



# Article Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential

Samuel Rapisarda<sup>1,2</sup> and Nissreen Abu-Ghannam<sup>1,2,\*</sup>

- <sup>1</sup> Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
- <sup>2</sup> School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland
- \* Correspondence: nissreen.abughannam@tudublin.ie; Tel.: +353-1220-5649

Abstract: Ruminant production systems are major contributors to greenhouse gases emissions, with animal feeding practices being the main cause for methane and nitrous oxide's release. Although feeding animals forages has been proven to be more sustainable, traditional ryegrass monocultures still require a lot of input (e.g., fertilisers and pesticides). Multi-species swards, consisting of different swards, such as grasses, forage legumes and herbs, need less management and fertiliser, produce more dry matter, and also add a variety of phytochemicals into the animal diet. In particular, polyphenols have been associated with a positive impact on animal health and productivity. However, data on the phenolic composition of multi-species sward components is still scarce, and little is known about the change in concentration over the grazing season. The present study investigated the antioxidant activity of six forage species (perennial ryegrass, timothy, white clover, red clover, chicory and plantain) over the Irish grazing season, using FRAP, DPPH•• and ORAC assays. The forages were screened for individual phenolic compounds using Liquid-Chromatography-Triple-Quadruple-Mass-Spectrometry. Plantain exhibited the highest antioxidant capacity, being almost one and a half times higher than timothy and double that of chicory. Chlorogenic acid was the most abundant polyphenol in perennial ryegrass, timothy and plantain. Overall, formononetin and biochanin A levels were higher in red clover, white clover and in chicory, in comparison to other forages (p < 0.05). Variations in antioxidant capacity and polyphenol composition were more significant between species (p < 0.01) than between season within species (p > 0.05). This study suggests that multi-species swards, regardless of the grazing month, offer a potential sustainable alternative to monoculture swards with significant antioxidant activity and nutraceutical compounds.

**Keywords:** chicory; *Chicorium intybus*; multi-species; timothy; *Phleum pratense*; plantain; *Plantago lanceolata*; polyphenols; red clover; *Trifolium pratense*; LC-MS-QqQ

# 1. Introduction

In accordance with the National Energy and Climate Plan for 2021–2030, Ireland has committed to cut down 30% of its 2005 emission levels by 2030, and to reach a net zero emission status by 2050 [1]. Animal feeding practices still represent a main contributor to greenhouse emissions, with methane and nitrous oxide accounting for 21.33% of total national emissions [2]. The global warming potential of methane and nitrous oxide is, respectively, 36 and 298 times higher than carbon dioxide [3]; for this reason, there is a strong need to find mitigating strategies to reduce emissions in animal production systems.

Feeding animals with forages is a prevalent practice in temperate regions around the world, such as Ireland, UK and New Zealand. Common forage ecosystems consist of intensively managed monoculture swards, such as perennial ryegrass and Italian ryegrass,



Citation: Rapisarda, S.; Abu-Ghannam, N. Polyphenol Characterization and Antioxidant Capacity of Multi-Species Swards Grown in Ireland—Environmental Sustainability and Nutraceutical Potential. *Sustainability* **2023**, *15*, 634. https://doi.org/10.3390/su15010634

Academic Editor: Pablo Peri

Received: 22 November 2022 Revised: 18 December 2022 Accepted: 26 December 2022 Published: 30 December 2022



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). which lead to a high stocking rate but require high inputs, such as fertilisers and herbicides [4]. Thus, monoculture swards may not be suitable for green environmental strategies, as they increase the nitrogen in the soil, greenhouse emissions and water pollution.

The advantages of using multi-species swards (the combination of grasses, legume forages and herbs) have recently become recognised. Legume forages, such as white and red clover, have bacteria in their roots which can capture the nitrogen from the air, trap it in the roots and convert it into fertiliser for neighbouring plants [5]. Herbs, such as chicory and plantain, are both tolerant to drought and heat, in addition to producing more dry matter (DM) than perennial ryegrass–clover swards [6]. Multi-species swards improve soil function and increase biodiversity in the land. Furthermore, they also contain a variety of biogenic elements, such as sodium, calcium, zinc and potassium, and phytochemicals such as alkaloids, steroids and polyphenols, which have the potential to positively impact the health and productivity of the animal [7].

Phytochemical composition and concentration vary among forages, with polyphenols comprising the largest group and having been associated with many health properties. For example, Biochanin A, an isoflavone abundantly present in legume forages, was shown to improve the weight gain of grazing steers by promoting cellulolytic bacteria in the rumen [8]; meanwhile, quercetin, a flavonol commonly found in herbs, was linked to possibly reducing biomarkers associated with liver damage and somatic cell count in cows [9,10]. Formononetin and daidzein, both found in legume forages, increased the amount of equol in milk, which has been linked to a reduction in the development of osteoporosis, cardiovascular diseases and some types of cancer in humans [11]. In a recent review, a positive correlation between higher polyphenols dietary intake and the reduction in enteric emissions was also demonstrated [12]. Indeed, polyphenols have the capacity to inhibit the methanogenic pathways in the rumen or improve nitrogen utilisation by protecting proteins against proteolysis. Since cattle can consume up to 500 g of polyphenols per day when eating forages [13], there is a particular general interest in employing these compounds as natural additives to animal feed. Nevertheless, information on the phenolic profile of forages is still very scarce, and even less is known about the change in the phenolic composition and concentration over the grazing period.

In this study, the phenolic composition and concentration of multi-species swards components (i.e., perennial ryegrass (*Lolium perenne*), timothy (*Phleum pratense*), white clover (*Trifolium repens*), red clover (*Trifolium pratense*), chicory (*Chicorium intybus*) and plantain (*Plantago lanceolata*)) was investigated over five months during a typical Irish grazing season (April–August). The polyphenolic concentrations of each species were assessed using colorimetric assays and the Liquid Chromatography-Electrospray Ionisation-Triple-Quadruple-Mass Spectrometry (LC-ESI-QqQ-MS) technique in Multiple Reaction Monitoring (MRM) mode. The antioxidant capacity of the species was also studied over the investigated grazing period. Improved understanding of the phenolic composition of the forage species may help to optimise feeding strategies and enhance the understanding of the relationship between phytochemical supply, and animal health and productivity.

