An Integrated Approach to Green Mines Based on Hesitant Fuzzy TOPSIS: Green Degree Analysis and Policy Implications
Abstract
:1. Introduction
- (1)
- Constructing an evaluation indicator system of green degree from six aspects.
- (2)
- This paper integrates the hesitant fuzzy and kernel method to propose improved hesitant fuzzy TOPSIS.
- (3)
- This paper evaluates green degree of a vanadium titanomagnetite mine in the Panxi, which provide implication for other related researches.
2. Method
2.1. Evaluation Index System
- (1)
- Mining environment
- (2)
- Resource development mode
- (3)
- Comprehensive utilization of resources
- (4)
- Energy conservation and emission reduction
- (5)
- Technological innovation and digital mine
- (6)
- Enterprise management and corporate image
2.2. Hesitant Fuzzy TOPSIS
- (1)
- The hesitant normalized Hamming distance (HNHD):
- (2)
- The hesitant normalized Euclidean distance (HNED):
- (3)
- The hesitant normalized Hamming-Hausdorff distance (HNHH)
2.3. Improved Hesitant Fuzzy TOPSIS
- (1)
- Polynomial kernel:
- (2)
- Gaussian RBF kernel:
- (i)
- ;
- (ii)
- if and only if ;
- (iii)
- .
3. Study Area and Data
3.1. Study Area
3.2. Data Sources and Analysis
4. Results and Discussion
4.1. Comparative Analysis Extension of Hesitant Fuzzy Data
4.2. Validation of the Proposed Method
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, G.; Zhang, Q.; Hu, Y. Dust removal effect of negatively-pressured spraying collector for advancing support in fully mechanized coal mining face: Numerical simulation and engineering application. Tunn. Undergr. Space Technol. 2020, 95, 103149. [Google Scholar] [CrossRef]
- Chen, J.; Jiskani, I.M.; Jinliang, C.; Yan, H. Evaluation and future framework of green mine construction in China based on the DPSIR model. Sustain. Environ. Res. 2020, 30, 13. [Google Scholar] [CrossRef]
- Liu, Q.; Qiu, Z.; Li, M.; Shang, J.; Niu, W. Evaluation and empirical research on green mine construction in coal industry based on the AHP-SPA model. Resour. Policy 2023, 82, 103503. [Google Scholar] [CrossRef]
- Luo, D.; Huang, J.; Wu, H.; Cheng, L.; Huo, Z. Measuring green development index and coupling coordination of mining industry: An empirical analysis based on panel data in China. J. Clean. Prod. 2023, 401, 136764. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Xiong, Z. Game theory attack pricing for mining pools in blockchain-based IoT. Digit. Commun. Netw. 2022; in press. [Google Scholar] [CrossRef]
- Bai, T.; Liu, Y.Y.; Muhammad, I. Mixed nitrogen form addition facilitates the growth adaptation of legume plant to heavy metal contamination in degraded mining areas. Glob. Ecol. Conserv. 2020, 24, e01387. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Hu, K. Status and Achievement of the Green Mine in China. Int. Proc. Chem. Biol. Environ. Eng. 2012, 36, 21–25. [Google Scholar] [CrossRef]
