Investigating the Rheological Properties of Styrene-Butadiene-Styrene-Based High-Viscosity Modified Asphalt Using Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Preparation of HVMA Samples
2.2. Thermal Storage Temperature Test
2.3. Workable Performance Test
2.4. High-Temperature Rheological Test
2.4.1. Frequency Sweep Test
2.4.2. High-Temperature Performance Test
2.5. Low-Temperature Rheological Test
2.6. Asphalt Mixture Performance Test
2.6.1. Hamburg Rutting Test
2.6.2. Low-Temperature Bending Beam Test
3. Results
3.1. Thermal Storage Temperature Test Result
3.2. Workability Test Result
3.3. High-Temperature Rheological Test Result
3.3.1. Frequency Sweep Experiment
3.3.2. High-Temperature Performance
3.4. Low-Temperature Rheological Test Result
3.5. Asphalt Mixture Performance Test Result
4. Conclusions
- (1)
- The analysis of the segregation softening point and viscosity test revealed that CNTs/SBS-HVMA had higher storage stability and better workability than the other two asphalts.
- (2)
- DSR frequency sweep and MSCR tests revealed that CNT addition improved the anti-aging performance of SBS-HVMA, played a short fiber reinforcement role between the asphalt and the SBS, increased the bond strength of the asphalt system, and enhanced the high-temperature deformation resistance of the asphalt.
- (3)
- BBR and low-temperature trabecular bending rheological tests revealed that CNT addition had little effect on the low-temperature properties and improved the high-temperature properties of the asphalt. The asphalt and asphalt mixture still exhibited good low-temperature crack resistance.
- (4)
- The Hamburg rutting test revealed that the high-temperature rutting resistance of CNTs/SBS-HVMA was 7% and 28%, respectively, higher than those of SBS-HVVMA and TPS/SBS-HVMA, respectively. This shows that CNT addition improved the high-temperature performance of the asphalt mixture while reducing the amount of modifier in SBS-HVMA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiselev, A.; Zhang, H.; Liu, Z. The effect of two-phase mixing on the functional and mechanical properties of TPS/SBS-modified porous asphalt concrete. Constr. Build. Mater. 2021, 270, 121841. [Google Scholar] [CrossRef]
- Chen, M.; Geng, J.; Xia, C.; He, L.; Liu, Z. A review of phase structure of SBS modified asphalt: Affecting factors, analytical methods, phase models and improvements. Constr. Build. Mater. 2021, 294, 123610. [Google Scholar] [CrossRef]
- Wen, G.; Zhang, Y.; Zhang, Y.; Sun, K.; Fan, Y. Rheological characterization of storage stable SBS-modified asphalts. Polym. Test. 2002, 21, 295–302. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Rheological characterization of styrene-butadiene-styrene copolymer modified bitumens. Constr. Build. Mater. 1997, 11, 23–32. [Google Scholar] [CrossRef]
- Fawcett, A.; McNally, T. Polystyrene and asphaltene micelles within blends with a bitumen of an SBS block copolymer and styrene and butadiene homopolymers. Colloid Polym. Sci. 2003, 281, 203–213. [Google Scholar] [CrossRef]
- Zhai, F.; Feng, Y.; Li, Z.; Xie, Y.; Ge, J.; Wang, H.; Qiu, W.; Feng, W. 4D Printed untethered self-propelling soft robot with tactile perception: Rolling, racing, and exploring. Matter 2021, 4, 3313–3326. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Y.; Meng, L. Application study on high modulus asphalt concrete in bridge pavement. Adv. Mater. Res. 2011, 243–249, 4244–4247. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.; Fu, L.; Guo, M.; Zhang, L. Influence of crumb rubber and tafpack super on performances of SBS modified porous asphalt mixtures. Road Mater. Pavement Des. 2019, 20, S196–S216. [Google Scholar] [CrossRef]
- Shuo, G.; Yuzhi, L.; Ping, Z. Research on road performance of SBS and TPS composite modified asphalt mixture. Sino-Foreign Highw. 2013, 33, 216–218. [Google Scholar]
- Zhang, F.; Hu, C. Preparation and properties of high viscosity modified asphalt. Polym. Compos. 2017, 38, 936–946. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.; Wang, H.; Ren, S.; Shi, J. Effects of polymerized sulfur on rheological properties, morphology and stability of SBS modified asphalt. Constr. Build. Mater. 2017, 150, 860–871. [Google Scholar] [CrossRef]
