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Abstract: Hazard recognition assisted by human–machine collaboration (HMC) techniques can facili-
tate high productivity. Human–machine collaboration techniques promote safer working processes
by reducing the interaction between humans and machines. Nevertheless, current HMC techniques
acquire human characteristics through manual inputs to provide customized information, thereby in-
creasing the need for an interactive interface. Herein, we propose an implicit electroencephalography
(EEG)-based measurement system to automatically assess worker personalities, underpinning the
development of human–machine collaboration techniques. Assuming that personality influences
hazard recognition, we recorded the electroencephalography signals of construction workers and
subsequently proposed a supervised machine-learning algorithm to extract multichannel event-
related potentials to develop a model for personality assessment. The analyses showed that (1) the
electroencephalography-assessed results had a strong correlation with the self-reported results; (2) the
model achieved good external validity for hazard recognition-related personality and out-of-sample
reliability; and (3) personality showed stronger engagement levels and correlations with task per-
formance than work experience. Theoretically, this study demonstrates the feasibility of assessing
worker characteristics using electroencephalography signals during hazard recognition. In prac-
tice, the personality assessment model can provide a parametric basis for intelligent devices in
human–machine collaboration.

Keywords: hazard recognition; Big Five traits; electroencephalogram; machine learning; assessment

1. Introduction

Serious accidents and increased casualty rates in the construction industry are an
increasing concern. In the United States, less than 5% of the workforce is employed in con-
struction; however, the industry accounts for one in five work-related deaths (OSHA, 2018),
many of which are caused by human factors (Beus et al., 2015) [1]. The system safety
theory suggests that human recognition ability is limited; therefore, the human perception
of hazards is likely to be biased or even incorrect (Senders et al., 1985 [2]; Woodcock,
2014 [3]). This is a significant reason why human factors contribute to accidents. Current
research aims to improve the effectiveness of hazard identification by utilizing machines to
assist in the process of human hazard recognition (Martinez-Marquez et al., 2021 [4]) as
the first step toward the prevention of accidents. However, the process of developing a
human–machine collaboration (HMC) is complex and requires matching individual charac-
teristics to improve its effectiveness (Jeelani et al., 2017 [5]). Studies have revealed that HMC
is more expensive because of the limited understanding of the psychological mechanisms
of engineering hazards (Namian et al., 2018 [6]). Therefore, it is necessary to develop an
efficient machine-driven hazard identification process. This can be achieved by integrating
human personality, behavior, and cognitive factors into a machine (Villani et al., 2018 [7]).

Studies have assessed the influence of worker personalities (Hasanzadeh et al., 2019 [8]),
safety risk perception (Namian et al., 2016 [9]; Pandit et al., 2019 [10]), behavior (Jin et al.,
2019 [11]), knowledge (Namian et al., 2016 [9]), and attention (Jeelani et al., 2018 [12]) on
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the hazard recognition process. Personality is defined as a collection of behavioral, cog-
nitive, and affective models that have evolved from biological and environmental factors
(Philip & Gerald, 2009 [13]). As an essential psychological trait that affects human percep-
tion (Gao et al., 2020 [14]), attention (Jeelani et al., 2018 [12]), and other factors, personality
exerts an important influence on an individual’s hazard recognition ability. However, many
studies have relied on questionnaires (De Schutter, 2021 [15]), social networking platforms
(Bhardwaj et al., 2016 [16]; Connelly & Ones, 2010 [17]), and surveys to obtain information
on personality. These methods increase labor and time costs and carry the potential for
falsification. Therefore, recent research has identified the intuitive (physiologically driven)
HMC technique as a key area for future research (Villani et al., 2018 [7]).

Our study aimed to identify personality traits related to an individual’s hazard recog-
nition process by extracting physiological signals using electroencephalography (EEG).
Furthermore, we attempted to develop an assessment model for worker personalities based
on brain activity during a hazard recognition task.

