Storage Time Detection of Torreya grandis Kernels Using Near Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Acquisition of Spectral Data
2.3. Classification Model Building
2.3.1. Principal Component Analysis (PCA)
2.3.2. Support Vector Machine (SVM)
2.3.3. Linear Discriminant Analysis after Principal Component Analysis (PCA-DA)
3. Results and Discussion
3.1. Near-Infrared Spectral Analysis
3.2. Principal Component Analysis (PCA) Model
3.3. Support Vector Machine (SVM) Model
3.4. Linear Discriminant Analysis after PCA (PCA-DA) Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Yan, S.-M.; Cai, C.-B.; Zhong, W.; Yu, X.-P. Rapid analysis of geographical origins and age of Torreya grandis seeds by NIR spectroscopy and pattern recognition methods. J. Spectrosc. 2013, 1, 468509. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Li, G.; Zheng, Z.; Microbiology, M. Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis. FEMS Immunol. Med. Microbiol. 2001, 31, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.F.; Tu, Z.C.; Zhang, L. Antioxidant, metabolic enzymes inhibitory ability of Torreya grandis kernels, and phytochemical profiling identified by HPLC-QTOF-MS/MS. J. Food Biochem. 2019, 43, e13043. [Google Scholar] [CrossRef] [PubMed]
- Zareef, M.; Arslan, M.; Mehedi Hassan, M.; Ali, S.; Ouyang, Q.; Li, H.; Wu, X.; Muhammad Hashim, M.; Javaria, S.; Chen, Q. Application of benchtop NIR spectroscopy coupled with multivariate analysis for rapid prediction of antioxidant properties of walnut (Juglans regia). Food Chem. 2021, 359, 129928. [Google Scholar] [CrossRef]
- Yi, J.; Sun, Y.; Zhu, Z.; Liu, N.; Lu, J. Near-infrared reflectance spectroscopy for the prediction of chemical composition in walnut kernel. Int. J. Food Prop. 2016, 20, 1633–1642. [Google Scholar] [CrossRef]
- Tao, T.; Feng, X.; Dong, H.; Chao, Z. Determination of protein and fat content in pecan based on near infrared spectroscopy. J. Am. Oil Chem. Soc. 2022, 35, 158–162. [Google Scholar]
- Lu, J.; Cheng, M.; Zhao, C.; Shao, Q.; Hassan, M. Combined oxidization and liquid Ammonia pretreatment of bamboo of various ages and species for maximizing fermentable sugar release. Bioresour. Technol. 2022, 343, 126085. [Google Scholar] [CrossRef]
- Pannico, A.; Schouten, R.E.; Basile, B.; Romano, R.; Woltering, E.J.; Cirillo, C. Non-destructive detection of flawed hazelnut kernels and lipid oxidation assessment using NIR spectroscopy. J. Food Eng. 2015, 160, 42–48. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Li, L.; Ning, J.; Zhang, Z. Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer. Food Chem. 2021, 345, 128816. [Google Scholar] [CrossRef]
- Fu, X.; Ying, Y. Food safety evaluation based on near infrared spectroscopy and imaging: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1913–1924. [Google Scholar] [CrossRef]
- Jensen, P.N.; Sørensen, G.; Engelsen, S.B.; Bertelsen, G.; Chemistry, F. Evaluation of quality changes in walnut kernels (Juglans regia L.) by Vis/NIR spectroscopy. J. Agric. Food Chem. 2001, 49, 5790–5796. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; Callejón, R.M.; Amigo, J.M. Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics. Food Control 2021, 130, 108365. [Google Scholar] [CrossRef]
- Juan, l.; Hai, L. Study on rapid and non-destructive detection of rice freshness using near-infrared spectroscopy. Spectrosc. Spectral Anal. 2012, 32, 2126–2130. [Google Scholar]
- Assistant, P.; Hamadan, I. Comparison and Application of Near-Infrared (NIR) and Mid-Infrared (MIR) Spectroscopy for Determination of Quality Parameters in Walnut Samples. J. Agric. Mach. Sci. 2014, 10, 247–252. [Google Scholar] [CrossRef]