- Zani, L.; Giustozzi, F.; Harvey, J. Effect of storage stability on chemical and rheological properties of polymer-modified asphalt binders for road pavement construction. Constr. Build. Mater. 2017, 145, 326–335. [Google Scholar] [CrossRef]
- Qu, L.; Gao, Y.; Yao, H.; Cao, D.; Pei, G.; He, B.; Duan, K.; Zhou, W. Preparation and Performance Analysis of High-Viscosity and Elastic Recovery Modified Asphalt Binder. Adv. Civ. Eng. 2019, 2019, 6070685. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, P.; Fan, W.; Yang, Z.; Lin, Y.; Ouyang, J. Facile preparation and application performance evaluation of SBS/C9 petroleum resin blends as modifier for high viscosity asphalt. Constr. Build. Mater. 2020, 262, 120073. [Google Scholar] [CrossRef]
- Goli, A.; Ziari, H.; Amini, A. Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders. J. Mater. Civ. Eng. 2017, 29, 04017070. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.J.; Tan, Y.Q.; Liu, Z.Y. Effect of multi-walled carbon nanotubes on the performance of styrene–butadiene–styrene copolymer modified asphalt. Mater. Struct. 2017, 50, 17. [Google Scholar] [CrossRef]
- Tsantilis, L.; Dalmazzo, D.; Baglieri, O.; Santagata, E. Effect of SBS molecular structure on the rheological properties of ternary nanomodified bituminous binders. Constr. Build. Mater. 2019, 222, 183–192. [Google Scholar] [CrossRef]
- Xin, X.; Yao, Z.; Shi, J.; Liang, M.; Jiang, H.; Zhang, J.; Zhang, X.; Yao, K. Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites. Constr. Build. Mater. 2020, 262, 120100. [Google Scholar] [CrossRef]
- Zhai, F.; Feng, Y.; Zhou, K.; Wang, L.; Zheng, Z.; Feng, W. Graphene-based chiral liquid crystal materials for optical applications. J. Mater. Chem. C 2018, 7, 2146–2171. [Google Scholar] [CrossRef]
- Wang, R.; Yue, M.; Xiong, Y.; Yue, J. Experimental study on mechanism, aging, rheology and fatigue performance of carbon nanomaterial/SBS-modified asphalt binders. Constr. Build. Mater. 2021, 268, 121189. [Google Scholar] [CrossRef]
- Ashish, P.K.; Singh, D. High- and Intermediate-Temperature Performance of Asphalt Binder Containing Carbon Nanotube Using Different Rheological Approaches. J. Mater. Civ. Eng. 2017, 30, 04017254. [Google Scholar] [CrossRef]
- Ziari, H.; Farahani, H.; Goli, A.; Galooyak, S.S. The investigation of the impact of carbon nano tube on bitumen and HMA performance. Pet. Sci. Technol. 2014, 32, 2102–2108. [Google Scholar] [CrossRef]
- Ziari, H.; Rahim-of, K.; Fazilati, M.; Goli, A.; Farahani, H. Evaluation of different conditions on the mixing bitumen and carbon nano-tube. Int. J. Civ. Environ. Eng. 2012, 12, 12–53. [Google Scholar]
- Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. Evaluation of high temperature rheological characteristics of asphalt binder with carbon nano particles. J. Test. Eval. 2010, 39, 1–9. [Google Scholar]
- Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. Characterization of unaged asphalt binder modified with carbon nano particles. Int. J. Pavement Res. Technol. 2011, 4, 281–286. [Google Scholar]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011.
- Zhang, D.; Birgisson, B.; Luo, X.; Onifade, I. A new short-term aging model for asphalt binders based on rheological activation energy. Mater. Struct. 2019, 52, 68. [Google Scholar] [CrossRef]
- Hasan, M.R.M.; You, Z.; Yang, X.; Heiden, P.A. Quantification of physicochemical properties, activation energy, and temperature susceptibility of foamed asphalt binders. Constr. Build. Mater. 2017, 153, 557–568. [Google Scholar] [CrossRef]
- Sun, D.; Lin, T.; Zhu, X.; Cao, L. Calculation and evaluation of activation energy as a self-healing indication of asphalt mastic. Constr. Build. Mater. 2015, 95, 431–436. [Google Scholar] [CrossRef]
- Wang, T.; Lin, J.T.; Pang, L.; Lei, M.; Jenkins, K.; Wu, S.P. Study on the Viscoelastic Performance of Asphalt Mixture Based on Dynamic Modulus. Adv. Mater. Res. 2013, 753–755, 728–733. [Google Scholar] [CrossRef]
