Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Polyphenol Extraction
2.3. Total Polyphenol Content and Total Flavonoid Content
2.4. Characterisation of Polyphenols Using LC-ESI-QqQ-MS
2.5. Antioxidant Studies
2.5.1. Ferric Reducing Antioxidant Power (FRAP)
2.5.2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH••)
2.5.3. Oxygen Radical Antioxidant Capacity (ORAC)
2.6. Statistical Analysis
3. Results
3.1. Total Polyphenol and Flavonoid Content
3.2. Characterisation of Polyphenols Using LC-ESI-QqQ-MS
3.3. Antioxidant Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DCCAE (Department of Communications, Climate Action and the Environment). National Energy and Climate Plan 2021–2030. 2019. Available online: https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-energy-and-climate-plans_en (accessed on 15 November 2022).
- EPA (Environmental Protection Agency). Latest Emissions Data. 2021. Available online: https://www.epa.ie/our-services/monitoring—Assessment/climate-change/ghg/latest-emissions-data/ (accessed on 15 November 2022).
- EPA (Environmental Protection Agency). Understanding Global Warming Potentials. 2021. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#:~:text=Nitrous%20Oxide%20(N2O,than%20100%20years%2C%20on%20average (accessed on 15 November 2022).
- Jaramillo, D.M.; Sheridan, H.; Soder, K.; Dubeux, J.C.B., Jr. Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards. Agronomy 2021, 11, 1912. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Cranston, L.M.; Kenyon, P.R.; Morris, S.T.; Kemp, P.D. A review of the use of chicory, plantain, red clover and white clover in a sward mix for increased sheep and beef production. J. N. Z. Grassl. 2015, 77, 89–94. [Google Scholar] [CrossRef]
- Distel, R.A.; Arroquy, J.I.; Lagrange, S.; Villalba, J.J. Designing diverse agricultural pastures for improving ruminant production systems. Front. Sustain. Food Syst. 2020, 4, 596869. [Google Scholar] [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Kagan, I.A.; Goodman, J.P.; Klotz, J.L.; Aiken, G.E. Isoflavone supplementation, via red clover hay, alters the rumen microbial community and promotes weight gain of steers grazing mixed grass pastures. PLoS ONE 2020, 15, e0229200. [Google Scholar] [CrossRef] [Green Version]
- Stoldt, A.-K.; Derno, M.; Nürnberg, G.; Weitzel, J.M.; Otten, W.; Starke, A.; Wolffram, S.; Metges, C.C. Effects of a 6-wk intraduodenal supplementation with quercetin on energy metabolism and indicators of liver damage in periparturient dairy cows. J. Dairy Sci. 2015, 98, 4509–4520. [Google Scholar] [CrossRef] [Green Version]
- Burmańczuk, A.; Hola, P.; Milczak, A.; Piech, T.; Kowalski, C.; Wojciechowska, B.; Grabowski, T. Quercetin decrease somatic cells count in mastitis of dairy cows. Res. Vet. Sci. 2018, 117, 255–259. [Google Scholar] [CrossRef]
- Clarkson, T.B. Soy, Soy Phytoestrogens and Cardiovascular Disease. Nutr. Bull. 2006, 31, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Fraisse, D.; Carnat, A.; Viala, D.; Pradel, P.; Besle, J.M.; Coulon, J.B.; Felgines, C.; Lamaison, J.L. Polyphenolic composition of a permanent pasture: Variations related to the period of harvesting. Sci. Food Agric. 2007, 87, 2427–2435. [Google Scholar] [CrossRef]
- Gupta, S.; Rajauria, G.; Abu-Ghannam, N. Study of the microbial diversity and antimicrobial properties of Irish edible brown seaweeds. Int. J. Food Sci. Technol. 2010, 45, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.K.; Abu-Ghannam, N.; Gupta, S. A comparative study on the polyphenolic content, antibacterial activity and antioxidant capacity of different solvent extracts of Brassica oleracea vegetables. Int. J. Food Sci. Technol. 2011, 47, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Vlaisavljević, S.; Kaurinović, B.; Popović, M.; Vasiljević, S. Profile of phenolic compounds in Trifolium pratense L. extracts at different growth stages and their biological activities. Int. J. Food Prop. 2016, 20, 3090–3101. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Shannon, E.; Jaiswal, A.K.; Abu-Ghannam, N. Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: A kinetic study. Food Res. 2017, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Dalar, A.; Uzun, Y.; Turker, M.; Mukemre, M.; Konczak, I. Health attributes of ethnic vegetables consumed in the Eastern Anatolia region of Turkey: Antioxidant and enzyme-inhibitory properties. J. Ethn. Foods 2016, 3, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Dalar, A.; Konczak, I. Cichorium intybus from Eastern Anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. Ind. Crops Prod. 2014, 60, 79–85. [Google Scholar] [CrossRef]
- Milala, J.; Grzelak, K.; Król, B.; Juśkiewicz, J.; Zduńczyk, Z. Composition and properties of chicory extracts rich in fructans and polyphenols. Pol. J. Food Nutr. Sci. 2009, 59, 35–43. [Google Scholar]
- Saviranta, N.; Julkunen-Tiitto, R.; Oksanen, E.; Karjalainen, R.O. Red clover (Trifolium pratense L.) isoflavones: Root phenolic compounds affected by biotic and abiotic stress factors. J. Sci. Food Agric. 2010, 90, 418–423. [Google Scholar] [CrossRef]
- Qawasmeh, A.; Obied, H.K.; Raman, A.; Wheatley, W. Influence of Fungal Endophyte Infection on Phenolic Content and Antioxidant Activity in Grasses: Interaction between Lolium perenne and Different Strains of Neotyphodium lolii. J. Agric. Food Chem. 2012, 60, 3381–3388. [Google Scholar] [CrossRef] [PubMed]
- Besle, J.M.; Viala, D.; Martin, B.; Pradel, P.; Meunier, B.; Berdagu’e, J.L.; Fraisse, D.; Lamaison, J.L.; Coulon, J.B. Ultraviolet-absorbing compounds in milk are related to forage polyphenols. J. Dairy Sci. 2010, 93, 2846–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, R.; Papadopoulos, Y.; Yang, R.; Young, J.C.; McRae, K. Isoflavone Profiles of Red Clovers and Their Distribution in Different Parts Harvested at Different Growing Stages. J. Agric. Food Chem. 2006, 54, 5797–5805. [Google Scholar] [CrossRef]
- Iqbal, Y.; Ponnampalam, E.N.; Suleria, H.A.R.; Cottrell, J.J.; Dunshea, F.R. LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities. Antioxidants 2021, 10, 932. [Google Scholar] [CrossRef]
- Beara, I.N.; Lesjak, M.M.; Orčić, D.Z.; Simin, N.D.; Četojević-Simin, D.D.; Božin, B.N.; Mimica-Dukić, N.M. Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely related Plantain species: Plantago altissima L. and Plantago lanceolata. Food Sci. Technol. 2012, 47, 64–70. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Peña-Espinoza, M.; Valente, A.H.; Thamsborg, S.M.; Simonsen, H.T.; Boas, U.; Enemark, H.L. Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: A review. Parasites Vectors 2018, 11, 475. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.A. Phytoestrogens. Annu. Rev. Plant Biol. 2004, 55, 225–261. [Google Scholar] [CrossRef] [Green Version]
- Kagan, I.A. Soluble phenolic compounds of perennial ryegrass (Lolium perenne L.): Potential effects on animal performance, and challenges in determining profiles and concentrations. Anim. Feed. Sci. Technol. 2020, 277, 114960. [Google Scholar] [CrossRef]
- Diago, M.P.; Ayestarán, B.; Guadalupe, Z.; Poni, S.; Tardáguila, J. Impact of prebloom and fruit set basal leaf removal on the flavonol and anthocyanin composition of Tempranillo grapes. Am. J. Enol. Vitic. 2012, 63, 367–376. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Olmos Colmenero, J.J.O.; Winters, A.L.; Scollan, N.D.; Minchin, F.R. Polyphenol oxidase activity in grass and its effect on plant-mediated lipolysis and proteolysis of Dactylis glomerata (cocksfoot) in a simulated rumen environment. J. Sci. Food Agric. 2006, 86, 1503–1511. [Google Scholar] [CrossRef]
- Gong, X.X.; Su, X.S.; Zhan, K.; Zhao, G.Q. The protective effect of chlorogenic acid on bovine mammary epithelial cells and neutrophil function. J. Dairy Sci. 2018, 101, 10089–10097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanagh, S. Teagasc Dairy Manual. 2016; Volume 6, p. 34. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.teagasc.ie/media/website/animals/dairy/FeedingDiaryCow.pdf (accessed on 15 November 2022).