# 2. Materials and Methods

HPLC grade ( $\geq$ 99.9) and LCMS ( $\geq$ 99.9) grade methanol were purchased from Thermo Fisher Scientific (Dublin, Ireland); Acetic acid, aluminium chloride, DPPH••, ferric (III) chloride, Folin–Ciocalteu's reagent, phosphate buffer saline (pH 7.4), sodium carbonate, sodium nitrite, 2,4,6-Tris(2-pyridyl)s-triazine (TPTZ), Trolox, and fluorescein sodium salt were purchased from Sigma-Aldrich (Arklow, Ireland). Polyphenols standards were purchased from Stratech (Ely, UK).

# 2.1. Plant Material

Multi-species swards of perennial ryegrass, timothy, white clover, red clover, chicory and plantain were cultivated at University College Dublin, Lyons Research Farm (Co. Kildare, Ireland). Four experimental paddocks were established, with each paddock comprising 2-ha of swards. Initially, the site received 40 kg N ha<sup>-1</sup>, 25 kg P ha<sup>-1</sup> and 80 kg K ha<sup>-1</sup>, followed by 92 kg N ha<sup>-1</sup>, 18 kg P ha<sup>-1</sup>, and 115 kg K ha<sup>-1</sup>. Swards were harvested repeatedly between April 2020 and August 2020 on a monthly basis. Shortly after collection, the swards were separated according to species, washed using running tap water to remove any soil and dirt, and frozen for 24 h; this was followed by a lyophilization step. The dried forages were milled using a kitchen blender and stored away from light until further analysis.

#### 2.2. Polyphenol Extraction

The extraction procedure was based upon a modified version of a protocol optimised by Gupta [14]. Milled forages (0.4 g) were combined with methanol (30 mL, 50%) in a flask capped with Parafilm at 40 °C for 120 min and placed in an orbital incubator shaker (Innova 42, Mason Technology, Dublin, Ireland) at 100 rpm under dark conditions. The flask content was then transferred into Nalgene tubes and centrifuged (10 min, 12,000 × *g*, 4 °C) (Sigma 2K15, Mason Technology, Dublin, Ireland). The supernatant was retained, whereas the pellet was washed twice with methanol (5 mL, 50%). The pooled supernatant was filtered (Grade 1 filter paper, 11µm pore, Whatman International Limited, Maidstone, Kent, UK) and reduced to 10 mL by evaporation (Syncore Polyvap, Mason Technology, Dublin, Ireland). The samples were frozen at -20 °C for lyophilisation. Once freeze dried, the extracts were transferred to Eppendorf tubes and stored at -20 °C until further analysis. Extractions were carried out in triplicates.

## 2.3. Total Polyphenol Content and Total Flavonoid Content

The total polyphenol content (TPC) of the forages was determined using the Folin–Ciocalteu's method, as described in Jaiswal et al. [15]. Briefly, 100  $\mu$ L aliquot of sample was placed under alkaline conditions with 2 mL of 2% sodium carbonate. After 2 min, 100  $\mu$ L of 50% Folin–Ciocalteu reagent was added, and the mixture was left for 30 min at room temperature. Absorbance was measured at 720 nm using a spectrophotometer (Varioskan LUX, Thermo Scientific, Waltham, MA, USA). Gallic acid standard (0–500  $\mu$ g/mL) was used to prepare the standard curve and calculate the TPC of the forages, which was expressed as Gallic Acid Equivalent of dried weight (mg GAE/g).

The total flavonoid content (TFC) of the forages was determined using the aluminium chloride assay, as described in Jaiswal et al. [15]. A 250  $\mu$ L aliquot of sample was placed under alkaline conditions with 5% sodium nitrate. After 6 min, 150  $\mu$ L of 10% aluminium chloride and 0.5 mL of 1 M sodium hydroxide were added to the sample. The mixture was left for 30 min at room temperature, before measuring the absorbance at 510 nm. Catechin standard (0–200  $\mu$ g/mL) was used to prepare the standard curve and calculate the TFC of the forages, which was expressed as a Catechin Equivalent of dried weight (mg CE/g).

## 2.4. Characterisation of Polyphenols Using LC-ESI-QqQ-MS

Mass spectrometry was employed to characterise and quantify the individual polyphenols present in the forage samples. The instrument was composed of an Agilent Technologies 1290 Infinity series HPLC, coupled with an Agilent Technologies 6470 series electrospray ionization triple quadruple with electrospray ionization. A modification of Vlaisavljević's method [16] was performed. A 5  $\mu$ L aliquot of sample was injected and the separation was carried out using a Poroshell 120 (3.0 mm × 100 mm × 2.7  $\mu$ m) (Agilent Technologies, Cork, Ireland) held at 50 °C. The mobile phase solvent A consisted of 0.1% formic acid in water and the mobile phase solvent B consisted of 0.1% formic acid in methanol. Elution was performed at a flow rate of 0.5 mL/min using the following gradient: starting with 40% B, reaching 70% B in 6 min and holding until 10 min, with a post-time of 3 min.