1.1. Literature Review
1.1.1. Personality Traits Influence Hazard Recognition Performance

Prior studies have shown that personality changes (and other psychological traits) af-
fect an individual’s responses to hazardous situations. Moreover, personality traits are con-
sidered individual characteristics that influence hazard identification (Gao et al., 2020 [14]).
Several relationships between personality traits and safety performance have been iden-
tified. With regard to agreeableness, it has been suggested that a higher level of agree-
ableness is linked to a greater propensity for teamwork, which is more conducive to
generating positive safety perceptions (Gao et al., 2020 [14]). Individuals with lower
agreeableness are more aggressive, and thus, more likely to be involved in hazardous
situations (Templer, 2012 [18]). Nonetheless, because agreeableness is primarily related
to teamwork (Mount et al., 1998 [19]), its relevance to features related to hazard identi-
fication, such as attention, is relatively weak (Hasanzadeh et al., 2019 [8]). The positive
correlation between conscientiousness and the frequency of workers shifting their atten-
tion to dangerous situations suggests that highly conscientious workers may be more
aware of danger and are better able to identify it than their less conscientious counterparts
(Hasanzadeh et al., 2019 [8]). This also indicates a strong correlation between conscien-
tiousness and hazard recognition. Individuals with high neuroticism are more likely to be
distracted, negative, and stressed, whereas individuals with low neuroticism tend to be
calmer and more relaxed (Costa Jr et al., 1986 [20]). Neuroticism influences the attention
of workers and is one of the multiple factors that affect hazard recognition performance.
Currently, no consensus exists regarding the correlation between extraversion and safety.
Most studies have suggested that individuals with high extraversion are more susceptible
to external stimuli than their counterparts (Barrick et al., 2013 [21]; Christian et al., 2009 [22];
Jonah, 1997 [23]). Furthermore, extraverts perform less effectively on tasks that require
vigilance (Koelega, 1992 [24]), and they may conduct tasks with less effort than introverts,
suggesting that extraverts are more likely to engage in hazardous situations and have a
lower level of hazard recognition. However, this also suggests that individuals with high
extraversion often ask for more instructions when determining safety risks, which increases
their awareness of their situation (Henning et al., 2009 [25]), thereby making them more
likely to recognize hazards. The relationship between openness and hazard recognition
performance is predominantly reflected in the fact that open individuals may focus on
scenes to gain information from hazardous stimuli (Costa Jr et al., 1986 [20]), resulting in
better hazard recognition performance.

1.1.2. Limitations of Self-Reporting for Personality

The Big Five trait theory is a well-known classification of personality traits (Roth-
mann & Coetzer, 2003 [26]). Initially developed in the 1990s, this theory identifies five
factors, typically referred to as openness, conscientiousness, extraversion, agreeableness,
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and neuroticism (Costa & McCrae, 1992 [27]). Many current statistics on the Big Five
traits rely on the statistical scales of these traits, testing an individual by the conformity of
choice and relevant descriptions (Plaisant et al., 2010 [28]). The questionnaire developed
for the scale is widely accepted in the psychology community (Gosling et al., 2003 [29]).
Accordingly, social networking platforms solicit and assess the personalities of individuals
using this tool (Bhardwaj et al., 2022 [30]). However, because the personality question-
naire results derived from the scale rely on the participant’s self-reported values, they
can easily be falsified (Viswesvaran & Ones, 1999 [31]). For example, a worker may
deliberately embellish his/her answers in areas, such as responsibility and concentra-
tion, when answering a personality questionnaire to improve their personality score and
make it easier for them to get a job. This for-profit embellishment makes it difficult to
obtain true personality data in practice. Therefore, research has called for alternative
methods to replace self-reported personality measures (Morgeson et al., 2007 [32]), includ-
ing indirect measures of participants’ personalities by observing their behavioral models
(Gawronski & Houwer, 2014 [33]). Accordingly, herein, we attempted to develop a system
to automatically assess worker personalities during hazard recognition tasks.

1.1.3. Refining Individual Characteristics Based on EEG Signals

An EEG captures brain wave models by recording electrical activity on the scalp, which
is convenient but time-consuming to measure (Chatterjee et al., 2013 [34]), and provides
information on an individual’s brain activity characteristics and psychophysiological states
(Sulavko et al., 2020 [35]). Previous research has also shown that all Big Five personality
traits are linked to emotional responses (Letzring & Adamcik, 2015 [36]) and can influence
an individual’s emotional experience; for example, extraverts are more likely to experience
positive emotions than introverts (John et al., 2008 [37]). Further studies of event-related po-
tentials (ERPs) have suggested that personality influences an individual’s neural response
to emotional stimuli (Lou et al., 2016 [38]). EEG signals have also been used to extensively
study the extraction of human emotions (Miranda-Correa, 2021 [39]; Tian, 2021 [40]), behav-
iors (Jin et al., 2021 [41]), and cognition (Landau et al., 2020 [42]; Rogala et al., 2021 [43]).
The stable relationship between personality and EEG signals ensures the feasibility of
personality inference based on brain activity (Zhao et al., 2018 [44]).

