Curve (EKC) hypothesis in China: A review. Sustainability 2023, 15, 6110. [Google Scholar] [CrossRef]
- Bai, C.; Du, K.; Yu, Y.; Feng, C. Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis. Energy Econ. 2019, 81, 698–708. [Google Scholar] [CrossRef]
- Mo, J.Y. Do environmental policy and innovation improve carbon productivity? Evidence from the Korean Emission Trading Scheme. Energy Environ. 2023, 34, 445–462. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D. Three-dimensional decomposition models for carbon productivity. Energy 2012, 46, 179–187. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, K. Impact of environmental regulation and technical progress on industrial carbon productivity: An approach based on proxy measure. Sustainability 2016, 8, 819. [Google Scholar] [CrossRef]
- Bilal, A.; Li, X.; Zhu, N.; Sharma, R.; Jahanger, A. Green technology innovation, globalization, and CO2 emissions: Recent insights from the OBOR economies. Sustainability 2022, 14, 236. [Google Scholar] [CrossRef]
- Dauda, L.; Long, X.; Mehsah, C.; Salman, M. The Effects of Economic Growth and Innovation on CO2 Emissions in Different Regions. Environ. Sci. Pollut. Res. 2019, 26, 15028–15038. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhao, J.; Xi, X.; Zhang, Y. Evolution of regional low-carbon innovation systems with sustainable development: An empirical study with big-data. J. Clean. Prod. 2019, 209, 1545–1563. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Zhong, S. Does Green Innovation Suppress Carbon Emission Intensity? New Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 86722–86743. [Google Scholar] [CrossRef]
- Bockstael, N. Modelling economics and ecology: The importance of a spatial perspective. Am. J. Agric. Econ. 1996, 40, 1168–1180. [Google Scholar] [CrossRef]
- Maddison, D. Modelling sulphur emissions in Europe: A spatial econometric approach. Oxf. Econ. Pap. 2007, 59, 726–743. [Google Scholar] [CrossRef]
- Anselin, L.; Le Gallo, J.; Jayet, H. Spatial panel econometrics. In The Econometrics of Panel Data; Matyas, L., Sevestre, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 625–660. [Google Scholar] [CrossRef]
- Cai, A.; Zheng, S.; Cai, L.; Yang, H.; Comite, U. How Does Green Technology Innovation Affect Carbon Emissions? A Spatial Econometric Analysis of China’s Provincial Panel Data. Front. Environ. Sci. 2021, 9, 630. [Google Scholar] [CrossRef]
- Sheng, Y.; Miao, Y.; Song, J.; Shen, H. The Moderating Effect of Innovation on the Relationship between Urbanization and CO2 Emissions: Evidence from Three Major Urban Agglomerations in China. Sustainability 2019, 11, 1633. [Google Scholar] [CrossRef]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green Technology Innovation and CO2 Emission in China: Evidence from a Spatial-Temporal Analysis and a Nonlinear Spatial Durbin Model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Liang, H.; Lin, S.; Wang, J. Impact of Technological Innovation on Carbon Emissions in China’s Logistics Industry: Based on the Rebound Effect. J. Clean. Prod. 2022, 377, 134371. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X. Spatial and Nonlinear Effects of New-Type Urbanization and Technological Innovation on Industrial Carbon Dioxide Emission in Yangtze River Delta. Environ. Sci. Pollut. Res. 2022, 30, 29243–29257. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Li, S.; Usman, A. Energy Efficiency and Green Innovation and its Asymmetric Impact on CO2 Emission in China: A New Perspective. Environ. Sci. Pollut. Res. 2022, 29, 47810–47817. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Sun, H.; Lau, C.; Apergis, N.; Zhang, K. Role of Financial Development, Green Technology Innovation, and Macroeconomic Dynamics toward Carbon Emissions in China: Analysis Based on Bootstrap ARDL Approach. Front. Environ. Sci. 2022, 10, 407. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Vu, D.B.; Nguyen, T.H.Y.; Pham, C.D.; Huynh, T.N. Economic growth, financial development, transportation capacity, and environmental degradation: Empirical evidence from Vietnam. J. Asian Financ. Econ. Bus. 2021, 8, 93–104. [Google Scholar]
- Liu, X.; Chang, S.; Bae, J. Nonlinear Analysis of Technological Innovation and Electricity Generation on Carbon Dioxide Emissions in China. J. Clean. Prod. 2022, 343, 131021. [Google Scholar] [CrossRef]
- Ulucak, R. Analyzing Energy Innovation-Emissions Nexus in China: A Novel Dynamic Simulation Method. Energy 2022, 244, 123010. [Google Scholar]
- Jiemin, H.; Chen, W. The Impact of Private Sector Energy Investment, Innovation and Energy Consumption on China’s Carbon Emissions. Renew. Energy 2022, 195, 1291–1299. [Google Scholar] [CrossRef]
- Ma, Q.; Murshed, M.; Khan, Z. The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China. Energy Policy 2021, 155, 112345. [Google Scholar] [CrossRef]
- Kuang, H.; Akmal, Z.; Li, F. Measuring the Effects of Green Technology Innovations and Renewable Energy Investment for Reducing Carbon Emissions in China. Renew. Energy 2022, 197, 1–10. [Google Scholar] [CrossRef]
- Zhu, X. Have Carbon Emissions been Reduced Due to the Upgrading of Industrial Structure? Analysis of the Mediating Effect Based on Technological Innovation. Environ. Sci. Pollut. Res. 2022, 29, 54890–54901. [Google Scholar] [CrossRef]
- Gao, P.; Wang, Y.; Zou, Y.; Su, X.; Che, X.; Yang, X. Green Technology Innovation and Carbon Emissions Nexus in China: Does Industrial Structure Upgrading Matter. Front. Psychol. 2022, 13, 951172. [Google Scholar] [CrossRef]
- Gu, J. Sharing Economy, Technological Innovation, and Carbon Emissions: Evidence from Chinese Cities. J. Innov. Knowl. 2022, 7, 100228. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, X.; Zhang, M.; Hu, C. Innovation Incentives and Urban Carbon Dioxide Emissions: A Quasi-Natural Experiment based on Fast-Tracking Green Patent Applications in China. J. Clean. Prod. 2022, 382, 135444. [Google Scholar] [CrossRef]
- You, X.; Chen, Z. Interaction and Mediation Effects of Economic Growth and Innovation Performance on Carbon Emissions: Insights from 282 Chinese Cities. Sci. Total Environ. 2022, 831, 154910. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, Y.; Zhang, C. The Impact of Population Factors and Low-Carbon Innovation on Carbon Dioxide Emissions: A Chinese City Perspective. Environ. Sci. Pollut. Res. 2022, 29, 72853–72870. [Google Scholar] [CrossRef]
- Lin, B.; Ma, R. Green Technology Innovations, Urban Innovation Environment and CO2 Emission Reduction in China: Fresh Evidence from a Partially Linear Functional-coefficient Panel Model. Technol. Forecast. Soc. Chang. 2022, 176, 121434. [Google Scholar] [CrossRef]
- Dong, X.; Zhong, Y.; Liu, M.; Xiao, W.; Qin, C. Research on the Impacts of Dual Environmental Regulation on Regional Carbon Emissions under the Goal of Carbon Neutrality-the Intermediary Role of Green Technology Innovation. Front. Environ. Sci. 2022, 10, 1709. [Google Scholar] [CrossRef]