The detection of eluted polyphenols was performed using Multiple Reaction Monitoring (MRM), in the following ion source: negative ion polarity, gas flow 13 l/min, nebulizer 40 psi, sheath gas 350 °C, and drying gas 9 l/min. LC-ESI-QqQ-MS parameters for standard compounds are presented in Table 1. Calibration curves were constructed from peak areas of different standard concentrations (0.01 to 3  $\mu$ g/mL), using the equation for linear regression obtained from the calibration curves (R<sup>2</sup> = 0.99).

| Targets          | Molecular<br>Formula                           | Retention<br>Time (min) | Fragmentor<br>Voltage (V) | Collision<br>Energy (V) | Precursor Ion<br>(m/z) | Product Ion<br>(m/z) |
|------------------|------------------------------------------------|-------------------------|---------------------------|-------------------------|------------------------|----------------------|
| Chlorogenic acid | C <sub>16</sub> H <sub>18</sub> O <sub>9</sub> | 1.090                   | 165                       | 10                      | 353.2                  | 191.0                |
| Naringin         | C27H32O14                                      | 2.137                   | 225                       | 33                      | 579.4                  | 271.2                |
| Daidzein         | $C_{15}H_{10}O_4$                              | 3.700                   | 145                       | 31                      | 253.0                  | 208.0                |
| Quercetin        | C <sub>15</sub> H <sub>10</sub> O <sub>7</sub> | 4.094                   | 130                       | 15                      | 301.1                  | 151.1                |
| Kaempferol       | $C_{15}H_{10}O_{6}$                            | 4.640                   | 130                       | 0                       | 285.0                  | 285.0                |
| Luteolin         | $C_{15}H_{10}O_{6}$                            | 4.640                   | 135                       | 25                      | 285.2                  | 133.0                |
| Formononetin     | $C_{16}H_{12}O_4$                              | 6.947                   | 112                       | 10                      | 267.0                  | 252.0                |
| Biochanin A      | $C_{16}H_{12}O_5$                              | 8.636                   | 135                       | 17                      | 283.0                  | 268.0                |

Table 1. LC-ESI-QqQ-MS data for the standard compounds.

## 2.5. Antioxidant Studies

2.5.1. Ferric Reducing Antioxidant Power (FRAP)

The FRAP method was used to determine the antioxidant capacity of forages, following the methods of Benzie and Strain [17], and Shannon [18]. The FRAP reagent (300 mM sodium acetate buffer pH 3.6, 20 mM ferric chloride solution and 10 mM 2,4,6-Tris(2-pyridyl)s-triazine (TPTZ) in 40 mM HCl; at a ratio of 10:1:1, v/v/v) was prepared and incubated at 37 °C for 5 min. In a 96-well plate, 100 µL of the FRAP reagent was added to 50 µL of the sample. After incubating the plate at 25 °C for 10 min, the absorbance was measured at 593 nm. Dried forage extract samples were diluted to a 0.25 mg/mL concentration. Trolox standard (0–140 µM) was used to prepare the standard curve and calculate the antioxidant capacity of forages, which was expressed in Trolox Equivalent of dried extract (µM TE/g).

# 2.5.2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH••)

The DPPH•<sup>•</sup> method was used to estimate the free-radical scavenging activity of forages using the method of Jaiswal et al. [15]. The DPPH•<sup>•</sup> radical solution was prepared in methanol (165  $\mu$ M). Using six wells of the 96 well plate, 100  $\mu$ L of each sample was pipetted. A 100  $\mu$ L aliquot of H<sub>2</sub>O was added to the first three wells (control test) and 100  $\mu$ L aliquot of DPPH•<sup>•</sup> was added to the other three wells (test). The plate was incubated in the dark at 30 °C for 30 min and the absorbance was measured at 517 nm. Dried forage extract samples were diluted to a 0.25 mg/mL concentration. L-ascorbic acid standard (0–25 mM) was used to prepare the standard curve and calculate the scavenging capacity of forages, which was expressed as % DPPH•<sup>•</sup> inhibition.

#### 2.5.3. Oxygen Radical Antioxidant Capacity (ORAC)

The ORAC method was used to determine the oxygen radical scavenging capacity following Ou's method [19]. A 75  $\mu$ M Phosphate Buffered Saline (PBS) solution at pH 7.4 was prepared using mono and dibasic potassium phosphate. Forage extract samples, fluorescein sodium salt solution (4  $\times$  10<sup>-3</sup> mM) and APPH solution (153 mM) were prepared using the PBS. Prior to the assay, the fluorescein sodium salt solution was diluted 50:50, obtaining a concentration of 4  $\times$  10<sup>-6</sup> mM. A 25  $\mu$ L aliquot of either sample, blank or standard, was added to each well, followed by 150  $\mu$ L fluorescein sodium salt. The plate was incubated for 30 min in the spectrophotometer, which was preheated to 37 °C. Briefly, the plate was removed before adding (in a very dim light) 25  $\mu$ L of the 2,2'-Azobis (2-amidinopropane) (APPH) solution. The plate was incubated again at 37 °C for 90 min and measurements were carried out. Dried forage extract samples were diluted to a 0.25 mg/mL concentration. Trolox standard (0–100  $\mu$ M) was used to prepare the standard curve and calculate the ORAC value of forages, which was expressed in Trolox Equivalent of dried extract ( $\mu$ M TE/g).

## 2.6. Statistical Analysis

All the data were reported as means  $\pm$  standard deviations of triplicate determinations. A statistical analysis was performed with SPSS Statistic Software (vers 28.0.0), using one-way analysis of variance (ANOVA). Differences at *p* < 0.05 were considered statistically different. LC-ESI-QqQ-MS data were analysed using Agilent Mass Hunter Workstation Software-Qualitative Analysis (vers 10) and Agilent QQQ Quantitative Analysis (vers 8).

# 3. Results

# 3.1. Total Polyphenol and Flavonoid Content

Forages are a rich source of polyphenols, but information on their concentration and composition is still scarce. The TPC and TFC of the multi-species sward components were studied over five months during the Irish grazing season (April–August). TPC is a standard assay used to determine the polyphenols content, as well as any other reducing compounds present in samples (i.e., vitamins, minerals). However, TFC is a more robust method for measuring polyphenols, as it specifically targets flavonoids (the largest subgroup of polyphenols found in plants). The TPC and TFC results are reported in Table 2.

