Investigating the Environmental Benefits of Novel Films for the Packaging of Fresh Tomatoes Enriched with Antimicrobial and Antioxidant Compounds through Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Antioxidant and Antimicrobial Properties of the Packaging Films
2.2. Shelf Life Measurements
2.3. Integration of Shelf-Life Extension into Food Waste Calculation
- SLR—Shelf-life ratio;
- RSL—Reference Shelf life (days) refers to the scenario with the worst performance concerning shelf-life;
- SSL—Studied Shelf life (days) refers to the shelf life of the alternatives examined.
2.4. LCA Methodology
2.4.1. Goal and Scope Definition
- ▪
- System boundaries
- -
- Scenario a: The reference scenario using plain packaging film PP film (PF);
- -
- Scenario b: The alternative scenario using a PP film with incorporated tomato leaf-stem extract and Flavomix through extrusion (EF);
- -
- Scenario c: The alternative scenario using a PP film coated with zein nanofibers containing the bioactive compounds of Scenario b through electrospinning (CF).
- ▪
- Functional unit and reference flow
2.4.2. Life Cycle Inventory
- ▪
- Agricultural production
- ▪
- Production of packaging material
- ▪
- Tomato packaging
- ▪
- Storage at retail
- ▪
- Household storage
- ▪
- End-of-Life treatment
- ▪
- Transportation
2.4.3. Life Cycle Impact Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Food Packaging Sustainability a Guide for Packaging Manufacturers, Food Processors, Retail. Based on the Results of the Project “STOP Waste—SAVE Food”. Vienna, Austria. 2020. Available online: https://denkstatt.eu/wp-content/uploads/2020/08/guideline_stopwastesavefood_en_220520.pdf (accessed on 31 March 2023).
- Panaretou, V.; Tsouti, C.; Moustakas, K.; Malamis, D.; Mai, S.; Barampouti, E.M.; Loizidou, M. Food Waste Generation and Collection. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 43–105. ISBN 978-0-12-819148-4. [Google Scholar]
- FAO. The State of Food and Agriculture. Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131789-1. [Google Scholar]
- FAO. Global Food Losses and Food Waste: Extent, Causes and Prevention; Study Conducted for the International Congress Save Food; Gustavsson, J., Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; ISBN 978-92-5-107205-9. [Google Scholar]
- Valta, K.; Sotiropoulos, A.; Malamis, D.; Kosanovic, T.; Antonopoulou, G.; Alexandropoulou, M.; Jonuzay, S.; Lyberatos, G.; Loizidou, M. Assessment of the Effect of Drying Temperature and Composition on the Biochemical Methane Potential of In-House Dried Household Food Waste. Waste Manag. Res. 2019, 37, 461–468. [Google Scholar] [CrossRef] [PubMed]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of Food Waste per Product Group along the Food Supply Chain in the European Union: A Mass Flow Analysis. Resour. Conserv. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Östergren, K.; Gustavsson, J.; Bos-Brouwers, H.; Timmermans, T.; Hansen, O.-J.; Møller, H.; Anderson, G.; O’Connor, C.; Soethoudt, H.; Netherlands, T.; et al. FUSIONS Definitional Framework for Food Waste; Full Report; 2014. Available online: https://www.eu-fusions.org/phocadownload/Publications/FUSIONS%20Definitional%20Framework%20for%20Food%20Waste%202014.pdf (accessed on 31 March 2023).