- Křížová, L.; Křešťáková, V.; Dadáková, K.; Kašparovský, T. Production of Bovine Equol-Enriched Milk: A Review. Animals 2021, 11, 735. [Google Scholar] [CrossRef] [PubMed]
- Hoikkala, A.; Mustonen, E.; Saastamoinen, I. High levels of equol in organic skimmed Finnish cow milk. Mol. Nutr. Food Res. 2007, 51, 782–786. [Google Scholar] [CrossRef]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef] [Green Version]
- Sinz, S.; Kunz, C.; Liesegang, A.; Braun, U.; Marquardt, S.; Soliva, C.R.; Kreuzer, M. In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech J. Anim. Sci. 2018, 63, 293–304. [Google Scholar]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Wang, D.; Huang, J.; Zhang, Z.; Tian, X.; Huang, H.; Yu, Y.; Zhang, G.; Ding, J.; Huang, R. Influences of Portulaca oleracea extracts on in vitro methane emissions and rumen fermentation of forage. J. Food Agric. Environ. 2013, 11, 483–488. [Google Scholar]
- Minneé, E.M.K.; Waghorn, G.C.; Lee, J.M.; Clark, C.E.F. Including chicory or plantain in a perennial ryegrass/white clover-based diet of dairy cattle in late lactation: Feed intake, milk production and rumen digestion. Anim. Feed. Sci. Technol. 2017, 227, 52–61. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Beaulieu, D.; Barbano, A.D.M. Feed and Animal Factors Influencing Milk Fat Composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef] [PubMed]
- Teagasc. Grassland Re-Seeding: How to Establosh Multispecies Swards. 2020. Available online: https://www.teagasc.ie/publications/2020/grassland-re-seeding-how-to-establish-multi-species-swards.php (accessed on 15 November 2022).
Targets | Molecular Formula | Retention Time (min) | Fragmentor Voltage (V) | Collision Energy (V) | Precursor Ion (m/z) | Product Ion (m/z) |
---|---|---|---|---|---|---|
Chlorogenic acid | C16H18O9 | 1.090 | 165 | 10 | 353.2 | 191.0 |
Naringin | C27H32O14 | 2.137 | 225 | 33 | 579.4 | 271.2 |
Daidzein | C15H10O4 | 3.700 | 145 | 31 | 253.0 | 208.0 |
Quercetin | C15H10O7 | 4.094 | 130 | 15 | 301.1 | 151.1 |
Kaempferol | C15H10O6 | 4.640 | 130 | 0 | 285.0 | 285.0 |
Luteolin | C15H10O6 | 4.640 | 135 | 25 | 285.2 | 133.0 |
Formononetin | C16H12O4 | 6.947 | 112 | 10 | 267.0 | 252.0 |