**Table 2.** Total Phenolic Content (TPC) (mg GAE/g) and Total Flavonoid Content (TFC) (mg CE/g) of the multi-species swards components (perennial ryegrass, timothy, red clover, white clover, chicory, plantain) over the grazing season. Values are represented as the mean of three replicates  $\pm$  standard deviation (in italics). Significant difference (p < 0.05) between species is indicated with letter superscript.

|        | Perennia | l Ryegrass         |            | Timothy  |     |                     |            |  |  |
|--------|----------|--------------------|------------|----------|-----|---------------------|------------|--|--|
| A      | TPC      | 26.93 <sup>a</sup> | $\pm 3.16$ | A        | TPC | 52.37 <sup>c</sup>  | $\pm 4.32$ |  |  |
| Арти   | TFC      | 14.57 <sup>a</sup> | $\pm 1.25$ | Apin     | TFC | 35.72 <sup>b</sup>  | $\pm 2.01$ |  |  |
| Max    | TPC      | 29.43 <sup>a</sup> | $\pm 1.72$ | Мах      | TPC | 37.71 <sup>c</sup>  | $\pm 3.18$ |  |  |
| Iviay  | TFC      | 13.8 <sup>a</sup>  | $\pm 2.20$ | iviay    | TFC | 23.11 <sup>b</sup>  | $\pm 4.86$ |  |  |
| June   | TPC      | 25.15 <sup>a</sup> | $\pm 3.43$ | Inne     | TPC | 95.45 °             | $\pm 4.26$ |  |  |
|        | TFC      | 12.97 <sup>a</sup> | $\pm 3.82$ | June     | TFC | 67.12 <sup>b</sup>  | $\pm 2.57$ |  |  |
| July   | TPC      | 23.01 <sup>a</sup> | $\pm 2.93$ | Inly     | TPC | 75.41 <sup>c</sup>  | $\pm 3.08$ |  |  |
|        | TFC      | 10.70 <sup>a</sup> | $\pm 0.78$ | July     | TFC | 60.29 <sup>b</sup>  | $\pm 2.98$ |  |  |
| August | TPC      | 19.95 <sup>a</sup> | $\pm 1.74$ | Anonst   | TPC | 76.95 °             | $\pm 4.33$ |  |  |
| Tagast | TFC      | 11.73 <sup>a</sup> | $\pm 0.93$ | 8        | TFC | 64.62 <sup>b</sup>  | $\pm 3.68$ |  |  |
|        | White    | Clover             |            |          | Red | Clover              |            |  |  |
| April  | TPC      | 38.04 <sup>a</sup> | $\pm 5.26$ | April    | TPC | 40.57 <sup>b</sup>  | $\pm 4.92$ |  |  |
|        | TFC      | 17.06 <sup>a</sup> | $\pm 1.07$ |          | TFC | 12.62 <sup>a</sup>  | $\pm 4.15$ |  |  |
| May    | TPC      | 20.16 <sup>a</sup> | $\pm 3.85$ | May      | TPC | 41.70 <sup>b</sup>  | $\pm 2.81$ |  |  |
|        | TFC      | 6.27 <sup>a</sup>  | $\pm 4.06$ |          | TFC | 13.06 <sup>a</sup>  | $\pm 2.88$ |  |  |
| June   | TPC      | 33.17 <sup>a</sup> | $\pm 5.58$ | June     | TPC | 47.49 <sup>b</sup>  | $\pm 2.97$ |  |  |
|        | TFC      | 12.33 <sup>a</sup> | $\pm 3.30$ |          | TFC | 21.84 <sup>a</sup>  | $\pm 5.79$ |  |  |
| Inly   | TPC      | 39.63 <sup>a</sup> | $\pm 4.13$ | Inly     | TPC | 38.60 <sup>b</sup>  | $\pm 3.38$ |  |  |
| Jury   | TFC      | 16.01 <sup>a</sup> | $\pm 0.83$ | July     | TFC | 15.52 <sup>a</sup>  | $\pm 5.27$ |  |  |
| August | TPC      | 31.70 <sup>a</sup> | $\pm 3.99$ | August   | TPC | 43.49 <sup>b</sup>  | $\pm 2.54$ |  |  |
|        | TFC      | 12.64 <sup>a</sup> | $\pm 1.63$ | 8        | TFC | 13.68 <sup>a</sup>  | $\pm 2.60$ |  |  |
|        | Ch       | icory              |            | Plantain |     |                     |            |  |  |
| April  | TPC      | 71.01 <sup>c</sup> | $\pm 5.89$ | April    | TPC | 118.58 <sup>d</sup> | $\pm 1.43$ |  |  |
| Арш    | TFC      | 58.95 <sup>b</sup> | $\pm 4.64$ | Арш      | TFC | 81.01 <sup>c</sup>  | $\pm 7.37$ |  |  |
| May    | TPC      | 74.94 <sup>c</sup> | $\pm 3.14$ | May      | TPC | 137.11 <sup>d</sup> | $\pm 9.40$ |  |  |
| widy   | TFC      | 53.67 <sup>b</sup> | $\pm 2.52$ | ivituy   | TFC | 102.42 <sup>c</sup> | $\pm 3.72$ |  |  |
| Inne   | TPC      | 67.77 <sup>c</sup> | $\pm 6.47$ | Inne     | TPC | 138.69 <sup>d</sup> | $\pm 8.11$ |  |  |
| June   | TFC      | 55.94 <sup>b</sup> | $\pm 6.82$ | June     | TFC | 101.12 <sup>c</sup> | $\pm 3.36$ |  |  |
| Inly   | TPC      | 52.57 °            | $\pm 4.24$ | Inly     | TPC | 112.27 <sup>d</sup> | $\pm 8.50$ |  |  |
| July   | TFC      | 40.55 <sup>b</sup> | $\pm 5.27$ | Jury     | TFC | 87.77 <sup>c</sup>  | $\pm 5.60$ |  |  |
| August | TPC      | 47.50 <sup>c</sup> | $\pm 4.40$ | August   | TPC | 120.29 <sup>d</sup> | $\pm 7.20$ |  |  |
| August | TFC      | 35.56 <sup>b</sup> | $\pm 0.93$ | August   | TFC | 96.24 <sup>c</sup>  | $\pm 5.83$ |  |  |