- Kumari, S.V.G.; Pakshirajan, K.; Pugazhenthi, G. Recent Advances and Future Prospects of Cellulose, Starch, Chitosan, Polylactic Acid and Polyhydroxyalkanoates for Sustainable Food Packaging Applications. Int. J. Biol. Macromol. 2022, 221, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Roberta, A.M.; Alejandra, P.G. Quorum Sensing as a Mechanism of Microbial Control and Food Safety. In Microbial Contamination and Food Degradation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 85–107. ISBN 978-0-12-811515-2. [Google Scholar]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential Oils as Additives in Active Food Packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-F.; Wong, W.-T. Design and Practical Considerations for Active Polymeric Films in Food Packaging. Int. J. Mol. Sci. 2022, 23, 6295. [Google Scholar] [CrossRef]
- Settier-Ramirez, L.; López-Carballo, G.; Hernandez-Muñoz, P.; Tinitana-Bayas, R.; Gavara, R.; Sanjuán, N. Assessing the Environmental Consequences of Shelf Life Extension: Conventional versus Active Packaging for Pastry Cream. J. Clean. Prod. 2022, 333, 130159. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Tzegkas, S.G.; Danezis, G.P. Nanomaterials in Food Packaging: State of the Art and Analysis. J. Food Sci. Technol. 2018, 55, 2862–2870. [Google Scholar] [CrossRef]
- Vigil, M.; Pedrosa-Laza, M.; Alvarez Cabal, J.; Ortega-Fernández, F. Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment. Sustainability 2020, 12, 7207. [Google Scholar] [CrossRef]
- Rezaiyan Attar, F.; Sedaghat, N.; Pasban, A.; Yeganehzad, S.; Hesarinejad, M.A. Modeling the Respiration Rate of Chitosan Coated Fresh In-Hull Pistachios (Pistacia Vera L. Cv. Badami) for Modified Atmosphere Packaging Design. Food Meas. 2022, 16, 1049–1061. [Google Scholar] [CrossRef]
- Rezaiyan Attar, F.; Sedaghat, N.; Pasban, A.; Yeganehzad, S.; Hesarinejad, M.A. Modified Atmosphere Packaging with Chitosan Coating to Prevent Deterioration of Fresh In-Hull Badami’s Pistachio Fruit. Chem. Biol. Technol. Agric. 2023, 10, 16. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B. Active Packaging. In Nanomaterials for Food Packaging; Elsevier: Amsterdam, The Netherlands, 2018; pp. 173–202. ISBN 978-0-323-51271-8. [Google Scholar]
- Yan, M.R.; Hsieh, S.; Ricacho, N. Innovative Food Packaging, Food Quality and Safety, and Consumer Perspectives. Processes 2022, 10, 747. [Google Scholar] [CrossRef]
- Alp-Erbay, E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. Food Eng. Rev. 2022, 14, 629–654. [Google Scholar] [CrossRef]
- Bahrami, A.; Delshadi, R.; Assadpour, E.; Jafari, S.M.; Williams, L. Antimicrobial-Loaded Nanocarriers for Food Packaging Applications. Adv. Colloid Interface Sci. 2020, 278, 102140. [Google Scholar] [CrossRef]
- Amor, G.; Sabbah, M.; Caputo, L.; Idbella, M.; De Feo, V.; Porta, R.; Fechtali, T.; Mauriello, G. Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods 2021, 10, 121. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active Packaging Films with Natural Antioxidants to Be Used in Meat Industry: A Review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Taoukis, P.; Tsironi, T. Smart Packaging for Monitoring and Managing Food and Beverage Shelf Life. In The Stability and Shelf Life of Food, 2nd ed.; Subramaniam, S., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Amsterdam, The Netherlands, 2016; pp. 141–168. ISBN 9780081004357. [Google Scholar] [CrossRef]
- Binder, J.L.L.M.; Gortsos, C.V. The European Banking Union: A Compendium; Nomos Verlagsgesellschaft: Baden-Baden, Germany, 2015; ISBN 978-1-5099-0956-8. [Google Scholar]
