Smart(phone)-Monitoring (SPM): An Efficient and Accessible Method for Tracking Alien Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Technical Specification
2.2. Study Area
2.3. Case Study
2.3.1. Ailanthus altissima
2.3.2. Arundo donax
2.3.3. Robinia pseudoacacia
2.4. SPM Method Workflow
2.4.1. Georeferenced Image Acquisition
2.4.2. Metadata Extraction and Data Filtering
3. Results
Alien Species | Wikiplantbase#Toscana | SPM |
---|---|---|
Ailanthus altissima | 298 | 413 |
Arundo donax | 247 | 730 |
Robinia pseudoacacia | 2702 | 1042 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, D.M.; Pyšek, P.; Carlton, J.T. A compendium of essential concepts and terminology in biological invasions. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton; Richardson, D.M., Ed.; Blackwell Publishing: Oxford, UK, 2011; pp. 409–420. [Google Scholar]
- Essl, F.; Bacher, S.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Katsanevakis, S.; Kowarik, I.; Kühn, I.; Pyšek, P.; Rabitsch, W.; et al. Which taxa are alien? Criteria, applications, and uncertainties. BioScience 2018, 68, 496–509. [Google Scholar] [CrossRef] [Green Version]
- Occhipinti-Ambrogi, A.; Galil, B.S. A uniform terminology on bioinvasions: A chimera or an operative tool? Mar. Pollut. Bull. 2004, 49, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Bartz, R.; Kowarik, I. Assessing the environmental impacts of invasive alien plants: A review of assessment approaches. NeoBiota 2019, 43, 69–99. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; van Kleunen, M.; Winter, M.; et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 2018, 115, E2264–E2273. [Google Scholar] [CrossRef] [Green Version]
- Dar, P.A.; Reshi, Z.A.; Shah, M.A. Roads act as corridors for the spread of alien plant species in the mountainous regions: A case study of Kashmir Valley, India. Trop. Ecol. 2015, 56, 183–190. [Google Scholar]
- Wilcox Douglas, A. Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environ. Manag. 1989, 13, 365–370. [Google Scholar] [CrossRef]
- Lemke, A.; Kowarik, I.; Von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J. Appl. Ecol. 2019, 56, 413–422. [Google Scholar] [CrossRef]
- Hansen, M.J.; Clevenger, A.P. The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biol. Conserv. 2005, 125, 249–259. [Google Scholar] [CrossRef]
- Christen, D.C.; Matlack, G.R. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 2009, 11, 453–465. [Google Scholar] [CrossRef]
- Horvitz, N.; Wang, R.; Wan, F.H.; Nathan, R. Pervasive human-mediated large-scale invasion: Analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. J. Ecol. 2017, 105, 85–94. [Google Scholar] [CrossRef]
- Groom, Q.J.; Adriaens, T.; Desmet, P.; Simpson, A.; De Wever, A.; Bazos, I.; Cardoso, A.C.; Charles, L.; Christopoulou, A.; Gazda, A.; et al. Recommendations to make your invasive alien species data more useful. Front. Appl. Math. Stat. 2017, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Adriaens, T.; Sutton-Croft, M.; Owen, K.; Brosens, D.; van Valkenburg, J.; Kilbey, D.; Groom, Q.; Ehmig, C.; Thürkow, F.; Van Hende, P.; et al. Trying to engage the crowd in recording invasive alien species in Europe: Experiences from two smartphone applications in northwest Europe. Manag. Biol. Invasions 2015, 6, 215. [Google Scholar] [CrossRef] [Green Version]
- Groom, Q.J.; Desmet, P.; Vanderhoeven, S.; Adriaens, T. The importance of open data for invasive alien species research, policy and management. Manag. Biol. Invasions 2015, 6, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Niphadkar, M.; Nagendra, H. Remote sensing of invasive plants: Incorporating functional traits into the picture. Int. J. Remote Sens. 2016, 37, 3074–3085. [Google Scholar] [CrossRef]
- James, K.; Bradshaw, K. Detecting plant species in the field with deep learning and drone technology. Methods Ecol. Evol. 2020, 11, 1509–1519. [Google Scholar] [CrossRef]
- Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J. Unmanned aerial vehicles for alien plant species detection and monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2015, 41, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.P.; Watt, M.S.; Paul, T.S.; Morgenroth, J.; Hartley, R. Taking a closer look at invasive alien plant research: A review of the current state, opportunities, and future directions for UAVs. Methods Ecol. Evol. 2019, 10, 2020–2033. [Google Scholar] [CrossRef] [Green Version]
- Abella, S.R.; Spencer, J.E.; Hoines, J.; Nazarchyk, C. Assessing an exotic plant surveying program in the Mojave Desert, Clark County, Nevada, USA. Environ. Monit. Assess. 2009, 151, 221–230. [Google Scholar] [CrossRef]
- McAvoy, T.; Snyder, A.; Johnson, N.; Salom, S.; Kok, L. Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Sci. Manag. 2012, 5, 506–512. [Google Scholar] [CrossRef]
- McDougall, K.L.; Lembrechts, J.; Rew, L.J.; Haider, S.; Cavieres, L.A.; Kueffer, C.; Milbau, A.; Naylor, B.J.; Nuñez, M.A.; Pauchard, A.; et al. Running off the road: Roadside non-native plants invading mountain vegetation. Biol. Invasions 2018, 20, 3461–3473. [Google Scholar] [CrossRef] [Green Version]
- Kraaij, T.; Baard, J.A. Use of a rapid roadside survey to detect potentially invasive plant species along the Garden Route, South Africa. Koedoe 2019, 61, 10. [Google Scholar]
- Barone, G.; Domina, G.; Di Gristina, E. Comparison of different methods to assess the distribution of alien plants along the road network and use of Google Street View panoramas interpretation in Sicily (Italy) as a case study. Biodivers. Data J. 2021, 9, e66013. [Google Scholar] [CrossRef] [PubMed]
- Shuster, W.D.; Herms, C.P.; Frey, M.N.; Doohan, D.J.; Cardina, J. Comparison of survey methods for an invasive plant at the subwatershed level. Biol. Invasions 2005, 7, 393–403. [Google Scholar] [CrossRef]
- Catry, F.X.; Moreira, F.; Deus, E.; Silva, J.S.; Águas, A. Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: Results from a countrywide survey. Biol. Invasions 2015, 17, 3163–3181. [Google Scholar] [CrossRef]
- Dyrmann, M.; Mortensen, A.K.; Linneberg, L.; Høye, T.T.; Bjerge, K. Camera assisted roadside monitoring for invasive alien plant species using deep learning. Sensors 2021, 21, 6126. [Google Scholar] [CrossRef] [PubMed]
- Miller-Rushing, A.; Primack, R.; Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 2012, 10, 285–290. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Kobori, H.; Dickinson, J.L.; Washitani, I.; Sakurai, R.; Amano, T.; Komatsu, N.; Kitamura, W.; Takagawa, S.; Koyama, K.; Ogawara, T.; et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 2016, 31, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chandler, M.; See, L.; Copas, K.; Bonde, A.M.; López, B.C.; Danielsen, F.; Legind, J.K.; Masinde, S.; Miller-Rushing, A.J.; Newman, G.; et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 2017, 213, 280–294. [Google Scholar] [CrossRef] [Green Version]
- Klemann-Junior, L.; Villegas Vallejos, M.A.; Scherer-Neto, P.; Vitule, J.R.S. Traditional scientific data vs. uncoordinated citizen science effort: A review of the current status and comparison of data on avifauna in Southern Brazil. PLoS ONE 2017, 12, e0188819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradter, U.; Mair, L.; Jönsson, M.; Knape, J.; Singer, A.; Snäll, T. Can opportunistically collected Citizen Science data fill a data gap for habitat suitability models of less common species? Methods Ecol. Evol. 2018, 9, 1667–1678. [Google Scholar] [CrossRef]
- Menard, T.; Miller, J.; Nowak, M.; Norris, D. Comparing the GPS capabilities of the Samsung Galaxy S, Motorola Droid X, and the Apple iPhone for vehicle tracking using FreeSim_Mobile. In Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011. [Google Scholar] [CrossRef]
- Merry, K.; Bettinger, P. Smartphone GPS accuracy study in an urban environment. PLoS ONE 2019, 14, e0219890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premier Farnell UK Limited. Sensors for Smartphone and Tablet. 2022. Available online: http://uk.farnell.com/smartphonetechnology-applications (accessed on 15 December 2022).