- Shen, L.; Kong, H.; Wang, J. The Status and Achievements of Green Mines and Mining Ethics in China. J. Resour. Ecol. 2016, 7, 317–322. [Google Scholar]
- Jing, P.X.; Lu, M.Y.; Gong, W.C. Evaluation of underground coal mining green mine based on interval-valued intuitionistic fuzzy entropy and contingency theory. China Min. Mag. 2016, 25, 59–75. [Google Scholar] [CrossRef]
- Zhang, W.L.; Lu, Z.X. Principles and ideas on the construction of comprehensive evaluation system of green mine construc-tion. China Min. Mag. 2017, 26, 134–137. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Y. Evaluation research on green degree of equipment manufacturing industry based on improved particle swarm optimization algorithm. Chaos Solitons Fractals 2020, 131, 109502. [Google Scholar] [CrossRef]
- Shang, D.; Yin, G.; Li, X.; Li, Y.; Jiang, C.; Kang, X.; Liu, C.; Zhang, C. Analysis for Green Mine (phosphate) performance of China: An evaluation index system. Resour. Policy 2015, 46, 71–84. [Google Scholar] [CrossRef]
- Huang, J.J.; Song, Y.F.; Wang, Y.J. Study on the main evaluation in Jintan salt green mines to create indexes. China Min. Mag. 2010, 19, 79–85. [Google Scholar] [CrossRef]
- Song, X.F.; Wen, B. Research into the quatitative evaluation of the mine construction. China Min. Mag. 2014, 23, 54–61. [Google Scholar] [CrossRef]
- Wang, W.S.; Zou, J.L. Efficiency evaluation and optimization of green mining construction in coal enterprises based on DEA. China Coal. 2013, 39, 119–121. [Google Scholar] [CrossRef]
- Luo, S.; He, S.Y. Understanding gender difference in perceptions toward transit services across space and time: A social media mining approach. Transp. Policy 2021, 111, 63–73. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J. Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets Syst. 2009, 160, 1819–1840. [Google Scholar] [CrossRef]
- Deschrijver, G. A representation of t-norms in interval-valued L-fuzzy set theory. Fuzzy Sets Syst. 2008, 159, 1597–1618. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Systems of linear fuzzy constraints. Fuzzy Sets Syst. 1980, 3, 37–48. [Google Scholar] [CrossRef]
- Yager, R.R. An Introduction to Fuzzy Set Theory. Adv. Hum. Factors Ergon. 1986, 6, 29–39. [Google Scholar] [CrossRef]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Xia, M.; Xu, Z.; Chen, N. Induced aggregation under confidence levels. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2011, 19, 201–227. [Google Scholar] [CrossRef]