- Badaró, T.; Morimitsu, L.; Ferreira, R.; Clerici, M. Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food Chem. 2019, 289, 195–203. [Google Scholar] [CrossRef]
- Bedin, B.; Faust, V.; Guarneri, A.; Assmann, S.; Lafay, B.; Soares, L.F.; Oliveira, V.; Santos, M. NIR associated to PLS and SVM for fast and non-destructive determination of C, N, P, and K contents in poultry litter. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 245, 118834. [Google Scholar] [CrossRef]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of machine learning approaches to predict soil organic matter and pH using Vis-NIR spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Feliz, L.; Baca-Bocanegra, B.; Hernandez-Hierro, M.; Heredia, J.; Barroso, M.; Rato, E. Comparative study on the use of three different near infrared spectroscopy recording methodologies for varietal discrimination of walnuts. Talanta 2020, 206, 120189. [Google Scholar] [CrossRef]
- Arndt, M.; Drees, A.; Ahlers, C.; Fischer, M. Determination of the Geographical Origin of Walnuts (Juglans regia L.) Using Near-Infrared Spectroscopy and Chemometrics. Foods 2020, 9, 1860. [Google Scholar] [CrossRef]
- Yang, Z.; Li, K.; Zhang, M.; Xin, D.; Zhang, J. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis. Biotechnol. Biofuels 2016, 9, 35. [Google Scholar] [CrossRef]
- Zareef, M.; Chen, Q.; Hassan, M.; Arslan, M.; Hashim, M.; Ahmad, W.; Kutsanedzie, Y.; Agyekum, R. An overview on the applications of typical non-linear algorithms coupled with NIR spectroscopy in food analysis. Food Eng. Rev. 2020, 12, 173–190. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, H.; Lin, J.; Chen, Q.; Ali, S.; Teng, W.; Zuo, F. Rice freshness identification based on visible near-infrared spectroscopy and colorimetric sensor array. Food Anal. Methods 2021, 14, 1305–1314. [Google Scholar] [CrossRef]
- De Almeida, E.; Fernandes, D.; Diniz, D.; Araújo, A.; Véras, G.; Galvão, H.; Araujo, M. Scores selection via Fisher’s discriminant power in PCA-LDA to improve the classification of food data. Food Chem. 2021, 363, 130296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. The Effect of Storage Factors and Processing Techniques on the Oxidative Stability of Walnut Fat. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2015. Available online: https://CMFD201501&filename=1015529198.nh (accessed on 9 March 2023).
- Yang, N.; Zhang, X.; Li, W.; Yu, L.; Mao, J.; Wang, P.; Zhang, Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci. Technol. 2018, 74, 26–32. [Google Scholar] [CrossRef]
- Liu, F.; Tang, X. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy. Bioengineered 2015, 6, 166–169. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, I.; Sanchez-Lopez, E.; Marinas, A.; Caridad, M.; Urbano, J. Redundancy analysis to reduce the high-dimensional near-infrared spectral information to improve the authentication of olive oil. J. Chem. Inf. Model 2022, 62, 4620–4628. [Google Scholar] [CrossRef]
- Tong, L.; Li, B.; Geng, Y.; Chen, L.; Li, Y.; Cao, R. Spectrometric classification of bamboo shoot species by comparison of different machine mearning Methods. Food Anal. Method 2020, 14, 300–306. [Google Scholar] [CrossRef]
- Cruz-Tirado, P.; Lucimar, M.; Barbin, F. On-line monitoring of egg freshness using a portable NIR spectrometer in tandem with machine learning. J. Food Eng. 2021, 306, 110643. [Google Scholar] [CrossRef]
- Suktanarak, S.; Supprung, P.; Teerachaichayut, S. Classification of sweet corn based on storage time after harvest using near infrared spectroscopy. Acta Hortic. 2017, 7, 47–54. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, M.; Morais, D.; Lima, K.; Teixeira, G. Assessment of macadamia kernel quality defects by means of near infrared spectroscopy (NIRS) and nuclear magnetic resonance (NMR). Food Control 2019, 106, 166–172. [Google Scholar] [CrossRef]