- Li, W.; Elheddad, M.; Doytch, N. The Impact of Innovation on Environmental Quality: Evidence for the Non-Linear Relationship of Patents and CO2 Emissions in China. J. Environ. Manag. 2021, 292, 112781. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Yu, S.; Li, M.; Cheng, Y. Coupling Coordination and Spatiotemporal Evolution between Carbon Emissions, Industrial Structure, and Regional Innovation of Countries in Shandong Province. Sustainability 2022, 14, 7484. [Google Scholar] [CrossRef]
- Yuan, B.; Li, C.; Yin, H.; Zeng, M. Green Innovation and China’s CO2 Emissions-The Moderating Effect of Institutional Quality. J. Environ. Plan. Manag. 2022, 65, 877–906. [Google Scholar] [CrossRef]
- Zheng, R.; Cheng, Y.; Liu, H.; Chen, W.; Chen, X.; Wang, Y. The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation. Int. J. Environ. Res. Public Health 2022, 19, 9111. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, T.; Oladipupo, S.; Adeshola, I.; Rjoub, H. Walvet Analysis of Impact of Renewable Energy Consumption and Technological Innovation on CO2 Emissions: Evidence from Portugal. Environ. Sci. Pollut. Res. 2022, 29, 23887–23904. [Google Scholar] [CrossRef]
- Xin, D.; Ahmad, M.; Lei, H.; Khattak, S. Do Innovation in Environmental-Related Technologies Asymmetrically Affect Carbon Dioxide Emissions in the US? Technol. Soc. 2021, 67, 101761. [Google Scholar] [CrossRef]
- Su, C.; Pang, D.; Tao, R.; Shao, X.; Umar, M. Renewable Energy and Technological Innovation: Which One is the Winner in Promoting Net-Zero Emissions? Technol. Forecast. Soc. Chang. 2022, 182, 121798. [Google Scholar] [CrossRef]
- Adebayo, T.; Adedoyin, F.; Kirikkaleli, D. Toward a Sustainable Environment: Nexus between Consumption-based Carbon Emissions, Economic Growth, and Renewable Energy and Technological Innovation in Brazil. Environ. Sci. Pollut. Res. 2021, 28, 52272–52282. [Google Scholar] [CrossRef]
- Jordaan, S.; Romo-Rabago, E.; McLeary, R.; Reidy, L.; Nazari, J.; Herremans, I. The Role of Energy Technology Innovation in Reducing Greenhouse Gas Emissions: A Case Study of Canada. Renew. Sustain. Energy Rev. 2017, 78, 1397–1409. [Google Scholar] [CrossRef]
- Jiang, Q.; Khattak, S. Modeling the Impact of Innovation in Marine Energy Generation-related Technologies on Carbon Dioxide Emissions in South Korea. J. Environ. Manag. 2023, 326, 116818. [Google Scholar] [CrossRef]
- Raihan, A.; Begam, R.; Said, M.; Pereira, J. Relationship between Economic Growth, Renewable Energy Use, Technological Innovation, and Carbon Emission toward Achieving Malaysia’s Paris Agreement. Environ. Syst. Decis. 2022, 42, 586–607. [Google Scholar] [CrossRef]
- Udeagha, M.; Ngepah, N. The Asymmetric Effect of Technological Innovation on CO2 Emissions in South Africa: New Evidence from the QARDL Approach. Front. Environ. Sci. 2022, 10, 985719. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do Green Technology Innovations Contribute to Carbon Dioxide Emission Reduction? Empirical Evidence from Patent Data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Yu, D.; Soh, W.; Noordin, A.; Yahya, D.H.; Latif, B. The Impact of Innovation on CO2 Emissions: The Threshold Effect of Financial Development. Front. Environ. Sci. 2022, 10, 980267. [Google Scholar] [CrossRef]
- Liobikienė, G.; Butkus, M. Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions. Renew. Energy 2019, 132, 1310–1322. [Google Scholar] [CrossRef]