Biochanin A | C16H12O5 | 8.636 | 135 | 17 | 283.0 | 268.0 |
Perennial Ryegrass | Timothy | ||||||
---|---|---|---|---|---|---|---|
April | TPC | 26.93 a | ±3.16 | April | TPC | 52.37 c | ±4.32 |
TFC | 14.57 a | ±1.25 | TFC | 35.72 b | ±2.01 | ||
May | TPC | 29.43 a | ±1.72 | May | TPC | 37.71 c | ±3.18 |
TFC | 13.8 a | ±2.20 | TFC | 23.11 b | ±4.86 | ||
June | TPC | 25.15 a | ±3.43 | June | TPC | 95.45 c | ±4.26 |
TFC | 12.97 a | ±3.82 | TFC | 67.12 b | ±2.57 | ||
July | TPC | 23.01 a | ±2.93 | July | TPC | 75.41 c | ±3.08 |
TFC | 10.70 a | ±0.78 | TFC | 60.29 b | ±2.98 | ||
August | TPC | 19.95 a | ±1.74 | August | TPC | 76.95 c | ±4.33 |
TFC | 11.73 a | ±0.93 | TFC | 64.62 b | ±3.68 | ||
White Clover | Red Clover | ||||||
April | TPC | 38.04 a | ±5.26 | April | TPC | 40.57 b | ±4.92 |
TFC | 17.06 a | ±1.07 | TFC | 12.62 a | ±4.15 | ||
May | TPC | 20.16 a | ±3.85 | May | TPC | 41.70 b | ±2.81 |
TFC | 6.27 a | ±4.06 | TFC | 13.06 a | ±2.88 | ||
June | TPC | 33.17 a | ±5.58 | June | TPC | 47.49 b | ±2.97 |
TFC | 12.33 a | ±3.30 | TFC | 21.84 a | ±5.79 | ||
July | TPC | 39.63 a | ±4.13 | July | TPC | 38.60 b | ±3.38 |
TFC | 16.01 a | ±0.83 | TFC | 15.52 a | ±5.27 | ||
August | TPC | 31.70 a | ±3.99 | August | TPC | 43.49 b | ±2.54 |
TFC | 12.64 a | ±1.63 | TFC | 13.68 a | ±2.60 | ||
Chicory | Plantain | ||||||
April | TPC | 71.01 c | ±5.89 | April | TPC | 118.58 d | ±1.43 |
TFC | 58.95 b | ±4.64 | TFC | 81.01 c | ±7.37 | ||
May | TPC | 74.94 c | ±3.14 | May | TPC | 137.11 d | ±9.40 |
TFC | 53.67 b | ±2.52 | TFC | 102.42 c | ±3.72 | ||
June | TPC | 67.77 c | ±6.47 | June | TPC | 138.69 d | ±8.11 |
TFC | 55.94 b | ±6.82 | TFC | 101.12 c | ±3.36 | ||
July | TPC | 52.57 c | ±4.24 | July | TPC | 112.27 d | ±8.50 |
TFC | 40.55 b | ±5.27 | TFC | 87.77 c | ±5.60 | ||
August | TPC | 47.50 c | ±4.40 | August | TPC | 120.29 d | ±7.20 |
TFC | 35.56 b | ±0.93 | TFC | 96.24 c | ±5.83 |
Perennial Ryegrass | Timothy | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
April | BcA | 0.01 | ±0.01 | Kae | 0.05 | ±0.02 | April | BcA | 0.01 | ±0.01 | Kae | 0.07 | ±0.04 |
CgA | 6.62 | ±0.41 | Lu | 0.03 | ±0.03 | CgA | 14.61 | ±1.21 | Lu | 0.04 | ±0.03 | ||