Recent relevant studies have relied on the EEG and other methods to assess personality
traits. For example, Baumgartl et al., (2020 [45]) accurately identified extraverts with a
performance rating accuracy of 67% and achieved a balanced accuracy of 60.6% with
resting-state EEG data. Subramanian et al., (2018 [46]) used an EEG to perform a binary
evaluation of emotions and personality while Zhao et al., (2018 [44]) classified the Big Five
traits of participants by capturing their EEG signals during material viewing. Therefore,
the evaluation of EEG signals is a viable method to assess and predict personality traits.
However, these studies commonly provided binary judgments, such as high or low levels
of personality, which are less applicable than the refined judgments presented by the scores
obtained from the original questionnaire.

Many studies have been conducted on people from the construction industry to
monitor their status at construction sites using EEG data. Wang et al., (2019 [47]) used
wavelet packet decomposition to process EEG data and measure construction workers’
risk perception based on their level of alertness, and subsequently provide quantitative
indicators of vigilance. Jebelli et al., (2018 [48]) took a fixed-window approach and used a
Gaussian support vector machine (SVM) to classify the collected EEG signals, generating a
model that could be used to detect stress in workers. Ke et al., (2021 [49]) used EEG data to
investigate the correlation between distraction and brain activity, providing a method for
the objective monitoring of worker distraction. Some studies have also focused on hazard
identification. Noghabaei et al., (2021 [50]) combined data from EEGs and eye tracking
in an immersive virtual environment and classified it using a Gaussian SVM to predict
when a safety hazard could be successfully identified. Chen et al., (2022 [51]) extended
the results of previous studies on perceptual decision-making by establishing a scenario
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experiment simulated with high realism. We have summarized these studies in Table 1.
This also provided an explanation for the possible existence of different neural-influencing
mechanisms in individual workers through intrinsic factors of risk propensity and extrinsic
factors of injury experience. In terms of research participants, the aforementioned studies
focused on the short-term states of workers, such as vigilance, stress, distraction, and
hazard recognition time in construction sites, and considered personality as an essential
attribute of workers that has developed over time. In addition, the continuous personality
assessment values also showed the same form as the scores obtained from the manual
questionnaire collection, thereby allowing for the resolution of the binary problem in
automated personality collection.

Table 1. Comparison with previous studies.

Related Works Methods Used in the Related Work Methods Used in the Present Study

Wang et al., (2019) [47] A total of 30 potential indicators at three risk
levels; three optimal indicators.

A number of models were obtained using
regression in supervised machine learning.

Ke et al., (2021) [49]
The voltage, time–frequency magnitude, and

indicators of frequency bands were
calculated; SVM.

A nested model containing inner and outer
loops was established in which the inner loop
established a sparse regression model and the

outer loop set a lockbox. The optimal
regression model was found by changing the

p-value threshold set by the inner loop.
Jebelli et al., (2018) and

Noghabaei et al., (2021) [48]

The obtained electroencephalography data
were classified, and the highest classification
accuracy with a Gaussian SVM was obtained.

SVM, support vector machine.

2. Methodology
2.1. Overview

In the experiment, we recorded the EEG signals of workers during construction site
image observation. Thereafter, we extracted the ERPs and used a method that included
inner and outer loops to train the assessment model to completion (Figure 1). The model
properties were subsequently evaluated.

1. The correlation between the EEG-assessed and actual values of a worker’s personality
was analyzed to assess the assessment properties of the model.

2. The EEG-assessed results were used to assess other participant characteristics and
verify the external validity of the model.