- Saqib, N. Asymmetric linkages between renewable energy, technological innovation, and carbon-dioxide emission in developed economies: Non-linear ARDL analysis. Environ. Sci. Pollut. Res. 2022, 29, 60744–60758. [Google Scholar] [CrossRef]
- Awan, A.; Alnour, M.; Jahanger, A.; Onwe, J. Do Technological Innovation and Urbanization Mitigate Carbon Dioxide Emissions from the Transport Sector? Technol. Soc. 2022, 71, 102128. [Google Scholar] [CrossRef]
- Vitenu-Sackey, P.; Acheampong, T. Impact of Economic Policy Uncertainty, Energy Intensity, Technological Innovation and R&D on CO2 Emissions: Evidence from a Panel of 18 Developed Economies. Environ. Sci. Pollut. Res. 2022, 29, 87426–87445. [Google Scholar]
- Rahman, M.; Alam, K.; Velayutham, E. Reduction of CO2 Emissions: The Role of Renewable Energy, Technological Innovation and Export Quality. Energy Rep. 2022, 8, 2793–2805. [Google Scholar] [CrossRef]
- Abid, A.; Mehmood, U.; Haq, Z.; Tariq, S. The Effect of Technological Innovation, FDI, and Financial Development on CO2 Emission: Evidence from the G8 Countries. Environ. Sci. Pollut. Res. 2022, 29, 11654–11662. [Google Scholar] [CrossRef]
- Rehman, E.; Rehman, S.; Mumtaz, A.; Jianglin, Z.; Shahiman, M. The Influencing Factors of CO2 Emissions and the Adoption of Eco-Innovation across G-7 Economies: A Novel Hybrid Mathematical and Statistical Approach. Front. Environ. Sci. 2022, 10, 98892. [Google Scholar] [CrossRef]
- Shah, M.; Foglia, M.; Shahzad, U.; Fareed, Z. Green Innovation, Resource Price and Carbon Emissions during the COVID-19 Times: New Findings from Wavelet Local Multiple Correlation Analysis. Technol. Forecast. Soc. Chang. 2022, 184, 121957. [Google Scholar] [CrossRef]
- Ostadzad, A. Innovation and Carbon Emissions: Fixed-Effects Panel Threshold Model Estimation for Renewable Energy. Renew. Energy 2022, 198, 602–617. [Google Scholar] [CrossRef]
- Qureshi, M.; Ahsan, T.; Gull, A. Does Country-Level Eco-Innovation Help Reduce Corporate CO2 Emissions? Evidence from Europe. J. Clean. Prod. 2022, 379, 134732. [Google Scholar] [CrossRef]
- Khurshid, A.; Rauf, A.; Qayyum, S.; Calin, A.; Duan, W. Green Innovation and Carbon Emissions: The Role of Carbon Pricing and Environmental Policies in Attaining Sustainable Development Targets of Carbon Mitigation—Evidence from Central-Eastern Europe. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Ahmed, N.; Areche, F.; Nieto, D.; Borda, R.; Gonzales, B.; Senkus, P.; Skrzypek, A. Nexus between Cyclical Innovation in Green Technologies and CO2 Emissions in Nordic Countries: Consent toward Environment Sustainability. Sustainability 2022, 14, 11768. [Google Scholar] [CrossRef]
- Ma, X.; Arif, A.; Kaur, P.; Jain, V.; Refiana, S.; Mughal, N. Revealing the Effectiveness of Technological Innovation Shocks on CO2 Emissions in BRICS: Emerging Challenges and Implications. Environ. Sci. Pollut. Res. 2022, 29, 47373–47381. [Google Scholar] [CrossRef]
- Abbas, S.; Gui, P.; Chen, A.; Ali, N. The Effect of Renewable Energy Development, Market Regulation, and Environmental Innovation on CO2 Emissions in BRICS Countries. Environ. Sci. Pollut. Res. 2022, 29, 59483–59501. [Google Scholar] [CrossRef]
- Khan, H.; Weili, L.; Khan, I. Examining the Effect of Information and Communication Technology, Innovations, and Renewable Consumption on CO2 Emission: Evidence from BRICS Countries. Environ. Sci. Pollut. Res. 2023, 29, 47696–47712. [Google Scholar] [CrossRef]