- Mok, E.; Retscher, G.; Wen, C. Initial test on the use of GPS and sensor data of modern smartphones for vehicle tracking in dense high rise environments. In Proceedings of the Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS), Helsinki, Finland, 3–4 October 2012. [Google Scholar] [CrossRef]
- ISTAT (Italian National Institute of Statistics). Population in Italy. Available online: http://www.demo.istat.it (accessed on 12 February 2023).
- ANAS (Azienda Nazionale Autonoma delle Strade Statali). Available online: https://www.stradeanas.it/it/le-strade/anas-regione (accessed on 15 December 2022).
- Angiolini, C.; Arrigoni, P.V.; Selvi, F. Stato attuale e progressi delle conoscenze floristiche in Toscana dal 1978 a oggi. In Stato delle Conoscenze della Flora Vascolare d’Italia; Scoppola, A., Blasi, C., Eds.; Palombi: Roma, Italy, 2005; pp. 141–145. [Google Scholar]
- Peruzzi, L.; Bedini, G. (Eds.) Wikiplantbase #Toscana. 2013. Available online: http://bot.biologia.unipi.it/wpb/toscana/index.html (accessed on 12 February 2023).
- Peruzzi, L.; Roma-Marzio, F.; Pinzani, L.; Bedini, G. (Eds.) Wikiplantbase #Italia. 2019. Available online: http://bot.biologia.unipi.it/wpb/italia (accessed on 12 February 2023).
- GBIF. Ailanthus altissima (Mill.) Swingle in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset. 2022. Available online: https://www.gbif.org/species/7615579 (accessed on 12 February 2023).
- Hu, S.Y. Ailanthus. Arnoldia 1979, 39, 29–50. [Google Scholar]
- Kaproth, M.A.; McGraw, J.B. Seed viability and dispersal of the wind-dispersed invasive Ailanthus altissima in aqueous environments. For. Sci. 2008, 54, 490–496. [Google Scholar]
- Constán-Nava, S.; Bonet, A. Genetic variability modulates the effect of habitat type and environmental conditions on early invasion success of Ailanthus altissima in Mediterranean ecosystems. Biol. Invasions 2012, 14, 2379–2392. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Alessandrini, A.; Arrigoni, P.V.; Banfi, E.; Bernardo, L.; Bovio, M.; Brundu, G.; Cagiotti, M.R.; Camarda, I.; Carli, E.; et al. Inventory of the non-native flora of Italy. Plant Biosyst. 2009, 143, 386–430. [Google Scholar] [CrossRef]
- Rojas-Sandoval, J.; Acevedo-Rodríguez, P. Arundo donax (giant reed), CABI Compendium. CABI International. 2014. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.1940 (accessed on 15 December 2022).
- Jiménez-Ruiz, J.; Hardion, L.; Del Monte, J.P.; Vila, B.; Santín-Montanyá, M.I. Monographs on invasive plants in Europe: Arundo donax L. Bot. Lett. 2021, 168, 131–151. [Google Scholar] [CrossRef]
- USDA-ARS. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. 2014. Available online: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx (accessed on 15 December 2022).