- Hu, J.; Ma, X.; Liu, L.; Wu, Y.; Ouyang, J. Rapid evaluation of the quality of chestnuts using near-infrared reflectance spectroscopy. Food Chem. 2017, 231, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Xia, J. Study on Non-Destructive Detection Method of Storage Quality of Navel Oranges Based on Near-Infrared Spectroscopy. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2009. [Google Scholar]
- Tang, W. Nondestructive Testing of Carya cathayensis Sarg. Based on Near Infrared Spectroscopy. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2021. [Google Scholar] [CrossRef]
- Sricharoonratana, M.; Thompson, K.; Teerachaichayut, S. Use of near infrared hyperspectral imaging as a nondestructive method of determining and classifying shelf life of cakes. LWT 2021, 2, 136. [Google Scholar] [CrossRef]
- Weng, S.; Yu, S.; Dong, R.; Pan, F.; Liang, D. Nondestructive detection of storage time of strawberries using visible/near-infrared hyperspectral imaging. Int. J. Food Prop. 2020, 23, 269–281. [Google Scholar] [CrossRef]
Classification Accuracy % | Linear | Polynomial | RBF | Sigmoid |
---|---|---|---|---|
Calibration set | 88.89 | 35.56 | 45.00 | 45.56 |
Validation set | 86.67 | 33.33 | 45.00 | 45.00 |
Prediction set | 80.00 | 40.33 | 43.33 | 42.67 |
Classification Accuracy % | Original | Normalize | Baseline | SNV | MSC | 1-Der | 2-Der |
---|---|---|---|---|---|---|---|
Calibration set | 88.89 | 94.44 | 96.11 | 97.22 | 90.00 | 98.89 | 98.33 |
Validation set | 86.67 | 92.50 | 95.00 | 95.83 | 87.50 | 97.50 | 96.67 |
Prediction set | 80.00 | 90.33 | 93.67 | 88.00 | 89.67 | 97.33 | 97.00 |
Classification Accuracy % | Linear | Quadratic | Mahalanobis |
---|---|---|---|
Validation set | 92.78 | 95.00 | 93.89 |
Prediction set | 85.83 | 90.83 | 87.50 |
Classification Accuracy % | Original | Normalize | Baseline | SNV | 1-Der | 2-Der |
---|---|---|---|---|---|---|
Validation set | 95.00 | 92.22 | 90.56 | 97.22 | 100.00 | 99.44 |
Prediction set | 90.83 | 86.67 | 81.67 | 82.50 | 98.33 | 96.67 |
Number | Storage Time | Sample | Optimal Processing Method | Calibration Set | Prediction Set | Reference | ||
---|---|---|---|---|---|---|---|---|
RC | RMSEC | RP | RMSEP | |||||
1 | 1~6 months | Navel orange | BP | 0.9487 | 0.7760 | 0.8770 | 0.6992 | [33] |
2 | 3~7 months | Carya cathayensis Sarg. | Original + LDA | 0.9733 | 0.2030 | 0.9500 | 0.4037 | [34] |
3 | 1~8 days | Cakes | Original + PLS-DA | 0.8120 | — | 0.8350 | — | [35] |
4 | 0~60 h | Strawberries | CARS-SPA + PLSR | 0.9989 | 0.5495 | 0.9974 | 0.6625 | [36] |
5 | 4~9 months | T. grandis kernels | 1-Der + PCA-DA | 0.9889 | — | 0.9833 | — | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Shang, Y.; Zhao, C. Storage Time Detection of Torreya grandis Kernels Using Near Infrared Spectroscopy. Sustainability 2023, 15, 7757. https://doi.org/10.3390/su15107757
Guan S, Shang Y, Zhao C. Storage Time Detection of Torreya grandis Kernels Using Near Infrared Spectroscopy. Sustainability. 2023; 15(10):7757. https://doi.org/10.3390/su15107757
Chicago/Turabian StyleGuan, Shihao, Yuqian Shang, and Chao Zhao. 2023. "Storage Time Detection of Torreya grandis Kernels Using Near Infrared Spectroscopy" Sustainability 15, no. 10: 7757. https://doi.org/10.3390/su15107757
APA StyleGuan, S., Shang, Y., & Zhao, C. (2023). Storage Time Detection of Torreya grandis Kernels Using Near Infrared Spectroscopy. Sustainability, 15(10), 7757. https://doi.org/10.3390/su15107757