Personality Assessment Based on Electroencephalography Signals during Hazard Recognition
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Personality Traits Influence Hazard Recognition Performance
1.1.2. Limitations of Self-Reporting for Personality
1.1.3. Refining Individual Characteristics Based on EEG Signals
2. Methodology
2.1. Overview
- The correlation between the EEG-assessed and actual values of a worker’s personality was analyzed to assess the assessment properties of the model.
- The EEG-assessed results were used to assess other participant characteristics and verify the external validity of the model.
- The model was applied to a lockbox to evaluate the out-of-sample reliability.
- Several types of data were extracted to train the assessment model for further validation.
2.2. Participants and Materials
2.3. Experimental Procedure
2.3.1. EEG Signal and Preprocessing
2.3.2. Feature Selection and Model Training
2.3.3. Evaluation of the EEG-Assessed Values
3. Results
3.1. Self-Assessed Personality Results
3.2. Behavioral Results
3.3. ERP Results
3.4. ERP-Based Personality Assessment Model
3.5. External Validity
3.6. Out-of-Sample Reliability
3.7. Further Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beus, J.M.; Dhanani, L.Y.; McCord, M.A. A meta-analysis of personality and workplace safety: Addressing unanswered questions. J. Appl. Psychol. 2015, 100, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Senders, J.W.; Moray, N.; Smiley, A.; Sellen, A. Modelling operator cognitive interactions in nuclear power plant safety evaluation. 1985. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:20008693 (accessed on 28 May 2020).
- Woodcock, K. Model of safety inspection. Saf. Sci. 2014, 62, 145–156. [Google Scholar] [CrossRef]
- Martinez-Marquez, D.; Pingali, S.; Panuwatwanich, K.; Stewart, R.A.; Mohamed, S. Application of eye tracking technology in aviation, maritime, and construction industries: A systematic review. Sensors 2021, 21, 4289. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, I.; Albert, A.; Azevedo, R.; Jaselskis, E.J. Development and Testing of a Personalized Hazard-Recognition Training Intervention. J. Constr. Eng. Manag. 2017, 143, 04016120. [Google Scholar] [CrossRef]
- Namian, M.; Albert, A.; Feng, J. Effect of Distraction on Hazard Recognition and Safety Risk Perception. J. Constr. Eng. Manag. 2018, 144, 0001459. [Google Scholar] [CrossRef]
- Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 2018, 55, 248–266. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Dao, B.; Esmaeili, B.; Dodd, M.D. Role of Personality in Construction Safety: Investigating the Relationships between Personality, Attentional Failure, and Hazard Identification under Fall-Hazard Conditions. J. Constr. Eng. Manag. 2019, 145, 0001673. [Google Scholar] [CrossRef]
- Namian, M.; Albert, A.; Zuluaga, C.M.; Behm, M. Role of safety training: Impact on hazard recognition and safety risk perception. J. Constr. Eng. Manag. 2016, 142, 0001198. [Google Scholar] [CrossRef]
- Pandit, B.; Albert, A.; Patil, Y.; Al-Bayati, A.J. Impact of safety climate on hazard recognition and safety risk perception. Saf. Sci. 2019, 113, 44–53. [Google Scholar] [CrossRef]
- Jin, R.; Zou, P.X.W.; Piroozfar, P.; Wood, H.; Yang, Y.; Yan, L.; Han, Y. A science mapping approach based review of construction safety research. Saf. Sci. 2019, 113, 285–297. [Google Scholar] [CrossRef]
- Jeelani, I.; Han, K.; Albert, A. Automating and scaling personalized safety training using eye-tracking data. Autom. Constr. 2018, 93, 63–77. [Google Scholar] [CrossRef]
- Corr, P.J.; Matthews, G.E. The Cambridge Handbook of Personality Psychology, 1st ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-86218-9. [Google Scholar]
- Gao, Y.; González, V.A.; Yiu, T.W. Exploring the Relationship between Construction Workers’ Personality Traits and Safety Behavior. J. Constr. Eng. Manag. 2020, 146, 04019111. [Google Scholar] [CrossRef]