The TPC and TFC values were significantly different among species (p < 0.01), while there was no significant difference within species over the grazing season (p > 0.05). High TPC and TFC were found in plantain (138.69 mg GAE/g and 101.12 mg CE/g), timothy

(95.45 mg GAE/g and 67.12 mg CE/g) and chicory (74.94 mg GAE/g and 53.67 mg CE/g), whereas lower levels were found in red clover (38.60 mg GAE/g and 15.52 mg CE/g), perennial ryegrass (19.95 mg GAE/g and 11.73 mg CE/g) and white clover (20.16 mg GAE/g and 6.27 mg CE/g). Similar TPC and TFC values were reported for plantain [20], chicory [21,22] and both of the clover species investigated in this study [16,23]. There is little reported on timothy, whereas perennial ryegrass has been shown to have similar [24] and lower TPC [25] to the values reported here.

# 3.2. Characterisation of Polyphenols Using LC-ESI-QqQ-MS

Characterisation of the phenolic compounds of the multi-species swards components was performed using high selective and specific LC-ESI-QqQ-MS in negative MRM acquisition mode. MRM mode is an accurate technique that monitors ions of the compounds of interest and provides more precise quantification at a lower detection limit. In this research work, one phenolic acid (chlorogenic acid), two flavonol (kaempferol, quercetin), one flavone (luteolin), one flavanone (naringenin) and three isoflavones (biochanin A, daidzein and formononetin) were studied. The eight polyphenols investigated were based on common presence among forages and their potential impact on enhancing animal health and animal products' nutritional value. Polyphenols were accurately detected by comparing the retention time and unique transition from parent ion to product ion between commercial standards and samples. The results of the LC-ESI-QqQ-MS are shown in Table 3.

**Table 3.** Quantification of selected polyphenols in multi-species sward components over April, May, June, July and August. Results are expressed in mg g<sup>-1</sup> of dry weight (BcA = Biochanin A; CgA = Chlorogenic acid; Dz = Daidzein; Fmnt = Formononetin; Kae = Kaempferol; Lu = Luteolin; Nar = Naringenin; Que = Quercetin). Values are represented as mean  $\pm$  standard deviation (in italics).

|        |      | Pere | nnial Rye  | grass |      | Timothy    |        |      |       |            |     |      |            |
|--------|------|------|------------|-------|------|------------|--------|------|-------|------------|-----|------|------------|
|        | BcA  | 0.01 | $\pm 0.01$ | Kae   | 0.05 | ±0.02      |        | BcA  | 0.01  | $\pm 0.01$ | Kae | 0.07 | $\pm 0.04$ |
| April  | CgA  | 6.62 | $\pm 0.41$ | Lu    | 0.03 | $\pm 0.03$ | April  | CgA  | 14.61 | $\pm 1.21$ | Lu  | 0.04 | $\pm 0.03$ |
|        | Dz   | 0.05 | $\pm 0.06$ | Nar   | 0.05 | $\pm 0.07$ |        | Dz   | 0.04  | $\pm 0.04$ | Nar | 0.04 | $\pm 0.05$ |
|        | Fmnt | 0.05 | $\pm 0.02$ | Que   | 0.03 | $\pm 0.03$ |        | Fmnt | 0.04  | $\pm 0.02$ | Que | 0.01 | $\pm 0.01$ |
|        | BcA  | 0.05 | $\pm 0.04$ | Kae   | 0.02 | $\pm 0.01$ |        | BcA  | 0     | $\pm 0.01$ | Kae | 0.02 | $\pm 0.01$ |
| May    | CgA  | 5.64 | $\pm 0.87$ | Lu    | 0.01 | $\pm 0.01$ | May    | CgA  | 13.83 | $\pm 0.57$ | Lu  | 0.04 | $\pm 0.01$ |
|        | Dz   | 0.03 | $\pm 0.03$ | Nar   | 0    | $\pm 0.01$ |        | Dz   | 0.02  | $\pm 0.01$ | Nar | 0.02 | $\pm 0.01$ |
|        | Fmnt | 0.04 | $\pm 0.01$ | Que   | 0.01 | $\pm 0.01$ |        | Fmnt | 0.06  | $\pm 0.01$ | Que | 0.01 | $\pm 0.01$ |
|        | BcA  | 0.02 | $\pm 0.02$ | Kae   | 0.02 | $\pm 0.01$ |        | BcA  | 0.03  | $\pm 0.03$ | Kae | 0.02 | $\pm 0.02$ |
| June   | CgA  | 4.51 | $\pm 0.48$ | Lu    | 0.01 | $\pm 0.00$ | June   | CgA  | 16.61 | $\pm 0.29$ | Lu  | 0.01 | $\pm 0.02$ |
|        | Dz   | 0.02 | $\pm 0.02$ | Nar   | 0.01 | $\pm 0.01$ |        | Dz   | 0.01  | $\pm 0.02$ | Nar | 0.01 | $\pm 0.00$ |
|        | Fmnt | 0.06 | $\pm 0.03$ | Que   | 0.01 | $\pm 0.00$ |        | Fmnt | 0.04  | $\pm 0.04$ | Que | 0.01 | $\pm 0.02$ |
|        | BcA  | 0.01 | $\pm 0.01$ | Kae   | 0.01 | $\pm 0.01$ |        | BcA  | 0.06  | $\pm 0.05$ | Kae | 0.02 | $\pm 0.01$ |
| July   | CgA  | 4.63 | $\pm 0.57$ | Lu    | 0.03 | $\pm 0.03$ | July   | CgA  | 17.07 | $\pm 1.35$ | Lu  | 0.03 | $\pm 0.01$ |
|        | Dz   | 0.01 | $\pm 0.02$ | Nar   | 0.01 | $\pm 0.01$ |        | Dz   | 0.01  | $\pm 0.01$ | Nar | 0.01 | $\pm 0.00$ |
|        | Fmnt | 0.01 | $\pm 0.01$ | Que   | 0.01 | $\pm 0.00$ |        | Fmnt | 0.15  | $\pm 0.03$ | Que | 0    | $\pm 0.00$ |
|        | BcA  | 0.01 | $\pm 0.01$ | Kae   | 0.01 | $\pm 0.01$ |        | BcA  | 0.09  | $\pm 0.07$ | Kae | 0.02 | $\pm 0.01$ |
| August | CgA  | 1.94 | $\pm 0.33$ | Lu    | 0.01 | $\pm 0.01$ | August | CgA  | 20.69 | $\pm 0.56$ | Lu  | 0.05 | $\pm 0.04$ |
|        | Dz   | 0.01 | $\pm 0.01$ | Nar   | 0.01 | $\pm 0.01$ |        | Dz   | 0.01  | $\pm 0.00$ | Nar | 0.03 | $\pm 0.03$ |
|        | Fmnt | 0.03 | $\pm 0.01$ | Que   | 0.01 | $\pm 0.02$ |        | Fmnt | 0.25  | $\pm 0.03$ | Que | 0.01 | $\pm 0.00$ |