Dz | 0.05 | ±0.06 | Nar | 0.05 | ±0.07 | Dz | 0.04 | ±0.04 | Nar | 0.04 | ±0.05 | ||
Fmnt | 0.05 | ±0.02 | Que | 0.03 | ±0.03 | Fmnt | 0.04 | ±0.02 | Que | 0.01 | ±0.01 | ||
May | BcA | 0.05 | ±0.04 | Kae | 0.02 | ±0.01 | May | BcA | 0 | ±0.01 | Kae | 0.02 | ±0.01 |
CgA | 5.64 | ±0.87 | Lu | 0.01 | ±0.01 | CgA | 13.83 | ±0.57 | Lu | 0.04 | ±0.01 | ||
Dz | 0.03 | ±0.03 | Nar | 0 | ±0.01 | Dz | 0.02 | ±0.01 | Nar | 0.02 | ±0.01 | ||
Fmnt | 0.04 | ±0.01 | Que | 0.01 | ±0.01 | Fmnt | 0.06 | ±0.01 | Que | 0.01 | ±0.01 | ||
June | BcA | 0.02 | ±0.02 | Kae | 0.02 | ±0.01 | June | BcA | 0.03 | ±0.03 | Kae | 0.02 | ±0.02 |
CgA | 4.51 | ±0.48 | Lu | 0.01 | ±0.00 | CgA | 16.61 | ±0.29 | Lu | 0.01 | ±0.02 | ||
Dz | 0.02 | ±0.02 | Nar | 0.01 | ±0.01 | Dz | 0.01 | ±0.02 | Nar | 0.01 | ±0.00 | ||
Fmnt | 0.06 | ±0.03 | Que | 0.01 | ±0.00 | Fmnt | 0.04 | ±0.04 | Que | 0.01 | ±0.02 | ||
July | BcA | 0.01 | ±0.01 | Kae | 0.01 | ±0.01 | July | BcA | 0.06 | ±0.05 | Kae | 0.02 | ±0.01 |
CgA | 4.63 | ±0.57 | Lu | 0.03 | ±0.03 | CgA | 17.07 | ±1.35 | Lu | 0.03 | ±0.01 | ||
Dz | 0.01 | ±0.02 | Nar | 0.01 | ±0.01 | Dz | 0.01 | ±0.01 | Nar | 0.01 | ±0.00 | ||
Fmnt | 0.01 | ±0.01 | Que | 0.01 | ±0.00 | Fmnt | 0.15 | ±0.03 | Que | 0 | ±0.00 | ||
August | BcA | 0.01 | ±0.01 | Kae | 0.01 | ±0.01 | August | BcA | 0.09 | ±0.07 | Kae | 0.02 | ±0.01 |
CgA | 1.94 | ±0.33 | Lu | 0.01 | ±0.01 | CgA | 20.69 | ±0.56 | Lu | 0.05 | ±0.04 | ||
Dz | 0.01 | ±0.01 | Nar | 0.01 | ±0.01 | Dz | 0.01 | ±0.00 | Nar | 0.03 | ±0.03 | ||
Fmnt | 0.03 | ±0.01 | Que | 0.01 | ±0.02 | Fmnt | 0.25 | ±0.03 | Que | 0.01 | ±0.00 | ||
White Clover | Red Clover | ||||||||||||
April | BcA | 0.02 | ±0 | Kae | 0.03 | ±0.01 | April | BcA | 1.6 | ±0.11 | Kae | 0.05 | ±0.04 |
CgA | 1.05 | ±0.01 | Lu | 0.06 | ±0.02 | CgA | 0.11 | ±0.05 | Lu | 0.03 | ±0.02 | ||
Dz | 0.02 | ±0.01 | Nar | 0.02 | ±0.03 | Dz | 1.07 | ±0.15 | Nar | 0.01 | ±0.02 | ||
Fmnt | 0.57 | ±0.07 | Que | 0.01 | ±0.01 | Fmnt | 4.29 | ±0.69 | Que | 0.01 | ±0.00 | ||
May | BcA | 0.02 | ±0.01 | Kae | 0.02 | ±0.01 | May | BcA | 2.22 | ±0.55 | Kae | 0.03 | ±0.02 |
CgA | 0.21 | ±0.05 | Lu | 0.02 | ±0.01 | CgA | 0.11 | ±0.03 | Lu | 0.05 | ±0.00 | ||
Dz | 0.01 | ±0 | Nar | 0.01 | ±0.01 | Dz | 0.43 | ±0.02 | Nar | 0.02 | ±0.02 | ||