- De Schutter, H. Personality and territoriality in theory and in Belgium. Lang. Probl. Lang. Plan. 2021, 45, 218–238. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Atrey, P.K.; Saini, M.K.; El Saddik, A. Personality assessment using multiple online social networks. Multimed. Tools Appl. 2016, 75, 13237–13269. [Google Scholar] [CrossRef]
- Connelly, B.S.; Ones, D.S. Another Perspective on Personality: Meta-Analytic Integration of Observers’ Accuracy and Predictive Validity. Psychol. Bull. 2010, 136, 1092–1122. [Google Scholar] [CrossRef]
- Templer, K.J. Five-Factor Model of Personality and Job Satisfaction: The Importance of Agreeableness in a Tight and Collectivistic Asian Society. Appl. Psychol. 2012, 61, 114–129. [Google Scholar] [CrossRef]
- Mount, M.K.; Barrick, M.R.; Stewart, G.L. Five-factor model of personality and performance in jobs involving interpersonal interactions. Hum. Perform. 1998, 11, 145–165. [Google Scholar] [CrossRef]
- Costa, P.T., Jr.; McCrae, R.R.; Zonderman, A.B.; Barbano, H.E.; Lebowitz, B.; Larson, D.M. Cross-sectional studies of personality in a national sample: 2. Stability in neuroticism, extraversion, and openness. Psychol. Aging 1986, 1, 144–149. [Google Scholar] [CrossRef]
- Barrick, M.R.; Mount, M.K.; Li, N. The theory of purposeful work behavior: The role of personality, higher-order goals, and job characteristics. Acad. Manag. Rev. 2013, 38, 132–153. [Google Scholar] [CrossRef]
- Christian, M.S.; Bradley, J.C.; Wallace, J.C.; Burke, M.J. Workplace Safety: A Meta-Analysis of the Roles of Person and Situation Factors. J. Appl. Psychol. 2009, 94, 1103–1127. [Google Scholar] [CrossRef]
- Jonah, B.A. Sensation seeking and risky driving: A review and synthesis of the literature. Accid. Anal. Prev. 1997, 29, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Koelega, H.S. Extraversion and vigilance performance: 30 years of inconsistencies. Psychol. Bull. 1992, 112, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Henning, J.B.; Stufft, C.J.; Payne, S.C.; Bergman, M.E.; Mannan, M.S.; Keren, N. The influence of individual differences on organizational safety attitudes. Saf. Sci. 2009, 47, 337–345. [Google Scholar] [CrossRef]
- Rothmann, S.; Coetzer, E.P. The big five personality dimensions and job performance. SA J. Ind. Psychol. 2003, 29. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) Manual; Psychological Assessment Resources: Odessa, FL, USA, 1992. [Google Scholar]
- Plaisant, O.; Guertault, J.; Courtois, R.; Réveillère, C.; Mendelsohn, G.A.; John, O.P. Big Five History: OCEAN of personality factors. Introduction of the French Big Five Inventory or BFI-Fr. Ann. Med. Psychol. 2010, 168, 481–486. [Google Scholar] [CrossRef]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B., Jr. A very brief measure of the Big-Five personality domains. J. Res. Personal. 2003, 37, 504–528. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Tomar, B.S.; Ankur, A.; Gupta, P. Machination of Human Carpus. In Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Viswesvaran, C.; Ones, D.S. Meta-analyses of fakability estimates: Implications for personality measurement. Educ. Psychol. Meas. 1999, 59, 197–210. [Google Scholar] [CrossRef]
- Morgeson, F.P.; Campion, M.A.; Dipboye, R.L.; Hollenbeck, J.R.; Murphy, K.; Schmitt, N. Reconsidering the use of personality tests in personnel selection contexts. Pers. Psychol. 2007, 60, 683–729. [Google Scholar] [CrossRef]
- Gawronski, B.; Houwer, J.D. Implicit measures in social and personality psychology. In Handbook of Research Methods in Social and Personality Psychology; Cambridge University Press: Cambridge, UK, 2014; Volume 2, pp. 283–310. ISBN 9781107011779. [Google Scholar]
- Chatterjee, D.; Sinharay, A.; Konar, A. EEG-based fuzzy cognitive load classification during logical analysis of program segments. In Proceedings of the IEEE International Conference on Fuzzy Systems, Hyderabad, India, 7–10 July 2013. [Google Scholar]
- Sulavko, A.E.; Lozhnikov, P.S.; Choban, A.G.; Stadnikov, D.G.; Nigrey, A.A.; Inivatov, D.P. Evaluation of EEG identification potential using statistical approach and convolutional neural networks. Inf. Upr. Sist. 2020, 37–49. [Google Scholar] [CrossRef]