|                                        |                                                                                                                            | V                                                                                                                                                   | Vhite Clov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             | Red Clover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | BcA                                                                                                                        | 0.02                                                                                                                                                | $\pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kae                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | BcA                                                                                                                        | 1.6                                                                                                                                                          | ±0.11                                                                                                                                                                                                                                                                                                                                       | Kae                                                                                                                          | 0.05                                                                                                                                                | ±0.04                                                                                                                                                                                                                                                                          |
| April                                  | CgA                                                                                                                        | 1.05                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                                                                                        | $\pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | April                                  | CgA                                                                                                                        | 0.11                                                                                                                                                         | $\pm 0.05$                                                                                                                                                                                                                                                                                                                                  | Lu                                                                                                                           | 0.03                                                                                                                                                | ±0.02                                                                                                                                                                                                                                                                          |
| -                                      | Dz                                                                                                                         | 0.02                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                        | $\pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Dz                                                                                                                         | 1.07                                                                                                                                                         | $\pm 0.15$                                                                                                                                                                                                                                                                                                                                  | Nar                                                                                                                          | 0.01                                                                                                                                                | ±0.02                                                                                                                                                                                                                                                                          |
|                                        | Fmnt                                                                                                                       | 0.57                                                                                                                                                | $\pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Que                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Fmnt                                                                                                                       | 4.29                                                                                                                                                         | ±0.69                                                                                                                                                                                                                                                                                                                                       | Que                                                                                                                          | 0.01                                                                                                                                                | $\pm 0.00$                                                                                                                                                                                                                                                                     |
|                                        | BcA                                                                                                                        | 0.02                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kae                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | BcA                                                                                                                        | 2.22                                                                                                                                                         | $\pm 0.55$                                                                                                                                                                                                                                                                                                                                  | Kae                                                                                                                          | 0.03                                                                                                                                                | ±0.02                                                                                                                                                                                                                                                                          |
| May                                    | CgA                                                                                                                        | 0.21                                                                                                                                                | $\pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | May                                    | CgA                                                                                                                        | 0.11                                                                                                                                                         | $\pm 0.03$                                                                                                                                                                                                                                                                                                                                  | Lu                                                                                                                           | 0.05                                                                                                                                                | $\pm 0.00$                                                                                                                                                                                                                                                                     |
| -                                      | Dz                                                                                                                         | 0.01                                                                                                                                                | $\pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Dz                                                                                                                         | 0.43                                                                                                                                                         | $\pm 0.02$                                                                                                                                                                                                                                                                                                                                  | Nar                                                                                                                          | 0.02                                                                                                                                                | $\pm 0.02$                                                                                                                                                                                                                                                                     |
|                                        | Fmnt                                                                                                                       | 0.1                                                                                                                                                 | $\pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Que                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Fmnt                                                                                                                       | 5.64                                                                                                                                                         | $\pm 0.68$                                                                                                                                                                                                                                                                                                                                  | Que                                                                                                                          | 0                                                                                                                                                   | $\pm 0.01$                                                                                                                                                                                                                                                                     |
| -                                      | BcA                                                                                                                        | 0.02                                                                                                                                                | ±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kae                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | BcA                                                                                                                        | 2.44                                                                                                                                                         | $\pm 0.55$                                                                                                                                                                                                                                                                                                                                  | Kae                                                                                                                          | 0.03                                                                                                                                                | $\pm 0.03$                                                                                                                                                                                                                                                                     |
| June                                   | CgA                                                                                                                        | 0.19                                                                                                                                                | $\pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | June                                   | CgA                                                                                                                        | 0.06                                                                                                                                                         | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                  | Lu                                                                                                                           | 0.07                                                                                                                                                | $\pm 0.03$                                                                                                                                                                                                                                                                     |
| -                                      | Dz                                                                                                                         | 0.01                                                                                                                                                | ±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Dz                                                                                                                         | 0.9                                                                                                                                                          | $\pm 0.03$                                                                                                                                                                                                                                                                                                                                  | Nar                                                                                                                          | 0.01                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                     |
|                                        | Fmnt                                                                                                                       | 0.19                                                                                                                                                | $\pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Que                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Fmnt                                                                                                                       | 5.65                                                                                                                                                         | ±0.76                                                                                                                                                                                                                                                                                                                                       | Que                                                                                                                          | 0.01                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                     |
|                                        | BcA                                                                                                                        | 4.04                                                                                                                                                | $\pm 0.84$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kae                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                        | $\pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | BcA                                                                                                                        | 2.57                                                                                                                                                         | $\pm 0.53$                                                                                                                                                                                                                                                                                                                                  | Kae                                                                                                                          | 0.05                                                                                                                                                | $\pm 0.06$                                                                                                                                                                                                                                                                     |