Fmnt | 0.1 | ±0.02 | Que | 0.01 | ±0.01 | Fmnt | 5.64 | ±0.68 | Que | 0 | ±0.01 | ||
June | BcA | 0.02 | ±0.02 | Kae | 0.03 | ±0.01 | June | BcA | 2.44 | ±0.55 | Kae | 0.03 | ±0.03 |
CgA | 0.19 | ±0.07 | Lu | 0.03 | ±0.01 | CgA | 0.06 | ±0.01 | Lu | 0.07 | ±0.03 | ||
Dz | 0.01 | ±0.02 | Nar | 0.01 | ±0.01 | Dz | 0.9 | ±0.03 | Nar | 0.01 | ±0.01 | ||
Fmnt | 0.19 | ±0.05 | Que | 0.01 | ±0.01 | Fmnt | 5.65 | ±0.76 | Que | 0.01 | ±0.01 | ||
July | BcA | 4.04 | ±0.84 | Kae | 0.06 | ±0.03 | July | BcA | 2.57 | ±0.53 | Kae | 0.05 | ±0.06 |
CgA | 0.17 | ±0.03 | Lu | 0.05 | ±0.05 | CgA | 0.04 | ±0.00 | Lu | 0.03 | ±0.00 | ||
Dz | 0.04 | ±0.03 | Nar | 0.01 | ±0.01 | Dz | 0.44 | ±0.05 | Nar | 0.01 | ±0.00 | ||
Fmnt | 7.25 | ±1.11 | Que | 0.01 | ±0.00 | Fmnt | 5.86 | ±0.76 | Que | 0.01 | ±0.00 | ||
August | BcA | 0.04 | ±0.02 | Kae | 0.02 | ±0.02 | August | BcA | 3.03 | ±0.46 | Kae | 0.02 | ±0.01 |
CgA | 0.08 | ±0.04 | Lu | 0.04 | ±0.01 | CgA | 0.07 | ±0.06 | Lu | 0.04 | ±0.01 | ||
Dz | 0.01 | ±0 | Nar | 0.01 | ±0.01 | Dz | 0.61 | ±0.03 | Nar | 0.01 | ±0.01 | ||
Fmnt | 1.71 | ±0.29 | Que | 0.04 | ±0.06 | Fmnt | 8.23 | ±0.81 | Que | 0.01 | ±0.01 | ||
Chicory | Plantain | ||||||||||||
April | BcA | 0.07 | ±0.01 | Kae | 0.84 | ±0.13 | April | BcA | 0.06 | ±0.01 | Kae | 0.04 | ±0.02 |
CgA | 0.77 | ±0.05 | Lu | 0.9 | ±0.23 | CgA | 7.36 | ±0.69 | Lu | 0.02 | ±0.02 | ||
Dz | 0.35 | ±0.59 | Nar | 0.02 | ±0.02 | Dz | 0.02 | ±0.01 | Nar | 0.01 | ±0.01 | ||
Fmnt | 0.3 | ±0.01 | Que | 0.01 | ±0.01 | Fmnt | 0.35 | ±0.09 | Que | 0.01 | ±0.01 | ||
May | BcA | 0.06 | ±0.01 | Kae | 1.23 | ±0.25 | May | BcA | 0.05 | ±0.02 | Kae | 0.03 | ±0.02 |
CgA | 1.73 | ±0.30 | Lu | 1.29 | ±0.17 | CgA | 9.58 | ±0.30 | Lu | 0.03 | ±0.02 | ||
Dz | 0.01 | ±0.01 | Nar | 0.01 | ±0.01 | Dz | 0.01 | ±0.01 | Nar | 0 | ±0.01 | ||
Fmnt | 4.36 | ±0.40 | Que | 0.04 | ±0.05 | Fmnt | 0.11 | ±0.02 | Que | 0.01 | ±0.01 | ||
June | BcA | 0.57 | ±0.10 | Kae | 0.89 | ±0.00 | June | BcA | 0.06 | ±0.04 | Kae | 0.02 | ±0.02 |
CgA | 1.55 | ±0.20 | Lu | 0.87 | ±0.00 | CgA | 8.08 | ±0.58 | Lu | 0.05 | ±0.03 | ||
Dz | 0.01 | ±0.01 | Nar | 0.02 | ±0.01 | Dz | 0.01 | ±0.01 | Nar | 0.02 | ±0.01 | ||