3. The model was applied to a lockbox to evaluate the out-of-sample reliability.
4. Several types of data were extracted to train the assessment model for further validation.
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Figure 1. Experimental flowchart. (a) EEG data recording; (b) model construction. EEG, electroen-
cephalography and ERP, event-related potential.
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2.2. Participants and Materials

A total of 85 workers from the construction site of an office building in Beijing partic-
ipated in the experiment. From them, 24 workers were excluded because of issues with
data recording, physical and experiential factors, contradictory responses, dissatisfaction
with the recorded EEG signals, or extracted ERP features. Finally, 61 male participants with
an average age of 41.1 years (range: 21–60 years) were included in the study. As image
stimuli, we selected 60 safety and 60 hazard images captured at actual construction sites.
The images contained various construction scenes and hazard types that would typically
cause solid visual stimuli. The safety conditions were recorded using images after hazard
rectification (Figure 2). All images were obtained from a previously developed database
(Xu et al., 2019 [52]). Information on the participants’ personalities was obtained through a
questionnaire in which the participants completed a 7-point scale of behavioral and psy-
chological traits in everyday life (the questionnaire was illustrated in the form of a cartoon
villain, and all images were easy to understand in everyday life). A score of 1 indicated
extremely unlikely, while a score of 7 indicated extremely likely.
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Figure 2. A pair of sample stimuli in the experiment. (A) Hazardous: There is no safety net at
the outer edge of the unloading steel platform. (B) Safe: After rectification, the outer edge of the
unloading steel platform is equipped with a safety net.

2.3. Experimental Procedure

The experiment was conducted in the office of scholars at the Tsinghua University.
The participants completed a questionnaire before the experiment began. The main ex-
periment consisted of 60 groups of hazardous and safe images and followed a specific
procedure, which has been previously described (Wang et al., 2022 [53]).
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2.3.1. EEG Signal and Preprocessing

We used a portable wireless EEG signal amplifier (NeuSen.W32, Neuracle, China) to
record the EEG data with a sampling frequency of 250 Hz. The electrodes were placed
according to the international 10–20 system, and the signals were recorded continuously
on 30 EEG channels. The EEG signal used CPz as the reference electrode and FPz as the
ground electrode. During the experiment, the resistance values of all electrodes were
maintained below 10 kOhm. The raw EEG data were processed using a bandpass filter
(1–30 Hz). An independent component (IC) analysis was applied to the continuous EEG
data to eliminate artifacts resulting from muscle movements, eye movements, and other
noise. For every participant, we removed an average of one to three ICs associated with
artifacts. The ICs were then back-projected onto each channel to reconstruct high-quality
data. The trials were cut to 1200 ms (200 ms before stimulation to 1000 ms after stimulation),
and all trials with potential amplitudes exceeding ±100 µV were eliminated to avoid the
possible influence of artifacts. After processing, nine participants were excluded due to a
trial retention of less than 60%. The safe and hazardous data of each remaining participant
were averaged and calibrated by the baseline.

2.3.2. Feature Selection and Model Training

The experiment focused on components related to the visual task, which included
P1, N2, and P3 (120–180, 180–240, and 260–340 ms, respectively). We performed bivariate
Spearman correlations between the average amplitudes of the three components for the
safe and hazardous stimuli and calculated the Big Five trait questionnaire-based results to
test the feasibility of using ERPs to initially assess the Big Five traits. All channels within
each region of interest (ROI) were averaged to test the relationship between the mean ERP
amplitudes of each ROI and personality.

For the assessment of personality, the regression model was trained using full-channel po-
tential values at the total sampling points averaged for each of the two types of stimuli: safe and
hazardous. Generally, the full-channel ERP data provided detailed spatial and temporal in-
formation to assess personality traits. The average multichannel ERP across the two types
of stimuli ultimately contained 2 (image type) × 30 (EEG channels) × 300 (sampling points)
= 18,000 features (per participant). Nested cross-validation was used to ensure the reliability
of the model as the dimension of the feature was much larger than the size of the sample
(Cu et al., 2016 [54]). The cross-validation model contained two loops: inner and outer. The in-
ner model comprised a sparse regression model to select traits with potentially significant
contributions to the dependent variable (i.e., personality). Next, the selected features were
dimensionalized, and a p-value threshold was set to filter features that showed a strong cor-
relation with the personality values collected using the questionnaire. Notably, we used the
p-value, rather than the r-value, for the following reasons: (1) because all correlation analyses
were performed with the same sample size, the p- and r-values were monotonically correlated
and (2) the p-value had strong statistical significance and was applicable to multiple channels.
Moreover, we set the p-value as the basis of the nested models. Using elastic network regular-
ization, the features that passed the screening were applied to build the regression model; the
alpha parameter was empirically set at 0.75 (Zou & Hastie, 2005 [55]). The outer loop changed
the p-value in the inner loop to select the optimal model. The p-value threshold traversed
from 0.01 to 0.1 in increments of 0.01. For each set p-value threshold, the external loop was
iterated N times, excluding the data of one participant each time; the data of the remaining N-1
participants were used as the training set to build the regression model (i.e., the internal loop),
and this internal loop was applied to the participant left out to obtain the cross-validation
results (predicted working age values). To assess the performance of each model, we calculated
the Spearman correlation coefficients between the EEG-assessed and actual personalities of all
participants. In the optimal model, the highest coefficient was 3000 cycles. The optimal models
for the five personalities showed p-values of 0.02, 0.07, 0.08, 0.05, and 0.07, and the number of
features selected for these models was 108, 78, 69, 53, and 128, respectively.
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2.3.3. Evaluation of the EEG-Assessed Values