- Yang, P.; Cui, H.Z.; Wang, W.L. Visco-Elasticity of Asphalt Mixture under Broad Temperature and Frequency. Adv. Mater. Res. 2013, 838–841, 156–161. [Google Scholar] [CrossRef]
- Haq, M.; Ahmad, N.; Nasir, M.A.; Hafeez, M.; Rafi, J.; Zaidi, S.B.A.; Haroon, W. Carbon Nanotubes (CNTs) in Asphalt Binder: Homogeneous Dispersion and Performance Enhancement. Appl. Sci. 2018, 8, 2651. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Liu, A.; Zhang, W.; Zhang, Y. Research on high temperature performance of asphalt pavement on in-service expressway based on Hamburg rutting test. Zhongwai Highw. 2020, 40, 68–72. [Google Scholar]
- Qiao, X.B.; Li, X.M.; Wei, D.B. Research on Rubber/SBS Modified Asphalt by MSCR Test. Adv. Mater. Res. 2012, 557–559, 1066–1069. [Google Scholar] [CrossRef]
- Ma, L.J.; Chen, H.B.; Zhang, J.Y. Research on Crack Resistance Evaluation of Asphalt Mixture at Low Temperature. Adv. Mater. Res. 2013, 753–755, 668–672. [Google Scholar] [CrossRef]
- Yang, L.Y.; Tan, Y.Q.; Dong, Y.M.; Li, E.G. Rutting Resistance Property of Warm Recycled Asphalt Mixture. Appl. Mech. Mater. 2012, 204–208, 3749–3753. [Google Scholar] [CrossRef]
Index | Test Result | Technical Requirement |
---|---|---|
Penetration (25 °C, 100 g, 5 s), 0.1 mm | 75.6 | 60–80 |
Penetration Index | −1.25 | −1.5–+1.0 |
Softening point, °C | 46.5 | ≥46 |
Ductility (10 °C), cm | 55 | ≥20 |
Dynamic viscosity (60 °C), Pa·s | 204 | ≥180 |
Index | SBS-HVMA | TPS/SBS-HVMA | CNTs/SBS-HVMA |
---|---|---|---|
Penetration (25 °C, 100 g, 5 s), 0.1 mm | 42.5 | 48.3 | 45.5 |
Softening point, °C | 92.8 | 90.3 | 93.4 |
Ductility, cm | 28.4 | 36 | 28.8 |
Dynamic viscosity (60 °C), Pa·s | 134,500 | 108,000 | 160,000 |
Sieve Size (mm) | Passing Percentage of Each Sieve Hole (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
Composite gradation | 100 | 93.8 | 62.5 | 29.7 | 19.1 | 16.1 | 14.2 | 12.9 | 11.2 | 9.9 |
SMA specification grading upper limit | 100 | 100 | 75.0 | 34.0 | 26.0 | 24.0 | 20.0 | 16.0 | 15.0 | 12.0 |
SMA specification grading lower limit | 100 | 90.0 | 50.0 | 20.0 | 15.0 | 14.0 | 12.0 | 10.0 | 9.0 | 8.0 |
SMA norm gradation median | 100 | 95.0 | 62.5 | 27.0 | 20.5 | 19.0 | 16.0 | 13.0 | 12.0 | 10.0 |
Asphalt Type | Fit Equation | R2 | Activation Energy E/(kJ/mol) | Lg A | A |
---|---|---|---|---|---|
SBS-HVMA | y = 4872.9x − 11.112 | 0.972 | 93.302 | −11.112 | 1.493 × 10−5 |
TPS/SBS-HVMA | y = 4784.2x − 10.982 | 0.976 | 91.604 | −10.982 | 1.701 × 10−5 |
CNTs/SBS-HVMA | y = 5037.5x − 11.683 | 0.929 | 96.454 | −11.683 | 8.437 × 10−6 |
Types of Asphalt Mixtures | Maximum Rut Depth/mm | Creep Slope |
---|---|---|
SBS-HVMA | 2.674 | 3.3211 × 10−5 |
CNTs/SBS-HVMA | 2.687 | 3.0862 × 10−5 |
TPS/SBS-HVMA | 3.768 | 4.3360 × 10−5 |
Types of Asphalt Mixtures | Flexural Tensile Strength RB/MPa | Failure Strain εB/με | Bending Stiffness Modulus SB/MPa |
---|---|---|---|
SBS-HVMA | 8.065 | 3714.4 | 2171.4 |
CNTs/SBS-HVMA | 8.092 | 3517.5 | 2300.5 |
TPS/SBS-HVMA | 10.527 | 4646.3 | 2265.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Huang, Z.; Wang, H.; Yang, Z.; Zhang, T. Investigating the Rheological Properties of Styrene-Butadiene-Styrene-Based High-Viscosity Modified Asphalt Using Carbon Nanotubes. Sustainability 2023, 15, 71. https://doi.org/10.3390/su15010071
Chen J, Huang Z, Wang H, Yang Z, Zhang T. Investigating the Rheological Properties of Styrene-Butadiene-Styrene-Based High-Viscosity Modified Asphalt Using Carbon Nanotubes. Sustainability. 2023; 15(1):71. https://doi.org/10.3390/su15010071
Chicago/Turabian StyleChen, Jiangcai, Zhenfu Huang, Haipeng Wang, Zhenxing Yang, and Tao Zhang. 2023. "Investigating the Rheological Properties of Styrene-Butadiene-Styrene-Based High-Viscosity Modified Asphalt Using Carbon Nanotubes" Sustainability 15, no. 1: 71. https://doi.org/10.3390/su15010071
APA StyleChen, J., Huang, Z., Wang, H., Yang, Z., & Zhang, T. (2023). Investigating the Rheological Properties of Styrene-Butadiene-Styrene-Based High-Viscosity Modified Asphalt Using Carbon Nanotubes. Sustainability, 15(1), 71. https://doi.org/10.3390/su15010071