Fmnt | 1.38 | ±0.35 | Que | 0.01 | ±0.00 | Fmnt | 0.14 | ±0.02 | Que | 0.01 | ±0.01 | ||
July | BcA | 0.38 | ±0.14 | Kae | 1.27 | ±0.26 | July | BcA | 0.21 | ±0.03 | Kae | 0.15 | ±0.12 |
CgA | 1.16 | ±0.27 | Lu | 1.25 | ±0.27 | CgA | 7.43 | ±0.26 | Lu | 0.39 | ±0.27 | ||
Dz | 0.02 | ±0.01 | Nar | 0.01 | ±0.01 | Dz | 0.01 | ±0.01 | Nar | 0.01 | ±0.01 | ||
Fmnt | 1.51 | ±0.44 | Que | 0.01 | ±0.00 | Fmnt | 0.74 | ±0.24 | Que | 0 | ±0.00 | ||
August | BcA | 3.25 | ±0.00 | Kae | 0.03 | ±0.00 | August | BcA | 0.45 | ±0.18 | Kae | 0.13 | ±0.05 |
CgA | 0.83 | ±0.06 | Lu | 0.06 | ±0.03 | CgA | 5.49 | ±0.89 | Lu | 0.1 | ±0.06 | ||
Dz | 0.28 | ±0.00 | Nar | 0.01 | ±0.00 | Dz | 0.01 | ±0.02 | Nar | 0 | ±0.01 | ||
Fmnt | 5.68 | ±0.00 | Que | 0.01 | ±0.00 | Fmnt | 0.86 | ±0.30 | Que | 0.01 | ±0.01 |
Perennial Ryegrass | Timothy | ||||||
---|---|---|---|---|---|---|---|
April | FRAP | 90.04 a | ±3.01 | April | FRAP | 216.75 b | ±7.92 |
DPPH•• | 20.93 a | ±3.19 | DPPH•• | 42.96 c | ±7.51 | ||
ORAC | 1053.55 a | ±111.18 | ORAC | 1027.61 c | ±106.38 | ||
May | FRAP | 80.26 a | ±5.38 | May | FRAP | 154.15 b | ±8.03 |
DPPH•• | 19.27 a | ±3.54 | DPPH•• | 43.90 c | ±2.75 | ||
ORAC | 1038.14 a | ±109.19 | ORAC | 1243.69 c | ±132.59 | ||
June | FRAP | 102.77 a | ±3.92 | June | FRAP | 352.00 b | ±6.97 |
DPPH•• | 23.01 a | ±5.98 | DPPH•• | 68.07 c | ±2.81 | ||
ORAC | 960.15 a | ±100.64 | ORAC | 1586.34 c | ±68.96 | ||
July | FRAP | 79.04 a | ±6.76 | July | FRAP | 307.18 b | ±8.98 |
DPPH•• | 25.87 a | ±3.31 | DPPH•• | 62.48 c | ±6.50 | ||
ORAC | 769.36 a | ±46.27 | ORAC | 1510.63 c | ±73.57 | ||
August | FRAP | 67.36 a | ±7.96 | August | FRAP | 326.84 b | ±4.62 |
DPPH•• | 23.50 a | ±4.97 | DPPH•• | 60.05 c | ±1.93 | ||
ORAC | 755.08 a | ±156.06 | ORAC | 1665.46 c | ±94.46 | ||
White Clover | Red Clover | ||||||
April | FRAP | 108.57 a | ±6.43 | April | FRAP | 97.25 a | ±8.43 |
DPPH•• | 23.30 ab | ±5.54 | DPPH•• | 23.74 b | ±4.57 | ||
ORAC | 1251.90 b | ±108.17 | ORAC | 1082.85 b | ±81.19 | ||
May | FRAP | 50.58 a | ±4.33 | May | FRAP | 89.54 a | ±7.22 |
DPPH•• | 24.40 ab | ±5.52 | DPPH•• | 29.22 b | ±3.76 | ||
ORAC | 1009.17 b | ±85.25 | ORAC | 1176.31 b | ±102.53 | ||