The assessment accuracy of the model was evaluated. We calculated the correlated
indicators of the EEG-assessed and actual values for all participants and their subgroups.
Next, we analyzed the external validity by asking all participants to answer whether the
images were safe by pressing a button. To compare the accuracy of the assessment of these
indicators, the responses and past casualty experiences were counted, and subsequently,
the out-of-sample reliability was calculated. Prior to the model training, we withdrew
data from eight participants to form a lockbox. Then, further validation was performed.
We built a separate assessment model for the specific type of work hazard at a given height
(ERP data from only 56 work-at-height trials were selected). The specific population with a
lower education level (data from participants with junior high school or junior high school
education and below) and the specific features of the classical ERP components were used
to compare the assessment performance of the new model with that of the original model.

3. Results
3.1. Self-Assessed Personality Results

We recorded the personalities of the 61 workers using the Big Five questionnaire
(Figure 3). There were no distinct differences in the Big Five traits between all participants
and those with a low educational level. The results of the Big Five traits (agreeableness,
conscientiousness, neuroticism, extraversion, and openness) were as follows: all partici-
pants: mean = 4.03, 4.10, 5.42, 5.52, and 4.29, respectively; standard deviation (SD) = 1.03,
1.06, 0.80, 1.00, and 1.20, respectively; participants with a low educational level: mean
= 3.95, 4.06, 5.40, 3.51, and 4.21, respectively; SD=1.06, 0.65, 0.80, 1.01, and 1.18, respectively;
t(113) = 0.39, 0.28, 0.14, 0.05, and 0.33, respectively; p = 0.70, 0.78, 0.89, 0.96, and 0.75,
respectively.
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education level (red).

3.2. Behavioral Results

A total of 60 safe and 60 hazardous stimuli images were randomly presented to the
participants who expressed their judgments by pressing a button. The hazard recognition
process required the participants to retrieve the corresponding information from the images
and make judgments. The average response time of the participants was 4.40 ± 1.28 s,
and the average correct response rate was 61.81 ± 6.58%, indicating that the participants
maintained their concentration throughout the experiment.

3.3. ERP Results

The total sample was divided into three groups according to the personality scores:
high, medium, and low. The mean ERP images for all channels in Figure 4 show that the
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significant ERP components caused by the experimental stimuli appeared at 120–180 (P1),
180–240 (N2), and 260–340 ms (P3).
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We identified some components with significant correlations (Figure 5). With the safe
stimuli, the P1 component in the parietal–occipital area of openness (r = 0.247, p < 0.1)
showed a positive correlation with the actual value; the N2 component in the parietal–
occipital area of agreeableness (r = −0.270, p < 0.05), neuroticism (r = −0.233, p < 0.10), and
openness (r = −0.240, p < 0.10) showed a negative correlation with the actual value; and
the P3 amplitude of the central area of agreeableness (r = 0.297, p < 0.05) showed a positive
correlation with the actual value. Regarding the hazardous stimuli, the N2 amplitude in
the parietal–occipital area of agreeableness (r = −0.284, p < 0.05), neuroticism (r = −0.227,
p < 0.10), extraversion (r = −0.217, p < 0.10), and openness (r = −0.246, p < 0.10) showed
a significant negative correlation with the actual value; meanwhile, the P3 amplitude in
the parietal–occipital area of agreeableness (r = −0.342, p < 0.05) and openness (r = −0.297,
p < 0.05) showed a significant negative correlation with the actual value.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 18 
 

P3 amplitude of the central area of agreeableness (r = 0.297, p < 0.05) showed a positive 

correlation with the actual value. Regarding the hazardous stimuli, the N2 amplitude in 

the parietal–occipital area of agreeableness (r = −0.284, p < 0.05), neuroticism (r = −0.227, p 

< 0.10), extraversion (r = −0.217, p < 0.10), and openness (r = −0.246, p < 0.10) showed a 

significant negative correlation with the actual value; meanwhile, the P3 amplitude in the 

parietal–occipital area of agreeableness (r = −0.342, p < 0.05) and openness (r = −0.297, p < 

0.05) showed a significant negative correlation with the actual value. 