- Zhang, H. Technology Innovation, Economic Growth, and Carbon Emissions in the Context of Carbon Neutrality: Evidence from BRICS. Sustainability 2021, 13, 11138. [Google Scholar] [CrossRef]
- Jiang, Q.; Rahman, Z.; Zhang, X.; Islam, M. An Assessment of the Effect of Green Innovation, Income, and Energy Use on Consumption-based CO2 Emissions: Empirical Evidence from Emerging Nations BRICS. J. Clean. Prod. 2022, 365, 132636. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, H.; Wang, Y.; Duan, Y. International Trade Diversification, Green Innovation, and Consumption-based Carbon Emissions: The Role of Renewable Energy for Sustainable Development in BRICST Countries. Renew. Energy 2022, 198, 1243–1253. [Google Scholar] [CrossRef]
- Jiang, Y.; Khan, H. The relationship between renewable energy consumption, technological innovations, and carbon dioxide emission: Evidence from two-step system GMM. Environ. Sci. Pollut. Res. 2022, 30, 4187–4202. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Raza, A.; Si, R.; Huo, X. International Trade, Chinese Foreign Direct Investment and Green Innovation Impact on Consumption-based CO2 Emissions: Empirical Estimation Focusing on BRI Countries. Environ. Sci. Pollut. Res. 2022, 29, 89014–89028. [Google Scholar] [CrossRef] [PubMed]
- Mensah, C.; Long, X.; Dauda, L.; Boamah, K.; Salman, M. Innovation and CO2 Emissions: The Complimentary Role of Eco-Patent and Trademark in the OECD Economies. Environ. Sci. Pollut. Res. 2019, 26, 22878–22891. [Google Scholar] [CrossRef]
- Yildirim, D.; Esen, O.; Yildirim, S. The Nonlinear Effects of Environmental Innovation on Energy Sector-based Carbon Dioxide Emissions in OECD Countries. Technol. Forecast. Soc. Chang. 2022, 182, 121800. [Google Scholar] [CrossRef]
- Khattak, S.; Ahmad, M. The Cyclical Impact of Innovation in Green and Sustainable Technologies on Carbon Dioxide Emissions in OECD Economies. Environ. Sci. Pollut. Res. 2022, 29, 33809–33825. [Google Scholar] [CrossRef]
- Alvarez-Herranz, A.; Balsalobre, D.; Cantos, J.; Shahbaz, M. Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries. Energy Policy 2017, 100, 90–100. [Google Scholar] [CrossRef]
- Mensah, C.; Long, X.; Boamah, K.; Bediako, I.; Dauda, L.; Salman, M. The Effect of Innovation on CO2 Emissions of OECD Countries from 1990-2014. Environ. Sci. Pollut. Res. 2018, 25, 29678–29698. [Google Scholar] [CrossRef]
- Ganda, F. The Impact of Innovation and Technology Investments on Carbon Emissions in Selected Organization for Economic Co-Operation and Development Countries. J. Clean. Prod. 2019, 217, 469–483. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Jahanger, A.; Usman, M.; Ning, Y. The Impact of Green Investment, Technological Innovation and Globalization on CO2 Emissions: Evidence from MINT Countries. Front. Environ. Sci. 2022, 10, 156. [Google Scholar] [CrossRef]
- Du, L.; Jiang, H.; Adebayo, T.S.; Awosusi, A.A.; Razzaq, A. Asymmetric effects of high-tech industry and renewable energy on consumption-based carbon emissions in MINT countries. Renew. Energy 2022, 196, 1269–1280. [Google Scholar] [CrossRef]
- Chhabra, M.; Giri, A.; Kumar, A. Do Technological Innovations and Trade Openness Reduce CO2 Emissions? Evidence from Selected Middle-Income Countries. Environ. Sci. Pollut. Res. 2022, 29, 65723–65738. [Google Scholar] [CrossRef]