June | FRAP | 97.95 a | ±6.20 | June | FRAP | 136.05 a | ±5.35 |
DPPH•• | 27.21 ab | ±3.85 | DPPH•• | 37.58 b | ±2.87 | ||
ORAC | 1185.22 b | ±65.08 | ORAC | 1220.49 b | ±71.11 | ||
July | FRAP | 94.53 a | ±6.20 | July | FRAP | 90.91 a | ±7.62 |
DPPH•• | 30.19 ab | ±4.34 | DPPH•• | 30.39 b | ±4.51 | ||
ORAC | 1319.97 b | ±82.71 | ORAC | 1051.56 b | ±93.29 | ||
August | FRAP | 69.07 a | ±3.26 | August | FRAP | 92.02 a | ±7.28 |
DPPH•• | 18.44 ab | ±2.71 | DPPH•• | 23.36 b | ±6.86 | ||
ORAC | 1219.08 b | ±107.26 | ORAC | 988.17 b | ±53.15 | ||
Chicory | Plantain | ||||||
April | FRAP | 270.24 b | ±10.53 | April | FRAP | 368.70 c | ±9.40 |
DPPH•• | 54.96 c | ±8.00 | DPPH•• | 71.59 d | ±5.22 | ||
ORAC | 1594.22 c | ±132.29 | ORAC | 2200.39 d | ±123.70 | ||
May | FRAP | 286.71 b | ±12.19 | May | FRAP | 448.14 c | 17.78 |
DPPH•• | 56.22 c | ±4.92 | DPPH•• | 79.94 d | ±5.22 | ||
ORAC | 1289.67 c | ±112.20 | ORAC | 2478.93 d | ±125.47 | ||
June | FRAP | 244.75 b | ±8.35 | June | FRAP | 482.49 c | ±6.75 |
DPPH•• | 58.98 c | ±6.78 | DPPH•• | 80.94 d | ±3.50 | ||
ORAC | 1224.31 c | ±71.76 | ORAC | 2230.17 d | ±73.90 | ||
July | FRAP | 194.44 b | ±4.14 | July | FRAP | 457.90 c | ±7.12 |
DPPH•• | 50.83 c | ±6.47 | DPPH•• | 78.21 d | ±3.80 | ||
ORAC | 1306.99 c | ±69.78 | ORAC | 2032.51 d | ±132.40 | ||
August | FRAP | 211.46 b | ±8.90 | August | FRAP | 450.94 c | ±14.06 |
DPPH•• | 35.74 c | ±2.16 | DPPH•• | 79.82 d | ±4.00 | ||
ORAC | 1301.14 c | ±13.97 | ORAC | 2394.90 d | ±109.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapisarda, S.; Abu-Ghannam, N. Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential. Sustainability 2023, 15, 634. https://doi.org/10.3390/su15010634
Rapisarda S, Abu-Ghannam N. Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential. Sustainability. 2023; 15(1):634. https://doi.org/10.3390/su15010634
Chicago/Turabian StyleRapisarda, Samuel, and Nissreen Abu-Ghannam. 2023. "Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential" Sustainability 15, no. 1: 634. https://doi.org/10.3390/su15010634
APA StyleRapisarda, S., & Abu-Ghannam, N. (2023). Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential. Sustainability, 15(1), 634. https://doi.org/10.3390/su15010634