 

Figure 4. ERP image of the Big Five traits (mean of all channels). 

 

 

Figure 5. Correlation between the electroencephalography-assessed and self-reported Big Five 

traits. The black boxes indicate the significant parts. 

3.4. ERP-Based Personality Assessment Model 

To evaluate the validity of the model, we calculated the Spearman’s correlation coef-

ficients between the EEG-assessed and actual personality traits. The ERP features retained 

in the sparse regression model were filtered to include not only the time windows ana-

lyzed above but also some features in the prestimulus and postprocessing phases (Figure 

6). The EEG-assessed values for each personality trait showed a significant correlation 

with the actual values in the assessment model (Figure 7). 

The absolute error between the assessment and actual values was basically within 1.0 

on the 7-point scale (Figure 8a), indicating that the model could assess personalities accu-

rately. 

0 200 400 600 800 1000

Fz

Cz

Pz

Oz

sa
fe

0 200 400 600 800 1000

Fz

Pz

0 200 400 600 800 1000 0 200 400 600 800 1000

0 200 400 600 800 1000

Fz

Cz

Pz

Oz

h
a
za

rd

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Agreeable Conscientiousness Neuroticism OpennessExtraversion

1000
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 5. Correlation between the electroencephalography-assessed and self-reported Big Five traits.
The black boxes indicate the significant parts.

3.4. ERP-Based Personality Assessment Model

To evaluate the validity of the model, we calculated the Spearman’s correlation coeffi-
cients between the EEG-assessed and actual personality traits. The ERP features retained in
the sparse regression model were filtered to include not only the time windows analyzed
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above but also some features in the prestimulus and postprocessing phases (Figure 6).
The EEG-assessed values for each personality trait showed a significant correlation with
the actual values in the assessment model (Figure 7).
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The absolute error between the assessment and actual values was basically within 1.0 on
the 7-point scale (Figure 8a), indicating that the model could assess personalities accurately.
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3.5. External Validity

We evaluated the behavioral performance of all participants and used it to assess
the external validity of the model. All participants identified the images presented in
the experiment as safe or hazardous and reported their casualty experience by filling
out the questionnaire. We built regression models between the EEG-assessed and actual
values of the three indicators. As shown in Figure 9, (1) the EEG-assessed values of
conscientiousness, neuroticism, and extraversion were relatively close to the actual values
in terms of goodness-of-fit; (2) the correlations between conscientiousness and all three
indicators were high, indicating that conscientiousness may influence hazard recognition
performance; and (3) extraversion also had a more significant correlation with the hit rate for
hazards, indicating that extraversion has some effect on hazard recognition performance.
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3.6. Out-of-Sample Reliability

Eight presampled participants were randomly selected from the database for valida-
tion. Overall, the analysis showed that the absolute errors between the EEG-assessed and
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actual values were mainly within 1.0 on the 7-point scoring system (Figure 8b). The accuracy
of the model in the lockbox was close to that of the normal sample.

3.7. Further Verification

The samples with high-altitude work and a low educational level were examined. The anal-
ysis revealed a high correlation between the EEG-assessed and actual values (Figure 10).
This indicates that neither a specific group, such as those with a low educational level, nor
a specific type of hazard, such as high-altitude work, interfered with the constructed model.
Additionally, an attempt was made to assess the validity of this model by using typical ERP
components to construct it. Specifically, the input features were set as the average ampli-
tudes of the ERP components in the time window. The model was trained using the same
machine-learning algorithm; however, the accuracy of the model was relatively low (Figure 11),
demonstrating the necessity of including complete spatial and temporal ERP inputs.
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4. Discussion