- Spada, A.; Conte, A.; Del Nobile, M.A. The Influence of Shelf Life on Food Waste: A Model-Based Approach by Empirical Market Evidence. J. Clean. Prod. 2018, 172, 3410–3414. [Google Scholar] [CrossRef]
- Amani, P.; Gadde, L.-E.; Amani, P.; Gadde, L.-E. Shelf Life Extension and Food Waste Reduction. In Proceedings of the 2015 International European Forum (144th EAAE Seminar), Innsbruck-Igls, Austria, 9–13 February 2015. [Google Scholar] [CrossRef]
- Read, Q.D.; Brown, S.; Cuéllar, A.D.; Finn, S.M.; Gephart, J.A.; Marston, L.T.; Meyer, E.; Weitz, K.A.; Muth, M.K. Assessing the Environmental Impacts of Halving Food Loss and Waste along the Food Supply Chain. Sci. Total Environ. 2020, 712, 136255. [Google Scholar] [CrossRef]
- Zainal Arifin, M.A.; Mohd Adzahan, N.; Zainal Abedin, N.H.; Lasik-Kurdyś, M. Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023, 12, 456. [Google Scholar] [CrossRef]
- Baysal, G.; Kasapbaşı, E.E.; Yavuz, N.; Hür, Z.; Genç, K.; Genç, M. Determination of Theoretical Calculations by DFT Method and Investigation of Antioxidant, Antimicrobial Properties of Olive Leaf Extracts from Different Regions. J. Food Sci. Technol. 2021, 58, 1909–1917. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and Intelligent Biodegradable Packaging Films Using Food and Food Waste-Derived Bioactive Compounds: A Review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Gharedaghi, J.; Aliakbarlu, J.; Tajik, H. Antioxidant Potential of Apple Pomace Extract and Its Efficacy in Alginate Coating on Chemical Stability of Rainbow Trout Fillet. Food Meas. 2020, 14, 135–141. [Google Scholar] [CrossRef]
- Kaanin-Boudraa, G.; Brahmi, F.; Wrona, M.; Nerín, C.; Moudache, M.; Mouhoubi, K.; Madani, K.; Boulekbache-Makhlouf, L. Response Surface Methodology and UPLC-QTOF-MSE Analysis of Phenolic Compounds from Grapefruit (Citrus ✕ Paradisi) by-Products as Novel Ingredients for New Antioxidant Packaging. LWT 2021, 151, 112158. [Google Scholar] [CrossRef]
- Kurek, M.; Hlupić, L.; Elez Garofulić, I.; Descours, E.; Ščetar, M.; Galić, K. Comparison of Protective Supports and Antioxidative Capacity of Two Bio-Based Films with Revalorised Fruit Pomaces Extracted from Blueberry and Red Grape Skin. Food Packag. Shelf Life 2019, 20, 100315. [Google Scholar] [CrossRef]
- Szabo, K.; Teleky, B.-E.; Mitrea, L.; Călinoiu, L.-F.; Martău, G.-A.; Simon, E.; Varvara, R.-A.; Vodnar, D.C. Active Packaging—Poly(Vinyl Alcohol) Films Enriched with Tomato By-Products Extract. Coatings 2020, 10, 141. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Procopio, D.; Di Gioia, M.L.; Barone, E. Valorization of Tomato Waste as a Source of Carotenoids. Molecules 2021, 26, 5062. [Google Scholar] [CrossRef]
- Yun, D.; Liu, J. Recent Advances on the Development of Food Packaging Films Based on Citrus Processing Wastes: A Review. J. Agric. Food Res. 2022, 9, 100316. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915798-8. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Deconinck, K.; Toyama, L. Environmental Impacts along Food Supply Chains: Methods, Findings, and Evidence Gaps; Agriculture and Fisheries Papers; OECD Food: Paris, France, 2022; Volume 185. [Google Scholar]
- Molina-Besch, K.; Wikström, F.; Williams, H. The Environmental Impact of Packaging in Food Supply Chains—Does Life Cycle Assessment of Food Provide the Full Picture? Int. J. Life Cycle Assess. 2019, 24, 37–50. [Google Scholar] [CrossRef]