- Obovisa, E.; Chen, H.; Mensah, I. The Impact of Green Technological Innovation and Institutional Quality on CO2 Emissions in African Countries. Technol. Forecast. Soc. Chang. 2022, 180, 121670. [Google Scholar] [CrossRef]
- Dauda, L.; Long, X.; Mensah, C.; Salman, M.; Boumah, K.; Ampon-Wireko, S.; Dodbe, C. Innovation, Trade Openness, and CO2 Emissions in Selected Countries in Africa. J. Clean. Prod. 2021, 281, 125143. [Google Scholar] [CrossRef]
- Habiba, U.; Xinbang, C.; Anwar, A. Do Green Technology Innovations, Financial Development, and Renewable Energy Use Help to Curb Carbon Emissions? Renew. Energy 2022, 193, 1082–1093. [Google Scholar] [CrossRef]
- Hafeez, M.; Rehman, S.; Faisal, C.; Yang, J.; Ullah, S.; Kaium, M.; Malik, M. Financial Efficiency and Its Impact on Renewable Energy Demand and CO2 Emissions: Do Eco-Innovations Matter for Highly Polluted Asian Economies? Sustainability 2022, 14, 10950. [Google Scholar] [CrossRef]
- Amin, M.; Zhou, S.; Safi, A. The Nexus between Consumption-based Carbon Emissions, Trade, Eco-Innovation, and Energy Productivity: Empirical Evidence from N-11 Economies. Environ. Sci. Pollut. Res. 2022, 29, 39239–39248. [Google Scholar] [CrossRef] [PubMed]
- Yunzhao, L. Modelling the Role of Eco-Innovation, Renewable Energy and Environmental Taxes in Carbon Emissions Reduction in E-7 Economies: Evidence from Advance Panel Estimations. Renew. Energy 2022, 190, 309–318. [Google Scholar] [CrossRef]
- Lingyan, M.; Zhao, Z.; Malik, H.; Razzaq, A.; An, H.; Hassan, M. Asymmetric Impact of Fiscal Decentralization and Environmental Innovation on Carbon Emissions: Evidence from Highly Decentralized Countries. Energy Environ. 2022, 33, 752–782. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, P. Do Renewable Energy Consumption and Green Innovation Help Curb CO2 Emissions? Evidence from E7 Countries. Environ. Sci. Pollut. Res. 2022, 30, 21115–21131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Cole, M.; Sun, J.; Wang, S. Innovation, Carbon Emissions and the Pollution Haven Hypothesis: Climate Capitalism and Global Re-Interpretations. J. Environ. Manag. 2022, 307, 114465. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yi, L.; Du, K.; Yang, Z. Impacts of Low-Carbon Innovation and its Heterogeneous Components on CO2 Emissions. Sustainability 2017, 9, 548. [Google Scholar] [CrossRef]
- Wenlong, Z.; Tien, N.; Sibghatullah, A.; Asih, D.; Soelton, M.; Ramli, Y. Impact of Energy Efficiency, Technology Innovation, Institutional Quality, and Trade Openness on Greenhouse Gas Emissions in Ten Asian Economies. Environ. Sci. Pollut. Res. 2023, 30, 43024–43039. [Google Scholar] [CrossRef]
- Luo, R.; Ullah, S.; Ali, K. Pathway towards Sustainability in Selected Asian Countries: Influence of Green Investment, Technology Innovations, and Economic Growth on CO2 Emissions. Sustainability 2021, 13, 12873. [Google Scholar] [CrossRef]
- Hao, W.; Rasul, F.; Bhatti, Z.; Hassan, M.S.; Ahmed, I.; Asghar, N. A technological innovation and economic progress enhancement: An assessment of sustainable economic and environmental management. Environ. Sci. Pollut. Res. 2021, 28, 28585–28597. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, K. Effects of Corruption, Technological Innovation, Globalization, and Renewable Energy on Carbon Emissions in Asian Countries. Util. Policy 2022, 79, 101448. [Google Scholar] [CrossRef]
- Naz, A.; Aslam, M. Green innovation, globalization, financial development, and CO2 emissions: The role of governance as a moderator in South Asian countries. Environ. Sci. Pollut. Res. 2023, 30, 57358–57377. [Google Scholar] [CrossRef]