In this study, we established an assessment model to evaluate workers’ personalities
by intuitively extracting physiological signals to replace the traditional questionnaire with
the aim of avoiding falsification and reducing the HMC interface. The intuitive extraction of
physiological signals using EEG was convenient, had a short processing time, and required
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only simple experimental stimuli. In terms of the accuracy of the assessment, our model
had a higher reliability and more comprehensive range of application scenarios than those
in prior studies conducted with only intergroup model comparisons. It could automatically
assess individual characteristics, thereby providing a basis for the input of human-related
information into an HMC. The correlation analysis showed that the correlation coefficients
between the EEG-assessed and actual values of each personality were all within 0.6–0.8, and
the model performed better than the correlation values obtained from other EEG-related
studies (Blankertz et al., 2010 [56]; Ihara et al., 2021 [57]). In the further validation analysis,
the model was able to assess personality in different populations and under different
hazard types, further illustrating its reliability and broad application.

In our study, the EEG-assessed conscientiousness values showed a significant correlation
with the safe stimuli and a significant negative correlation with the hazardous stimuli. This is
consistent with previous findings that conscientiousness and hazards are negatively correlated
with each other (Beus et al., 2015 [1]; Eustace et al., 2018 [58]). Meanwhile, extraversion and
neuroticism were correlated with the N2 component, which has been previously reported
to be strongly associated with recognition tasks (Kopp et al., 2020 [59]). Pourmazaherian
et al., (2018 [60]) stated that individuals with lower neuroticism would not focus on worrying
when performing a task and would have better potential to concentrate on their tasks when
compared with their counterparts. This is in line with the correlation between neuroticism
and the N2 component derived in our study. Several studies have also suggested that
extraverted individuals are generally good decision-makers because they actively seek and
ask for more information to make decisions; accordingly, this makes them more aware of their
situations (Staw & Barsade, 1993 [61]). This is consistent with previous findings that the N2
component reflects an individual’s tendency to gather information regarding a task, and a
greater N2 amplitude corresponds to a more substantial processing of the target information
(Loughnane et al., 2016 [62]). However, these aforementioned correlations are relatively weak
(0.217–0.342) and challenging to use in personality assessment. Contrastingly, machine-
learning algorithms can process a large number of ERP features. In another study, we focused
on the significant correlation between the N2 and P3 components and work experience.
Notably, personality was correlated not only with the N2 component but also with work
experience; similarly, personality correlated with the P3 component. This is consistent with
previous findings that the P3 component is related to the degree of engagement in cognitive
tasks (Kimura et al., 2008). The stronger correlations with the P3 component suggest that
personality could be a better indicator of task performance than work experience.

While training the feature model with a single type of stimulus, the accuracy for the
five personalities was 0.54, 0.64, 0.56, 0.69, and 0.5 for the safe stimuli and 0.51, 0.68, 0.38,
0.56, and 0.49 for the hazardous stimuli, respectively. The overall correlations obtained
with only the safe or hazardous stimuli were both good but lower than those with both
safe and hazardous stimuli. The models of conscientiousness under one and two stimuli
were comparable, indicating that conscientiousness is better assessed from both the as-
pects of safety and hazard. Hasanzadeh et al., (2019 [8]) argued that workers with high
conscientiousness are less likely to ignore hazards because they allocate more attention to
identifying hazards on-site than their counterparts. Conversely, Wallace and Vodanovich
(2003 [63]) showed that the failure to identify hazards was more likely to occur in situations
with lower levels of conscientiousness than in those with higher levels. The model per-
formed better for conscientiousness with hazardous stimuli, except for other personalities,
which performed better with safe stimuli. This indicates that conscientiousness is more
accurate when assessing based on identifying hazards rather than safety, implying that
individuals with high conscientiousness tend to have better hazard recognition abilities
than their counterparts.