- Adobati, A. Active Packaging in Master Bag Solutions and Shelf Life Extension of Red Raspberries and Strawberries: A Reliable Strategy to Reduce Food Loss. Ph.D. Thesis, University degli Studi di Milano, Milan, Italy, 10 December 2015. [Google Scholar]
- Del Borghi, A.; Gallo, M.; Strazza, C.; Del Borghi, M. An Evaluation of Environmental Sustainability in the Food Industry through Life Cycle Assessment: The Case Study of Tomato Products Supply Chain. J. Clean. Prod. 2014, 78, 121–130. [Google Scholar] [CrossRef]
- Manfredi, M.; Fantin, V.; Vignali, G.; Gavara, R. Environmental Assessment of Antimicrobial Coatings for Packaged Fresh Milk. J. Clean. Prod. 2015, 95, 291–300. [Google Scholar] [CrossRef]
- Zhang, H.; Hortal, M.; Dobon, A.; Bermudez, J.M.; Lara-Lledo, M. The Effect of Active Packaging on Minimizing Food Losses: Life Cycle Assessment (LCA) of Essential Oil Component-Enabled Packaging for Fresh Beef: Effect of Active Packaging on Minimizing Food Losses. Packag. Technol. Sci. 2015, 28, 761–774. [Google Scholar] [CrossRef]
- Gutierrez, M.M.; Meleddu, M.; Piga, A. Food Losses, Shelf Life Extension and Environmental Impact of a Packaged Cheesecake: A Life Cycle Assessment. Food Res. Int. 2017, 91, 124–132. [Google Scholar] [CrossRef]
- Wikström, F.; Williams, H.; Venkatesh, G. The Influence of Packaging Attributes on Recycling and Food Waste Behaviour—An Environmental Comparison of Two Packaging Alternatives. J. Clean. Prod. 2016, 137, 895–902. [Google Scholar] [CrossRef]
- Ingrao, C.; Gigli, M.; Siracusa, V. An Attributional Life Cycle Assessment Application Experience to Highlight Environmental Hotspots in the Production of Foamy Polylactic Acid Trays for Fresh-Food Packaging Usage. J. Clean. Prod. 2017, 150, 93–103. [Google Scholar] [CrossRef]
- Heller, M.C.; Selke, S.E.M.; Keoleian, G.A. Mapping the Influence of Food Waste in Food Packaging Environmental Performance Assessments. J. Ind. Ecol. 2019, 23, 480–495. [Google Scholar] [CrossRef]
- Nair, D.S. Integration of Food Shelf-Life in Life Cycle Assessment of Polymers. Master’s Thesis, Lund University, Lind, Sweden, 2021. [Google Scholar]
- Cappiello, G.; Aversa, C.; Genovesi, A.; Barletta, M. Life Cycle Assessment (LCA) of Bio-Based Packaging Solutions for Extended Shelf-Life (ESL) Milk. Environ. Sci. Pollut. Res. 2022, 29, 18617–18628. [Google Scholar] [CrossRef]
- Pauer, E.; Wohner, B.; Heinrich, V.; Tacker, M. Assessing the Environmental Sustainability of Food Packaging: An Extended Life Cycle Assessment Including Packaging-Related Food Losses and Waste and Circularity Assessment. Sustainability 2019, 11, 925. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Life Cycle Assessment (LCA) of Alternative Feedstocks for Plastics Production. Part 1, the Plastics LCA Method; Publications Office: Luxembourg, 2021. [Google Scholar]
- Corrado, S.; Ardente, F.; Sala, S.; Saouter, E. Modelling of Food Loss within Life Cycle Assessment: From Current Practice towards a Systematisation. J. Clean. Prod. 2017, 140, 847–859. [Google Scholar] [CrossRef]
- Hutchings, N.; Smyth, B.; Cunningham, E.; Yousif, M.; Mangwandi, C. Comparative Life Cycle Analysis of a Biodegradable Multilayer Film and a Conventional Multilayer Film for Fresh Meat Modified Atmosphere Packaging—And Effectively Accounting for Shelf-Life. J. Clean. Prod. 2021, 327, 129423. [Google Scholar] [CrossRef]
- Huttinger, L.; Evans, C.; Forgie, J.; Stevenson, M. Evaluating the Environmental Impacts of Packaging Fresh Tomatoes Using Life-Cycle Thinking & Assessment: A Sustainable Materials Management Demonstration Project; EPA: Washington, DC, USA, 2010; pp. 1–70.