- Yu, D.J.; Wu, Y.Y.; Zhou, W. Generalized Hesitant Fuzzy Bonferroni Mean and Its Application in Multi-Criteria Group Decision Making. J. Inf. Comput. Sci. 2012, 9, 267–274. [Google Scholar]
- Wei, G. Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl.-Based Syst. 2012, 31, 176–182. [Google Scholar] [CrossRef]
- Xia, M.; Xu, Z. Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 2011, 52, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Xu, Z.; Xia, M. Interval-valued hesitant preference relations and their applications to group decision making. Knowl.-Based Syst. 2013, 37, 528–540. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, X.; Li, X. Wireless Sensor Network nodes correlation method in coal mine tunnel based on Bayesian decision. Measurement 2013, 46, 2335–2340. [Google Scholar] [CrossRef]
- Boran, F.E.; Genç, S.; Kurt, M.; Akay, D. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 2009, 36, 11363–11368. [Google Scholar] [CrossRef]
- Chen, C.-T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, W.; Chang, W. An improved TOPSIS with weighted hesitant vague information. Chaos Solitons Fractals 2016, 89, 47–53. [Google Scholar] [CrossRef]
- Mahmood, M.; Salih, B.; Zaidan, A.A. Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Comput. Oper. Res. 2019, 104, 207–227. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowl.-Based Syst. 2013, 52, 53–64. [Google Scholar] [CrossRef]
- Sun, Y.X.; Wu, S.; Hou, H.L. Enlightenment on construction of green mine in Zhejiang province. China Min. Mag. 2018, 27, 46–48. [Google Scholar] [CrossRef]
- Tong, X.; Yu, L. MADM based on distance and correlation coefficient measures with decision-maker preferences under a hesitant fuzzy environment. Soft Comput. 2016, 20, 4449–4461. [Google Scholar] [CrossRef]
- Munteanu, M.; Yao, Y.; Wilson, A.H.; Chunnett, G.; Luo, Y.; He, H.; Cioacă, M.; Wen, M. Panxi region (South-West China): Tectonics, magmatism and metallogenesis. A review. Tectonophysics 2013, 608, 51–71. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, Z.; Encarnacion, J.; Santosh, M. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe–Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province, southwest China. Ore Geol. Rev. 2012, 49, 109–127. [Google Scholar] [CrossRef]
- Yang, S.G. Sustainable Development and Comprehensive Utilization of the Vandium and Titanium in Panxi Region. Met. Mine 2002, 7, 31–34. [Google Scholar]
- Luo, D.J.; Wu, H.; He, S.; Li, J.B.; Pu, H.; Wang, Y. Multiattribute Evaluation Method for Green Mines Based on Hesitant Fuzzy TOPSIS. Multipurp. Util. Miner. Resour. 2021, 4, 41–49. [Google Scholar] [CrossRef]
X1 | X2 | X3 | X4 | X5 | X6 | |
---|---|---|---|---|---|---|
KS01 | {0.9, 0.85, 0.75} | {0.9, 0.85} | {0.85, 0.8} | {0.8, 0.7, 0.65} | {0.8, 0.75, 0.7} | {0.85, 0.7, 0.55} |