Regarding external validity, the EEG-assessed and actual values of conscientiousness,
neuroticism, and extraversion were closely related to the indicators of casualty experience,
hit for hazard recognition, and false alarm, thereby reflecting the potential to assess practi-
cal hazard recognition ability. The EEG-assessed and actual values of conscientiousness
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correlated with all performance indicators, indicating that conscientiousness has some
advantages in assessing workers’ hazard recognition ability. Combined with the impor-
tance of conscientiousness in the hazard recognition process mentioned earlier, we could
consider developing worker conscientiousness in future safety training to improve hazard
recognition performance. In addition, extraversion was correlated with the hits for haz-
ard recognition, indicating that extraversion influences the workers’ ability to accurately
identify hazards. This may be related to the fact that extraverted individuals often request
more information to increase their awareness of the situation when making decisions
(Staw & Barsade, 1993 [61]), which makes them more likely to identify hazards. This is
consistent with the personality traits. The effects of agreeableness and openness on hazards
are primarily reflected in teamwork (Boyce & Wood, 2011 [64]; Mount et al., 1998 [19]) and
conservatism in practices (Beaty et al., 2016 [65]; Matzler et al., 2006 [66]). Our experiment
was modeled by the EEG recordings of workers’ hazard recognition processes. The related
process rarely implicated these aspects and therefore performed poorly in assessing these
two personalities. In contrast, conscientiousness and extraversion were significantly asso-
ciated with and influenced the workers’ attention allocation and search strategies when
exposed to hazards. Workers with higher commitments allocate their limited attentional
resources appropriately to identify fall hazards in images (Hasanzadeh et al., 2019 [8]).
Individuals with very high neuroticism may also become distracted because of anxiety and
worry. These characteristics are closely related to hazard recognition.

This study had some limitations. First, the proposed assessment model was based on
the EEG signals obtained during the hazard recognition process; therefore, the assessment
ability was limited. For personalities that were less related to the hazard identification process
in this experiment, the performance was not as good as that of other personalities. In the
future, the EEG method should be applied to more hazard recognition processes to better
assess personality traits. Second, the ERP features extracted from the EEG signals were used
as the basis for model building. Other information in the EEG signals could be mined to
study the worker differences. Third, although this study used machine-learning methods
and built a lockbox for research, the experimental data were all from the same experiment;
test–retest experiments need to be conducted in the future to verify the reliability of the
model. Additionally, gaps remained between the models constructed in this study and their
practical application. For example, the experiment used static images as stimuli that could
not simulate the dynamics of an actual construction site. In the future, VR scenes could be
used as experimental stimuli to obtain EEG signals closer to that which would be obtained
from the actual construction site. Furthermore, personality monitoring during a task has high
requirements for both acquisition and computing equipment, and hardware matching and
artifacts should be fully considered in future practical applications.

Overall, we increased the analytical dimensions and compared them with the results
of our previous study (e.g., work experience) (Wang et al., 2022 [53]) by using an analyti-
cal method to correlate various personality dimensions with EEG components and task
performance. Thereafter, we compared these correlations across personality dimensions,
identifying salient individual characteristics (conscientiousness, neuroticism, and extraver-
sion) that indicate task performance. Our results indicate that future research can use the
proposed analytical approach to measure multidimensional dispositional factors and future
intuitive HMC technologies could capture various combinations of components and assess
different dispositional factors simultaneously.

5. Conclusions

In this study, we used a machine-learning approach to process the EEG signals of workers
during image observation to build a model for assessing their scores for the Big Five traits. The
assessment results derived from the proposed model were correlated with the scale results. The
external validity confirmed that the model had a good assessment performance for the Big Five
traits. Theoretically, this study demonstrated the feasibility of assessing worker characteristics
using their EEG signals during hazard recognition. In the future, this method could be
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applied to assess various individual characteristics and provide a research basis for individual
differences. Moreover, we solved the risk of overfitting caused by the high-dimensional
features of EEG signals. Cross-validation, namely, Leave-One-Out Cross Validation and
lockbox validation, was performed to ensure the reliability of the model. Furthermore, we
constructed both inner and outer loops. The inner loop reduced the dimensionality of the
high-dimensional features by building a sparse regression model and filtered the features by
setting a correlation gradient with a p-value threshold. The outer loop contained a leave-one-
out validation algorithm that sought the optimal regression model by changing the p-value
threshold set in the inner loop. The established dual-validation model can provide a basis for
future research.

In practice, the personality assessment model established herein could provide a para-
metric basis for intelligent devices in HMC. Workers’ personality information can then be
obtained directly by monitoring their EEG signals during tasks, without the need for prior
investigation and input of personality parameters, which can reduce the HMC interface. Si-
multaneously, the model can allow intelligent devices in HMC to provide idiosyncratic and
effective information to workers, improve hazard recognition performance, and contribute
to the development of intuitive HMC technologies. The proposed model promotes an auto-
mated personality assessment during hazard recognition tasks and is more efficient than a
self-reported approach. The assessment results can serve as a reference for targeted worker
retraining and task allocation to improve performance in construction safety.
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