- McKeen, L.W. Production of Films, Containers, and Membranes. In Permeability Properties of Plastics and Elastomers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 41–60. ISBN 978-0-323-50859-9. [Google Scholar]
- Azevedo, A.G.; Barros, C.; Miranda, S.; Machado, A.V.; Castro, O.; Silva, B.; Saraiva, M.; Silva, A.S.; Pastrana, L.; Carneiro, O.S.; et al. Active Flexible Films for Food Packaging: A Review. Polymers 2022, 14, 2442. [Google Scholar] [CrossRef]
- Stramarkou, M.; Oikonomopoulou, V.; Missirli, T.; Thanassoulia, I.; Krokida, M. Encapsulation of Rosemary Essential Oil into Biodegradable Polymers for Application in Crop Management. J. Polym. Environ. 2020, 28, 2161–2177. [Google Scholar] [CrossRef]
- Panagiotopoulou, M.; Papadaki, S.; Missirli, T.; Thanassoulia, I.; Krokida, M. Exploring the Valorisation Potential of Tomato Cultivation By-Products in the Frame of Circular Economy. Waste Biomass. Valor. 2022, 13, 3957–3972. [Google Scholar] [CrossRef]
- ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. ISO: Geneva, Switzerland, 2011. Available online: https://www.iso.org/obp/ui/#iso:std:iso:22196:ed-2:v1:en (accessed on 3 May 2023).
- Mena, C.; Terry, L.A.; Williams, A.; Ellram, L. Causes of Waste across Multi-Tier Supply Networks: Cases in the UK Food Sector. Int. J. Prod. Econ. 2014, 152, 144–158. [Google Scholar] [CrossRef]
- Casson, A.; Giovenzana, V.; Frigerio, V.; Zambelli, M.; Beghi, R.; Pampuri, A.; Tugnolo, A.; Merlini, A.; Colombo, L.; Limbo, S.; et al. Beyond the Eco-Design of Case-Ready Beef Packaging: The Relationship between Food Waste and Shelf-Life as a Key Element in Life Cycle Assessment. Food Packag. Shelf Life 2022, 34, 100943. [Google Scholar] [CrossRef]
- Ekvall, T.; Tillman, A.-M. Open-Loop Recycling: Criteria for Allocation Procedures. Int. J. LCA 1997, 2, 155. [Google Scholar] [CrossRef]
- Tillman, A.-M. Significance of Decision-Making for LCA Methodology. Environ. Impact Assess. Rev. 2000, 20, 113–123. [Google Scholar] [CrossRef]
- Ekvall, T.; Björklund, A.; Sandin, G.; Lage, J. Modeling Recycling in Life Cycle Assessment; Swedish Life Cylce Center: Gothenburg, Sweden, 2020. [Google Scholar]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en (accessed on 4 April 2023).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en (accessed on 4 April 2023).
- European Commission, Directorate-General for Environment. Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Union: Luxembourg, 2021; Volume 471. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Alsaud, N.; Farid, M. Insight into the Influence of Grinding on the Extraction Efficiency of Selected Bioactive Compounds from Various Plant Leaves. Appl. Sci. 2020, 10, 6362. [Google Scholar] [CrossRef]
- Frankowska, A.; Jeswani, H.K.; Azapagic, A. Life Cycle Environmental Impacts of Fruits Consumption in the UK. J. Environ. Manag. 2019, 248, 109111. [Google Scholar] [CrossRef]
- Fresh Produce Problem Definition Screening Tool. Available online: https://wrap.org.uk/resources/tool/fresh-produce-problem-definition-screening-tool (accessed on 4 April 2023).
- Gkinosatis, S. Personal Interview with Alfa-Beta Vassilopoulos (AB) Supermarket Chain. 2023. [Google Scholar]
- Brown, T.; Evans, P.J. WRAP’s Vision Is a World without Waste, Where Resources Are Used Sustainably. Available online: https://wrap.org.uk/sites/default/files/2020-12/Impact-of-more-effective-use-of-the-fridge-and-freezer.pdf (accessed on 31 March 2023).