- Letzring, T.D.; Adamcik, L.A. Personality traits and affective states: Relationships with and without affect induction. Personal. Individ. Differ. 2015, 75, 114–120. [Google Scholar] [CrossRef]
- John, O.P.; Naumann, L.P.; Soto, C.J. Paradigm shift to the integrative big five trait taxonomy: History, measurement, and conceptual issues. In Handbook of Personality: Theory and Research; The Guilford Press: New York, NY, USA, 2008; Volume 3, pp. 114–158. [Google Scholar]
- Lou, Y.; Meng, X.; Yang, J.; Zhang, S.; Long, Q.; Yuan, J. The impact of extraversion on attentional bias to pleasant stimuli: Neuroticism matters. Exp. Brain Res. 2016, 234, 721–731. [Google Scholar] [CrossRef]
- Miranda-Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2021, 12, 479–493. [Google Scholar] [CrossRef]
- Tian, Z.; Huang, D.; Zhou, S.; Zhao, Z.; Jiang, D. Personality first in emotion: A deep neural network based on electroencephalogram channel attention for cross-subject emotion recognition. R. Soc. Open Sci. 2021, 8, 201976. [Google Scholar] [CrossRef]
- Jin, X.; Lu, Y.; Hatfield, B.D.; Wang, X.; Wang, B.; Zhou, C. Ballroom dancers exhibit a dispositional need for arousal and elevated cerebral cortical activity during preferred melodic recall. PeerJ 2021, 9, e10658. [Google Scholar] [CrossRef]
- Landau, O.; Cohen, A.; Gordon, S.; Nissim, N. Mind your privacy: Privacy leakage through BCI applications using machine learning methods. Knowl. Based Syst. 2020, 198, 105932. [Google Scholar] [CrossRef]
- Rogala, J.; Dreszer, J.; Malinowska, U.; Waligóra, M.; Pluta, A.; Antonova, I.; Wróbel, A. Stronger connectivity and higher extraversion protect against stress-related deterioration of cognitive functions. Sci. Rep. 2021, 11, 17452. [Google Scholar] [CrossRef]
- Zhao, G.; Ge, Y.; Shen, B.; Wei, X.; Wang, H. Emotion Analysis for Personality Inference from EEG Signals. IEEE Trans. Affect. Comput. 2018, 9, 362–371. [Google Scholar] [CrossRef]
- Baumgartl, H.; Bayerlein, S.; Buettner, R. Measuring Extraversion Using EEG Data. In Lecture Notes in Information Systems and Organisation; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Subramanian, R.; Wache, J.; Abadi, M.K.; Vieriu, R.L.; Winkler, S.; Sebe, N. Ascertain: Emotion and personality recognition using commercial sensors. IEEE Trans. Affect. Comput. 2018, 9, 147–160. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Chen, J. Detecting and measuring construction workers' vigilance through hybrid kinematic-EEG signals. Autom. Constr. 2019, 100, 11–23. [Google Scholar] [CrossRef]
- Jebelli, H.; Hwang, S.; Lee, S. EEG-based workers’ stress recognition at construction sites. Autom. Constr. 2018, 93, 315–324. [Google Scholar] [CrossRef]
- Ke, J.; Zhang, M.; Luo, X.; Chen, J. Monitoring distraction of construction workers caused by noise using a wearable Electroencephalography (EEG) device. Autom. Constr. 2021, 125, 103598. [Google Scholar] [CrossRef]
- Noghabaei, M.; Han, K.; Albert, A. Feasibility Study to Identify Brain Activity and Eye-Tracking Features for Assessing Hazard Recognition Using Consumer-Grade Wearables in an Immersive Virtual Environment. J. Constr. Eng. Manag. 2021, 147, 0002130. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Q.; Fang, D.; Zhang, D.; Liao, P.C. Perceptual decision-making ‘in the wild’: How risk propensity and injury exposure experience influence the neural signatures of occupational hazard recognition. Int. J. Psychophysiol. 2022, 177, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chong, H.-Y.; Liao, P.-C. Collaborative information integration for construction safety monitoring. Autom. Constr. 2019, 102, 120–134. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Y.; Liao, P.-C. EEG-based work experience prediction using hazard recognition. Autom. Constr. 2022, 136, 104151. [Google Scholar] [CrossRef]
- Cui, Z.; Xia, Z.; Su, M.; Shu, H.; Gong, G. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach. Hum. Brain Mapp. 2016, 37, 1443–1458. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Blankertz, B.; Sannelli, C.; Halder, S.; Hammer, E.M.; Kübler, A.; Müller, K.R.; Curio, G.; Dickhaus, T. Neurophysiological predictor of SMR-based BCI performance. NeuroImage 2010, 51, 1303–1309. [Google Scholar] [CrossRef]