| July                                   | CgA                                                                                                                        | 0.17                                                                                                                                                | ±0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                        | $\pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | July                                   | CgA                                                                                                                        | 0.04                                                                                                                                                         | $\pm 0.00$                                                                                                                                                                                                                                                                                                                                  | Lu                                                                                                                           | 0.03                                                                                                                                                | $\pm 0.00$                                                                                                                                                                                                                                                                     |
|                                        | Dz                                                                                                                         | 0.04                                                                                                                                                | $\pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Dz                                                                                                                         | 0.44                                                                                                                                                         | $\pm 0.05$                                                                                                                                                                                                                                                                                                                                  | Nar                                                                                                                          | 0.01                                                                                                                                                | $\pm 0.00$                                                                                                                                                                                                                                                                     |
|                                        | Fmnt                                                                                                                       | 7.25                                                                                                                                                | ±1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Que                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Fmnt                                                                                                                       | 5.86                                                                                                                                                         | ±0.76                                                                                                                                                                                                                                                                                                                                       | Que                                                                                                                          | 0.01                                                                                                                                                | $\pm 0.00$                                                                                                                                                                                                                                                                     |
|                                        | BcA                                                                                                                        | 0.04                                                                                                                                                | ±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kae                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                        | $\pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | BcA                                                                                                                        | 3.03                                                                                                                                                         | $\pm 0.46$                                                                                                                                                                                                                                                                                                                                  | Kae                                                                                                                          | 0.02                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                     |
| August                                 | CgA                                                                                                                        | 0.08                                                                                                                                                | $\pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | August                                 | CgA                                                                                                                        | 0.07                                                                                                                                                         | $\pm 0.06$                                                                                                                                                                                                                                                                                                                                  | Lu                                                                                                                           | 0.04                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                     |
|                                        | Dz                                                                                                                         | 0.01                                                                                                                                                | $\pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                        | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                      | Dz                                                                                                                         | 0.61                                                                                                                                                         | $\pm 0.03$                                                                                                                                                                                                                                                                                                                                  | Nar                                                                                                                          | 0.01                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                     |
|                                        | Fmnt                                                                                                                       | 1.71                                                                                                                                                | ±0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Que                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04                                                                                                                                                                        | $\pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Fmnt                                                                                                                       | 8.23                                                                                                                                                         | $\pm 0.81$                                                                                                                                                                                                                                                                                                                                  | Que                                                                                                                          | 0.01                                                                                                                                                | $\pm 0.01$                                                                                                                                                                                                                                                                     |
|                                        |                                                                                                                            |                                                                                                                                                     | Chicom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                            |                                                                                                                                                              | D1                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                            |                                                                                                                                                     | Cincory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                            |                                                                                                                                                              | Plantain                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                |
|                                        | BcA                                                                                                                        | 0.07                                                                                                                                                | ±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kae                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.84                                                                                                                                                                        | ±0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | BcA                                                                                                                        | 0.06                                                                                                                                                         | $\pm 0.01$                                                                                                                                                                                                                                                                                                                                  | Kae                                                                                                                          | 0.04                                                                                                                                                | ±0.02                                                                                                                                                                                                                                                                          |
| April                                  | BcA<br>CgA                                                                                                                 | 0.07<br>0.77                                                                                                                                        | $\pm 0.01$<br>$\pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kae<br>Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.84<br>0.9                                                                                                                                                                 | ±0.13<br>±0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | April                                  | BcA<br>CgA                                                                                                                 | 0.06<br>7.36                                                                                                                                                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.69 \end{array}$                                                                                                                                                                                                                                                                                         | Kae<br>Lu                                                                                                                    | 0.04                                                                                                                                                | $\begin{array}{r}\pm 0.02\\\pm 0.02\end{array}$                                                                                                                                                                                                                                |
| April                                  | BcA<br>CgA<br>Dz                                                                                                           | 0.07<br>0.77<br>0.35                                                                                                                                | $ \begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kae<br>Lu<br>Nar                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.84<br>0.9<br>0.02                                                                                                                                                         | $\pm 0.13$<br>$\pm 0.23$<br>$\pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | April                                  | BcA<br>CgA<br>Dz                                                                                                           | 0.06<br>7.36<br>0.02                                                                                                                                         | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                    | Kae<br>Lu<br>Nar                                                                                                             | 0.04<br>0.02<br>0.01                                                                                                                                | $\pm 0.02$<br>$\pm 0.02$<br>$\pm 0.01$                                                                                                                                                                                                                                         |
| April                                  | BcA<br>CgA<br>Dz<br>Fmnt                                                                                                   | 0.07<br>0.77<br>0.35<br>0.3                                                                                                                         | $ \begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kae<br>Lu<br>Nar<br>Que                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.84<br>0.9<br>0.02<br>0.01                                                                                                                                                 | $\pm 0.13$<br>$\pm 0.23$<br>$\pm 0.02$<br>$\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | April                                  | BcA<br>CgA<br>Dz<br>Fmnt                                                                                                   | 0.06<br>7.36<br>0.02<br>0.35                                                                                                                                 | $ \begin{array}{c} \pm 0.01 \\ \pm 0.69 \\ \pm 0.01 \\ \pm 0.09 \\ \end{array} $                                                                                                                                                                                                                                                            | Kae<br>Lu<br>Nar<br>Que                                                                                                      | 0.04<br>0.02<br>0.01<br>0.01                                                                                                                        | $\pm 0.02$<br>$\pm 0.02$<br>$\pm 0.01$<br>$\pm 0.01$                                                                                                                                                                                                                           |