- Statistics. Eurostat. Treatment of Waste by Waste Category, Hazardousness and Waste Management Operations. Available online: https://ec.europa.eu/eurostat/databrowser/view/ENV_WASTRT__custom_5443557/default/table?lang=en (accessed on 31 March 2023).
- Statistics. Eurostat. Municipal Waste by Waste Management Operations. Available online: https://ec.europa.eu/eurostat/databrowser/view/ENV_WASMUN__custom_5439304/default/table?lang=en (accessed on 31 March 2023).
- European Environment Agency. Bio-Waste in Europe: Turning Challenges into Opportunities; Publications Office: Luxembourg, 2020. [Google Scholar]
- Commission of the European Union; Directorate General for the Environment; BIPRO; Copenhagen Resource Institute (Groupe d’étude du Comité d’experts pour la reconversion industrielle). Assessment of Separate Collection Schemes in the 28 Capitals of the EU: Final Report; Publications Office: Luxembourg, 2015. [Google Scholar]
- Rasines, L.; Miguel, G.S.; Molina-García, Á.; Artés-Hernández, F.; Hontoria, E.; Aguayo, E. Optimizing the Environmental Sustainability of Alternative Post-Harvest Scenarios for Fresh Vegetables: A Case Study in Spain. Sci. Total Environ. 2023, 860, 160422. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Suggestions for Updating the Organisation Environmental Footprint (OEF) Method; Publications Office: Luxembourg, 2019. [Google Scholar]
- European Commission; Joint Research Centre. Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Methods: Version 2, from ILCD to EF 3.0.; Publications Office: Luxembourg, 2018. [Google Scholar]
- Crenna, E.; Secchi, M.; Benini, L.; Sala, S. Global Environmental Impacts: Data Sources and Methodological Choices for Calculating Normalization Factors for LCA. Int. J. Life Cycle Assess. 2019, 24, 1851–1877. [Google Scholar] [CrossRef]
FSC Stage | Agricultural Production | Storage and Packaging | Distribution and Retail | Consumption |
---|---|---|---|---|
% FW with regard to total production | 23% | 4.5% | 1.5% | 21% |
Parameters | Origin | Packaging Film (PF—Film a) | Packaging Film (EF—Film b) | Packaging Film (CF—Film c) |
---|---|---|---|---|
SSL (days) | Lab experiments | 5 | 8 | 8 |
RSL (days) | Lab experiments | 5 | 5 | 5 |
SLR | Calculation based on Equation (1) | 1 | 0.63 | 0.63 |
Food Supply Chain Stage | Food Waste (% of Total Production) | ||
---|---|---|---|
PF | EF and CF | Origin | |
Agricultural production | 23% | 23% | [7,62] |
Storage and packaging | 4.5% | 4.5% | |
Distribution and retail | 1.5% | 1.0% | PFW calculated based on Equation (2) |
Consumption | 21% | 13% |
Food Supply Chain Stage | Scenario a | Scenario b and c | ||
---|---|---|---|---|
Amount | Calculation Formula | Amount | Calculation Formula | |
Total agricultural production [I] | 1.98 kg | Total [I] | 1.70 kg | Total [I] |
Agricultural production minus FW [II] | 1.52 kg | [II] = [I] − 23% * [I] | 1.31 kg | [II] = [I] − 23% * [I] |
Packaging and storage minus FW [III] | 1.45 kg | [III] = [II] − 4.5% * [I] | 1.24 kg | [III] = [II] − 4.5% * [I] |
Distribution and retail minus FW [IV] | 1.42 kg | [IV] = [III] − 1.5% * [I] | 1.22 kg | [IV] = [III] − 1% * [I] |
Consumption minus FW [V] | 1 kg | [V] = [IV] − 21% * [I] | 1 kg | [V] = [IV] − 13% * [I] |