- Ihara, A.S.; Matsumoto, A.; Ojima, S.; Katayama, J.; Nakamura, K.; Yokota, Y.; Watanabe, H.; Naruse, Y. Prediction of Second Language Proficiency Based on Electroencephalographic Signals Measured While Listening to Natural Speech. Front. Hum. Neurosci. 2021, 15, 665809. [Google Scholar] [CrossRef]
- Eustace, N.; Sarma, K.M.; Murphy, J.; Molloy, G.J. Conscientiousness and adherence to the oral contraceptive pill: A cross-sectional analysis of the facets of conscientiousness. Psychol. Health Med. 2018, 23, 1006–1015. [Google Scholar] [CrossRef]
- Kopp, B.; Steinke, A.; Visalli, A. Cognitive flexibility and N2/P3 event-related brain potentials. Sci. Rep. 2020, 10, 9859. [Google Scholar] [CrossRef]
- Pourmazaherian, M.; Baqutayan, S.; Idrus, D. The Role of the Big Five Personality Factors on Accident: A Case of Accidents in Construction Industries. J. Sci. Technol. Innov. Policy 2021, 7, 34–43. [Google Scholar] [CrossRef]
- Staw, B.M.; Barsade, S.G. Affect and managerial performance: A test of the sadder-but-wiser vs. happier-and-smarter hypotheses. Adm. Sci. Q. 1993, 38, 304–331. [Google Scholar] [CrossRef]
- Loughnane, G.M.; Newman, D.P.; Bellgrove, M.A.; Lalor, E.C.; Kelly, S.P.; O'Connell, R.G. Target Selection Signals Influence Perceptual Decisions by Modulating the Onset and Rate of Evidence Accumulation. Curr. Biol. 2016, 26, 496–502. [Google Scholar] [CrossRef]
- Wallace, J.C.; Vodanovich, S.J. Workplace Safety Performance: Conscientiousness, Cognitive Failure, and Their Interaction. J. Occup. Health Psychol. 2003, 8, 316–327. [Google Scholar] [CrossRef]
- Boyce, C.J.; Wood, A.M. Personality prior to disability determines adaptation: Agreeable individuals recover lost life satisfaction faster and more completely. Psychol. Sci. 2011, 22, 1397–1402. [Google Scholar] [CrossRef]
- Beaty, R.E.; Kaufman, S.B.; Benedek, M.; Jung, R.E.; Kenett, Y.N.; Jauk, E.; Neubauer, A.C.; Silvia, P.J. Personality and complex brain networks: The role of openness to experience in default network efficiency. Hum. Brain Mapp. 2016, 37, 773–779. [Google Scholar] [CrossRef]
- Matzler, K.; Bidmon, S.; Grabner-Kräuter, S. Individual determinants of brand affect: The role of the personality traits of extraversion and openness to experience. J. Prod. Brand Manag. 2006, 15, 427–434. [Google Scholar] [CrossRef]
Related Works | Methods Used in the Related Work | Methods Used in the Present Study |
---|---|---|
Wang et al. (2019) [47] | A total of 30 potential indicators at three risk levels; three optimal indicators. | A number of models were obtained using regression in supervised machine learning. |
Ke et al. (2021) [49] | The voltage, time–frequency magnitude, and indicators of frequency bands were calculated; SVM. | A nested model containing inner and outer loops was established in which the inner loop established a sparse regression model and the outer loop set a lockbox. The optimal regression model was found by changing the p-value threshold set by the inner loop. |
Jebelli et al. (2018) and Noghabaei et al. (2021) [48] | The obtained electroencephalography data were classified, and the highest classification accuracy with a Gaussian SVM was obtained. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Liao, P.-C. Personality Assessment Based on Electroencephalography Signals during Hazard Recognition. Sustainability 2023, 15, 8906. https://doi.org/10.3390/su15118906
Wang M, Liao P-C. Personality Assessment Based on Electroencephalography Signals during Hazard Recognition. Sustainability. 2023; 15(11):8906. https://doi.org/10.3390/su15118906
Chicago/Turabian StyleWang, Mohan, and Pin-Chao Liao. 2023. "Personality Assessment Based on Electroencephalography Signals during Hazard Recognition" Sustainability 15, no. 11: 8906. https://doi.org/10.3390/su15118906
APA StyleWang, M., & Liao, P.-C. (2023). Personality Assessment Based on Electroencephalography Signals during Hazard Recognition. Sustainability, 15(11), 8906. https://doi.org/10.3390/su15118906