KS02 | {0.9, 0.7, 0.65} | {0.85, 0.8, 0.7} | {0.9, 0.8} | {0.85, 0.78, 0.75} | {0.9, 0.85, 0.75 | {0.9, 0.85, 0.7} |
KS03 | {0.85, 0.6} | {0.8, 0.75} | {0.75, 0.7, 0.55} | {0.8, 0.7} | {0.75, 0.7, 0.5} | {0.8, 0.65, 0.6} |
KS04 | {0.9, 0.7} | {0.9, 0.85, 0.8} | {0.85, 0.8} | {0.85, 0.8} | {0.9, 0.8, 0.7} | {0.9, 0.85, 0.7} |
KS05 | {0.75, 0.7, 0.6} | {0.75, 0.7, 0.5} | {0.7, 0.5} | {0.75, 0.6, 0.4} | {0.7, 0.5, 0.4} | {0.7, 0.65, 0.4} |
KS06 | {0.85, 0.8, 0.6} | {0.85, 0.75, 0.7} | {0.9, 0.8, 0.7} | {0.9, 0.8} | {0.85, 0.8} | {0.9, 0.85, 0.7} |
KS07 | {0.75, 0.7} | {0.8, 0.65, 0.6} | {0.8, 0.7} | {0.75, 0.5} | {0.75, 0.6, 0.5} | {0.75, 0.5, 0.4} |
KS08 | {0.9, 0.85, 0.8} | {0.9, 0.8} | {0.9, 0.85, 0.8} | {0.9, 0.8} | {0.9, 0.85, 0.7} | {0.9, 0.8, 0.75} |
KS09 | {0.65, 0.6, 0.4} | {0.7, 0.6, 0.4} | {0.7, 0.6} | {0.75, 0.6, 0.55} | {0.75, 0.6, 0.4} | {0.5, 0.4} |
KS10 | {0.9, 0.85, 0.8} | {0.85, 0.8} | {0.9, 0.85, 0.8} | {0.85, 0.8} | {0.9, 0.8, 0.6} | {0.9, 0.85, 0.8} |
X1 | X2 | X3 | X4 | X5 | X6 | |
---|---|---|---|---|---|---|
KS01 | {0.9, 0.85, 0.75} | {0.9, 0.85, 0.85} | {0.85, 0.8, 0.8} | {0.8, 0.7, 0.65} | {0.8, 0.75, 0.7} | {0.85, 0.7, 0.55} |
KS02 | {0.9, 0.7, 0.65} | {0.85, 0.8, 0.7} | {0.9, 0.8, 0.8} | {0.85, 0.78, 0.75} | {0.9, 0.85, 0.75 | {0.9, 0.85, 0.7} |
KS03 | {0.85, 0.6, 0.6} | {0.8, 0.75, 0.75} | {0.75, 0.7, 0.55} | {0.8, 0.7, 0.7} | {0.75, 0.7, 0.5} | {0.8, 0.65, 0.6} |
KS04 | {0.9, 0.7, 0.7} | {0.9, 0.85, 0.8} | {0.85, 0.8, 0.8} | {0.85, 0.8, 0.8} | {0.9, 0.8, 0.7} | {0.9, 0.85, 0.7} |
KS05 | {0.75, 0.7, 0.6} | {0.75, 0.7, 0.5} | {0.7, 0.5, 0.5} | {0.75, 0.6, 0.4} | {0.7, 0.5, 0.4} | {0.7, 0.65, 0.4} |
KS06 | {0.85, 0.8, 0.6} | {0.85, 0.75, 0.7} | {0.9, 0.8, 0.7} | {0.9, 0.8, 0.8} | {0.85, 0.8, 0.8} | {0.9, 0.85, 0.7} |
KS07 | {0.75, 0.7, 0.7} | {0.8, 0.65, 0.6} | {0.8, 0.7, 0.7} | {0.75, 0.5, 0.5} | {0.75, 0.6, 0.5} | {0.75, 0.5, 0.4} |
KS08 | {0.9, 0.85, 0.8} | {0.9, 0.8, 0.5} | {0.9, 0.85, 0.8} | {0.9, 0.8, 0.8} | {0.9, 0.85, 0.7} | {0.9, 0.8, 0.75} |
KS09 | {0.65, 0.6, 0.4} | {0.7, 0.6, 0.4} | {0.7, 0.6, 0.6} | {0.75, 0.6, 0.55} | {0.75, 0.6, 0.4} | {0.5, 0.4, 0.4} |
KS10 | {0.9, 0.85, 0.8} | {0.85, 0.8, 0.8} | {0.9, 0.85, 0.8} | {0.85, 0.8, 0.8} | {0.9, 0.8, 0.6} | {0.9, 0.85, 0.8} |
X1 | X2 | X3 | X4 | X5 | X6 | |
---|---|---|---|---|---|---|
KS01 | {0.9, 0.85, 0.75} | {0.9, 0.9, 0.85} | {0.85, 0.85, 0.8} | {0.8, 0.7, 0.65} | {0.8, 0.75, 0.7} | {0.85, 0.7, 0.55} |
KS02 | {0.9, 0.7, 0.65} | {0.85, 0.8, 0.7} | {0.9, 0.9, 0.8} | {0.85, 0.78, 0.75} | {0.9, 0.85, 0.75 | {0.9, 0.85, 0.7} |
KS03 | {0.85, 0.85, 0.6} | {0.8, 0.8, 0.75} | {0.75, 0.7, 0.55} | {0.8, 0.8, 0.7} | {0.75, 0.7, 0.5} | {0.8, 0.65, 0.6} |