Packaging Component | Scenario a | Scenario b | Scenario c |
---|---|---|---|
Film | PP: 0.005 kg |
|
|
Tray | Paperboard: 0.021 kg | Paperboard: 0.021 kg | Paperboard: 0.021 kg |
Stage | Waste Type | Waste Treatment Processes | Ref. |
---|---|---|---|
Agricultural production | Tomato Biowaste |
| EU-27, 2020 [76] |
Packaging | Tomato Biowaste |
| EU-27, 2020 [76] |
Distribution and Retail | Mixed municipal solid waste |
| EU-27, 2019 [77] |
Consumption | Source separated:
|
| EU-28, 2020 [79] |
Source separated Plastic |
| EU-27, 2020 [76] | |
Source separated Paper |
| EU-27, 2020 [76] | |
Source separated Biowaste |
| EU-27, 2020 [76] | |
Remaining waste (non-separately separated) |
| EU-27, 2019 [77] | |
Antioxidants extraction from tomato waste | Tomato Biowaste |
| EU-27, 2020 [76] |
Life Cycle Stage | Distance (km) | Truck Type | Reference |
---|---|---|---|
Field to packaging facility | 50 | Truck | Assumption based on [80] |
Tomato waste to extract production | 150 | Truck | Authors’ assumption |
Packaging materials to the packaging facility | |||
To retail | 100 | Lorry with refrigeration | Authors’ assumption |
To consumer | 5 | Passenger car | [53] |
To waste treatment facilities AD, incineration, landfill | 100 | Truck | [53] |
Compost | 30 |
Type of Film | Staphylococcus aureus (Log Cells/cm2) | Escherichia coli (Log Cells/cm2) |
---|---|---|
Control (PF) | 0 | 0 |
Extruded (EF) | 1.3 | 2.1 |
Coated (CF) | 1.6 | 2.9 |
Impact Category | Unit | Scenario a | Scenario b | Scenario c |
---|---|---|---|---|
Ecotoxicity, freshwater | CTUe | 95.675028 | 82.107498 | 82.105956 |
Water use | m3 depriv. | 4.4157863 | 3.8000763 | 3.7943258 |
Particulate matter | disease inc. | 1.74 × 10−7 | 1.49 × 10−7 | 1.49 × 10−7 |
Resource use, minerals and metals | kg Sb eq | 1.44 × 10−5 | 1.23 × 10−5 | 1.23 × 10−5 |
Resource use, fossils | MJ | 14.55842 | 12.607114 | 12.514904 |
Climate change | kg CO2 eq | 1.2764677 | 1.0964276 | 1.0920995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsouti, C.; Papadaskalopoulou, C.; Konsta, A.; Andrikopoulos, P.; Panagiotopoulou, M.; Papadaki, S.; Boukouvalas, C.; Krokida, M.; Valta, K. Investigating the Environmental Benefits of Novel Films for the Packaging of Fresh Tomatoes Enriched with Antimicrobial and Antioxidant Compounds through Life Cycle Assessment. Sustainability 2023, 15, 7838. https://doi.org/10.3390/su15107838
Tsouti C, Papadaskalopoulou C, Konsta A, Andrikopoulos P, Panagiotopoulou M, Papadaki S, Boukouvalas C, Krokida M, Valta K. Investigating the Environmental Benefits of Novel Films for the Packaging of Fresh Tomatoes Enriched with Antimicrobial and Antioxidant Compounds through Life Cycle Assessment. Sustainability. 2023; 15(10):7838. https://doi.org/10.3390/su15107838
Chicago/Turabian StyleTsouti, Christina, Christina Papadaskalopoulou, Angeliki Konsta, Panagiotis Andrikopoulos, Margarita Panagiotopoulou, Sofia Papadaki, Christos Boukouvalas, Magdalini Krokida, and Katerina Valta. 2023. "Investigating the Environmental Benefits of Novel Films for the Packaging of Fresh Tomatoes Enriched with Antimicrobial and Antioxidant Compounds through Life Cycle Assessment" Sustainability 15, no. 10: 7838. https://doi.org/10.3390/su15107838