- Zhong, M.; Xia, J.; He, R. Spatial Effects of Analysis of Heterogeneous Green Technology Innovations on Pollution Emission Reduction: Evidence from China’s Power Industry. Environ. Sci. Pollut. Res. 2022, 29, 67336–67352. [Google Scholar] [CrossRef]
- Salehi, M.; Fahimifard, S.H.; Zimon, G.; Bujak, A.; Sadowski, A. The Effect of CO2 Gas Emissions on the Market Value, Price and Shares Returns. Energies 2022, 15, 9221. [Google Scholar] [CrossRef]
- Debarsy, N.; Ertur, C. Testing for spatial autocorrelation in a fixed–effects panel data model. Reg. Sci. Urban Econ. 2010, 40, 453–470. [Google Scholar] [CrossRef]
- Elhorst, J.P. Matlab software for spatial panels. Int. Reg. Sci. Rev. 2012, 35, 1–17. [Google Scholar] [CrossRef]
- Kelejian, H.; Prucha, I. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Econom. 2010, 157, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Elhorst, J.P. Spatial panel data models. In Handbook of Applied Spatial Analysis; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010; pp. 377–407. [Google Scholar] [CrossRef]
- Belotti, F.; Hughes, G.; Mortari, A.P. Spatial panel-data models using Stata. Stata J. 2017, 17, 139–180. [Google Scholar] [CrossRef]
Variable | Variable Construction | Sample Period | Data Source |
---|---|---|---|
CO2it | Natural logarithm of CO2 per capita. CO2 emissions per capita are measured as CO2 emissions in metric tons divided by the total population. | 2000–2019 | World Bank [4] |
GDPCit | Natural logarithm of GDP per capita. GDP per capita is measured as GDP in constant 2015 US dollars divided by the total population. | 2000–2019 | World Bank [4] |
GDPCit2 | Square of the GDPCit. | 2000–2019 | World Bank [4] |
PATit | The total number of applied patents by residents and nonresidents in all categories is in the thousands. | 2000–2019 | World Bank [4] |
IVAit | The percentage of the total industrial value added, including construction (outputs minus intermediate inputs), in the total GDP. | 2000–2019 | World Bank [4] |
URBit | The percentage of the urban population in the total population. | 2000–2019 | World Bank [4] |
Variable | GDPCit | GDPCit2 | PATit | IVAit | URBit |
---|---|---|---|---|---|
GDPCit | - | ||||
GDPCit2 | 3.18 | - | |||
PATit | 1.02 | 1.01 | - | ||
IVAit | 1.06 | 1.02 | 1.00 | - | |
URBit | 3.16 | 1.02 | 1.00 | 1.00 | - |
Variable | Pooled Regression | FE-Country | FE-Time | FE-Both |
---|---|---|---|---|
GDPCit | 0.5179 (0.168) | 3.7187 (0.000) | 0.4007 (0.298) | 3.5906 (0.000) |
GDPCit2 | 0.0076 (0.704) | −0.1672 (0.000) | 0.0130 (0.524) | −0.1599 (0.000) |
PATit | −0.0080 (0.285) | 0.0039 (0.344) | 0.0039 (0.614) | 0.0068 (0.100) |
IVAit | 0.0035 (0.004) | −0.0021 (0.000) | 0.0041 (0.001) | −0.0019 (0.000) |
URBit | 0.0170 (0.000) | −0.0044 (0.062) | 0.0183 (0.000) | 0.0064 (0.060) |
Diagnostic tests | ||||
LM Spatial Lag | 797.350 (0.000) | 401.011 (0.000) | 780.669 (0.000) | 374.212 (0.000) |
Robust LM Spatial Lag | 21.458 (0.000) | 90.634 (0.000) | 27.322 (0.000) | 93.808 (0.000) |
LM Spatial Error | 808.140 (0.000) | 321.346 (0.000) | 787.886 (0.000) | 293.192 (0.000) |
Robust LM Spatial Error | 32.249 (0.000) | 10.969 (0.001) | 34.539 (0.000) | 12.789 (0.000) |
0.1436 | 0.0105 | 0.1485 | 0.0099 | |
R2 | 0.8862 | 0.9921 | 0.8890 | 0.9929 |
LR test | 905.61 (0.000) | 8.61 (0.979) | 944.41 (0.000) | |
No. of Observations | 340 | 340 | 340 | 340 |