KS04 | {0.9, 0.9, 0.7} | {0.9, 0.85, 0.8} | {0.85, 0.85, 0.8} | {0.85, 0.85, 0.8} | {0.9, 0.8, 0.7} | {0.9, 0.85, 0.7} |
KS05 | {0.75, 0.7, 0.6} | {0.75, 0.7, 0.5} | {0.7, 0.7, 0.5} | {0.75, 0.6, 0.4} | {0.7, 0.5, 0.4} | {0.7, 0.65, 0.4} |
KS06 | {0.85, 0.8, 0.6} | {0.85, 0.75, 0.7} | {0.9, 0.8, 0.7} | {0.9, 0.9, 0.8} | {0.85, 0.85, 0.8} | {0.9, 0.85, 0.7} |
KS07 | {0.75, 0.75, 0.7} | {0.8, 0.65, 0.6} | {0.8, 0.8, 0.7} | {0.75, 0.75, 0.5} | {0.75, 0.6, 0.5} | {0.75, 0.5, 0.4} |
KS08 | {0.9, 0.85, 0.8} | {0.9, 0.9, 0.8} | {0.9, 0.85, 0.8} | {0.9, 0.9, 0.8} | {0.9, 0.85, 0.7} | {0.9, 0.8, 0.75} |
KS09 | {0.65, 0.6, 0.4} | {0.7, 0.6, 0.4} | {0.7, 0.7, 0.6} | {0.75, 0.6, 0.55} | {0.75, 0.6, 0.4} | {0.5, 0.5, 0.4} |
KS10 | {0.9, 0.85, 0.8} | {0.85, 0.85, 0.8} | {0.9, 0.85, 0.8} | {0.85, 0.85, 0.8} | {0.9, 0.8, 0.6} | {0.9, 0.85, 0.8} |
Mine Number | Closeness C | Sorting | ||
---|---|---|---|---|
Optimism | Pessimism | Optimism | Pessimism | |
KS01 | 0.542386 | 0.549717 | 6 | 6 |
KS02 | 0.556642 | 0.566185 | 4 | 4 |
KS03 | 0.508921 | 0.506102 | 7 | 7 |
KS04 | 0.587226 | 0.578605 | 2 | 3 |
KS05 | 0.446278 | 0.454034 | 9 | 9 |
KS06 | 0.556235 | 0.560834 | 5 | 5 |
KS07 | 0.479162 | 0.477465 | 8 | 8 |
KS08 | 0.610346 | 0.605981 | 1 | 1 |
KS09 | 0.409223 | 0.419237 | 10 | 10 |
KS10 | 0.581483 | 0.583678 | 3 | 2 |
Mine Number | HNHD | HNED | HFKD | |||
---|---|---|---|---|---|---|
Optimism | Pessimism | Optimism | Pessimism | Optimism | Pessimism | |
KS01 | 4 | 4 | 6 | 6 | 6 | 6 |
KS02 | 6 | 5 | 5 | 4 | 4 | 4 |
KS03 | 7 | 7 | 7 | 7 | 7 | 7 |
KS04 | 2 | 3 | 3 | 3 | 2 | 3 |
KS05 | 9 | 9 | 9 | 9 | 9 | 9 |
KS06 | 5 | 6 | 4 | 5 | 5 | 5 |
KS07 | 8 | 8 | 8 | 8 | 8 | 8 |
KS08 | 1 | 1 | 1 | 1 | 1 | 1 |
KS09 | 10 | 10 | 10 | 10 | 10 | 10 |
KS10 | 3 | 2 | 2 | 2 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, D.; He, S.; Wu, H.; Cheng, L.; Li, J. An Integrated Approach to Green Mines Based on Hesitant Fuzzy TOPSIS: Green Degree Analysis and Policy Implications. Sustainability 2023, 15, 10468. https://doi.org/10.3390/su151310468
Luo D, He S, Wu H, Cheng L, Li J. An Integrated Approach to Green Mines Based on Hesitant Fuzzy TOPSIS: Green Degree Analysis and Policy Implications. Sustainability. 2023; 15(13):10468. https://doi.org/10.3390/su151310468
Chicago/Turabian StyleLuo, Dejiang, Su He, Hao Wu, Long Cheng, and Junbo Li. 2023. "An Integrated Approach to Green Mines Based on Hesitant Fuzzy TOPSIS: Green Degree Analysis and Policy Implications" Sustainability 15, no. 13: 10468. https://doi.org/10.3390/su151310468
APA StyleLuo, D., He, S., Wu, H., Cheng, L., & Li, J. (2023). An Integrated Approach to Green Mines Based on Hesitant Fuzzy TOPSIS: Green Degree Analysis and Policy Implications. Sustainability, 15(13), 10468. https://doi.org/10.3390/su151310468