- Hardion, L.; Verlaque, R.; Saltonstall, K.; Leriche, A.; Vila, B. Origin of the invasive Arundo donax (Poaceae): A trans-Asian expedition in herbaria. Ann. Bot. 2014, 114, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.M.; Rejmánek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Kolbek, J.; Vítková, M.; Větvička, V.Z. Historie středoevropských akátin a jejich společenstev (From History of Central European Robinia Growths and Its Communities). Zprávy Èes. Bot. Spoleè 2004, 39, 287–298. (In Czech) [Google Scholar]
- GBIF. Robinia pseudacacia L. in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset. 2022. Available online: https://www.gbif.org/species/5352251 (accessed on 12 February 2023).
- Pyšek, P.; Danihelka, J.; Sádlo, J.; Chrtek, J.J.; Chytrý, M.; Jarošík, V.; Kaplan, Z.; Krahulec, F.; Moravcová, L.; Pergl, J.; et al. Catalogue of alien plants of the Czech Republic (2nd ed.): Checklist update, taxonomic diversity and invasion patterns. Preslia 2012, 84, 155–255. [Google Scholar]
- Pergl, J.; Sádlo, J.; Petrusek, A.; Laštůvka, Z.; Musil, J.; Perglová, I.; Šanda, R.; Šefrová, H.; Šíma, J.; Vohralík, V.; et al. Black, grey and watch lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota 2016, 28, 1–37. [Google Scholar] [CrossRef]
- Westbrooks, R.G. Invasive Plants: Changing the Landscape of America, Federal Interagency Committee for the Management of Noxious and Exotic Weeds, All U.S. Government Documents, 1998, Washington DC, 490. Available online: https://digitalcommons.usu.edu/govdocs/490 (accessed on 15 December 2022).
- Sabo, A.E. Robinia pseudoacacia invasions and control in North America and Europe. Rest. Reclam. Rev. 2000, 6, 1–9. [Google Scholar]
- Benesperi, R.; Giuliani, C.; Zanetti, S.; Gennai, M.; Lippi, M.M.; Guidi, T.; Nascimbene, J.; Foggi, B. Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers. Conserv. 2012, 21, 3555–3568. [Google Scholar] [CrossRef]
- Dunnington, D.H.; Harvey, P. exifr: EXIF Image Data in R; R Package Version 0.3.2. 2021. Available online: https://cran.r-project.org/web/packages/exifr/exifr.pdf (accessed on 12 February 2023).
- Team RC 2022. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: www.r-project.org (accessed on 12 February 2023).
- Von der Lippe, M.; Bullock, J.M.; Kowarik, I.; Knopp, T.; Wichmann, M. Human-mediated dispersal of seeds by the airflow of vehicles. PLoS ONE 2013, 8, e52733. [Google Scholar] [CrossRef]
- Pauchard, A.; Shea, K. Integrating the study of non-native plant invasions across spatial scales. Biol. Invasions 2006, 8, 399–413. [Google Scholar] [CrossRef]
Source File | GPS Latitude | GPS Longitude | GPS Error (m) | Date |
---|---|---|---|---|
Image_01 | 44°02′25.5″ N | 11°29′51.7″ E | 4.8 | 5 June 2022 |
Image_02 | 44°02′00.7″ N | 11°27′55.8″ E | 3.3 | 5 June 2022 |
Image_03 | 44°02′18.2″ N | 11°30′07.7″ E | 7.5 | 5 June 2022 |
Image_04 | 44°01′31.5″ N | 11°27′30.0″ E | 120.4 * | 5 June 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzani, L.; Ceschin, S. Smart(phone)-Monitoring (SPM): An Efficient and Accessible Method for Tracking Alien Plant Species. Sustainability 2023, 15, 9814. https://doi.org/10.3390/su15129814
Pinzani L, Ceschin S. Smart(phone)-Monitoring (SPM): An Efficient and Accessible Method for Tracking Alien Plant Species. Sustainability. 2023; 15(12):9814. https://doi.org/10.3390/su15129814
Chicago/Turabian StylePinzani, Lorenzo, and Simona Ceschin. 2023. "Smart(phone)-Monitoring (SPM): An Efficient and Accessible Method for Tracking Alien Plant Species" Sustainability 15, no. 12: 9814. https://doi.org/10.3390/su15129814