SDM | SDM | SAR | SAR | |
---|---|---|---|---|
FE | RE | FE | RE | |
Parameter (p-Value) | Parameter (p-Value) | Parameter (p-Value) | Parameter (p-Value) | |
Coefficient Estimates | ||||
GDPCit | 3.4577 (0.000) | 3.3227 (0.000) | 3.4693 (0.000) | 3.6977 (0.000) |
GDPCit2 | −0.1524 (0.000) | −0.1446 (0.000) | −0.1545 (0.000) | −0.1661 (0.000) |
PATit | 0.0086 (0.060) | 0.0054 (0.183) | 0.0082 (0.031) | 0.0045 (0.267) |
IVAit | −0.1836 (0.000) | −0.1249 (0.002) | −0.1663 (0.000) | −0.1941 (0.000) |
URBit | 0.3942 (0.282) | 0.8219 (0.002) | 0.5689 (0.066) | 0.4135 (0.069) |
Direct Estimates | ||||
GDPCit | 3.4955 (0.000) | 3.3593 (0.000) | 3.5057 (0.000) | 3.7127 (0.000) |
GDPCit2 | −0.1549 (0.000) | −0.1467 (0.000) | −0.1563 (0.000) | −0.1669 (0.000) |
PATit | 0.0083 (0.035) | 0.0071 (0.067) | 0.0087 (0.019) | 0.0049 (0.205) |
IVAit | 0.1815 (0.000) | 0.1359 (0.000) | 0.1678 (0.000) | 0.1947 (0.000) |
URBit | 0.4773 (0.144) | 0.8513 (0.001) | 0.5677 (0.058) | 0.4212 (0.050) |
Indirect Estimates | ||||
GDPCit | −0.5894 (0.213) | −0.7484 (0.004) | −0.8371 (0.010) | −0.3301 (0.317) |
GDPCit2 | 0.0420 (0.047) | 0.0380 (0.013) | 0.0373 (0.011) | 0.0148 (0.319) |
PATit | 0.0267 (0.564) | −0.0391 (0.042) | −0.0213 (0.101) | −0.0477 (0.712) |
IVAit | −0.0551 (0.798) | 0.3469 (0.001) | 0.3941 (0.023) | 0.1612 (0.360) |
URBit | −3.2234 (0.301) | −1.0494 (0.031) | −1.3488 (0.123) | −3.4988 (0.444) |
Total Estimates | ||||
GDPCit | 2.9061 (0.000) | 2.6109 (0.000) | 2.6686 (0.000) | 3.3827 (0.000) |
GDPCit2 | −0.1129 (0.000) | −0.1087 (0.000) | −0.1190 (0.000) | −0.1522 (0.000) |
PATit | 0.0349 (0.459) | −0.0320 (0.099) | −0.0126 (0.021) | −0.0428 (0.296) |
IVAit | −0.2366 (0.303) | 0.4828 (0.056) | 0.5619 (0.000) | 0.1785 (0.000) |
URBit | −2.7461 (0.395) | −0.1981 (0.651) | −0.7811 (0.726) | −3.0776 (0.633) |
Weights | ||||
W × GDPCit | 0.4771 (0.200) | 0.1951 (0.332) | ||
W × PATit | 0.0337 (0.565) | −0.0503 (0.039) | ||
W × IVAit | −0.1384 (0.673) | 0.4009 (0.004) | ||
W × URBit | −4.1771 (0.308) | −1.0745 (0.059) | ||
W × CO2it | −0.3819 (0.077) | −0.3637 (0.037) | −0.3294 (0.026) | −0.1107 (0.272) |
Diagnostic tests | ||||
R2 | 0.8723 | 0.8749 | 0.8673 | 0.8159 |
0.0083 (0.000) | 0.0093 (0.000) | 0.0083 (0.000) | 0.0097 (0.000) | |
Spatial Lag-Wald Test | 47.96 (0.000) | 42.09 (0.000) | ||
Spatial Error-Wald Test | 41.65 (0.000) | 31.37 (0.000) | ||
Spatial Lag-LR Test | 45.36 (0.000) | 39.28 (0.000) | ||
Spatial Error-LR Test | 51.23 (0.000) | 40.14 (0.000) | ||
Hausman Test | 9.01 (0.531) | 3.89 (0.761) | ||
No. of Observations | 340 | 340 | 340 | 340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, H.; Furqan, M.; Saqib, N.; Adow, A.H.; Abbas, M. Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis. Sustainability 2023, 15, 10729. https://doi.org/10.3390/su151310729
Mahmood H, Furqan M, Saqib N, Adow AH, Abbas M. Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis. Sustainability. 2023; 15(13):10729. https://doi.org/10.3390/su151310729
Chicago/Turabian StyleMahmood, Haider, Maham Furqan, Najia Saqib, Anass Hamadelneel Adow, and Muzaffar Abbas. 2023. "Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis" Sustainability 15, no. 13: 10729. https://doi.org/10.3390/su151310729
APA StyleMahmood, H., Furqan, M., Saqib, N., Adow, A. H., & Abbas, M. (2023). Innovations and the CO2 Emissions Nexus in the MENA Region: A Spatial Analysis. Sustainability, 15(13), 10729. https://doi.org/10.3390/su151310729