| April                                  | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA                                                                                            | 0.07<br>0.77<br>0.35<br>0.3<br>0.06                                                                                                                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kae<br>Lu<br>Nar<br>Que<br>Kae                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.84<br>0.9<br>0.02<br>0.01<br>1.23                                                                                                                                         | $\pm 0.13$<br>$\pm 0.23$<br>$\pm 0.02$<br>$\pm 0.01$<br>$\pm 0.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | April                                  | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA                                                                                            | 0.06<br>7.36<br>0.02<br>0.35<br>0.05                                                                                                                         | $ \begin{array}{c} \pm 0.01 \\ \pm 0.69 \\ \pm 0.01 \\ \pm 0.09 \\ \pm 0.02 \\ \end{array} $                                                                                                                                                                                                                                                | Kae<br>Lu<br>Nar<br>Que<br>Kae                                                                                               | 0.04<br>0.02<br>0.01<br>0.01<br>0.03                                                                                                                | $\pm 0.02$<br>$\pm 0.02$<br>$\pm 0.01$<br>$\pm 0.01$<br>$\pm 0.02$                                                                                                                                                                                                             |
| April                                  | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA                                                                                     | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73                                                                                                         | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29                                                                                                                                 | $\pm 0.13$<br>$\pm 0.23$<br>$\pm 0.02$<br>$\pm 0.01$<br>$\pm 0.25$<br>$\pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | April                                  | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA                                                                                     | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58                                                                                                                 | ±0.01       ±0.69       ±0.01       ±0.02       ±0.02       ±0.30                                                                                                                                                                                                                                                                           | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu                                                                                         | 0.04<br>0.02<br>0.01<br>0.03<br>0.03                                                                                                                | $ \begin{array}{r} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \end{array} $                                                                                                                                                                       |
| April                                  | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz                                                                               | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01                                                                                                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01                                                                                                                         | $\pm 0.13$<br>$\pm 0.23$<br>$\pm 0.02$<br>$\pm 0.01$<br>$\pm 0.25$<br>$\pm 0.17$<br>$\pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | April<br>May                           | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz                                                                               | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01                                                                                                         | +0.01<br>±0.69<br>±0.01<br>±0.09<br>±0.02<br>±0.30<br>±0.30                                                                                                                                                                                                                                                                                 | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar                                                                                  | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0                                                                                                           | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \end{array}$                                                                                                                                                                |
| April                                  | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt                                                                       | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36                                                                                         | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.01 \\ \pm 0.40 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que                                                                                                                                                                                                                                                                                                                                                                                                            | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04                                                                                                                 | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | April<br>May                           | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt                                                                       | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11                                                                                                 | ±0.01       ±0.69       ±0.01       ±0.02       ±0.300       ±0.02       ±0.01                                                                                                                                                                                                                                                              | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que                                                                           | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0<br>0.01                                                                                              | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \end{array}$                                                                                                                                                    |
| April                                  | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA                                                                | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57                                                                                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae                                                                                                                                                                                                                                                                                                                                                                                                     | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89                                                                                                         | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.05 \\ \pm 0.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | April<br>May                           | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA                                                                | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06                                                                                         | +0.01<br>±0.69<br>±0.01<br>±0.02<br>±0.02<br>±0.30<br>±0.01<br>±0.02                                                                                                                                                                                                                                                                        | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae                                                                    | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0<br>0.01<br>0.02                                                                              | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \end{array}$                                                                                                                            |
| April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA                                                         | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55                                                                         | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.10 \\ \pm 0.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu                                                                                                                                                                                                                                                                                                                                                                                               | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87                                                                                                 | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.05 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA                                                         | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08                                                                                 | ±0.01       ±0.69       ±0.02       ±0.02       ±0.01       ±0.02       ±0.02       ±0.01       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05                                                                                                                                                                                       | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu                                                              | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0<br>0.01<br>0.02<br>0.05                                                                      | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.03 \end{array}$                                                                                                                |
| April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz                                                   | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01                                                                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.20 \\ \pm 0.20 \\ \pm 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Que<br>Kae<br>Lu<br>Nar                                                                                                                                                                                                                                                                                                                                                                                               | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02                                                                                         | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.05 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA                                                  | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01                                                                         | ±0.01       ±0.69       ±0.02       ±0.02       ±0.030       ±0.04       ±0.058       ±0.054                                                                                                                                                                                                                                                | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar                                                       | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0<br>0.03<br>0<br>0.01<br>0.02<br>0.05<br>0.02                                                 | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.03 \\ \pm 0.03 \\ \pm 0.01 \end{array}$                                                                                                    |
| April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA<br>Dz<br>Tmnt                                    | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38                                                         | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.20 \\ \pm 0.35 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar                                                                                                                                                                                                                                                                                                                                                                                        | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01                                                                                 | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.05 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.00 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA<br>Dz<br>Dz<br>Fmnt                                     | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14                                                                 | ±0.01       ±0.69       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05       ±0.02       ±0.01       ±0.02       ±0.02       ±0.02       ±0.02       ±0.02       ±0.02       ±0.02       ±0.04       ±0.05       ±0.02                                                                                                               | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar                                                       | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01                                                      | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.03 \\ \pm 0.03 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \end{array}$                                                                |
| April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>CgA<br>Dz<br>Fmnt<br>BcA                       | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38<br>0.38                                                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.20 \\ \pm 0.01 \\ \pm 0.35 \\ \pm 0.14 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae                                                                                                                                                                                                                                                                                                                                                                          | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01<br>1.27                                                                         | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | April<br>May<br>June                   | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>CgA<br>Dz<br>Fmnt<br>BcA                       | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14<br>0.21                                                         | ±0.01       ±0.69       ±0.02       ±0.02       ±0.02       ±0.02       ±0.02       ±0.02       ±0.01       ±0.02       ±0.02       ±0.01       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05       ±0.05       ±0.02       ±0.03                                                                                                   | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae                                         | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0<br>0.03<br>0.03<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.15                              | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.03 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.12 \end{array}$                                                                            |
| April<br>May<br>June<br>July           | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA                             | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38<br>0.38<br>1.16                                         | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.20 \\ \pm 0.35 \\ \pm 0.14 \\ \pm 0.27 \\ \pm 0.27 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kae<br>Lu<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu                                                                                                                                                                                                                                                                                                                                                                           | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01<br>1.27<br>1.25                                                                 | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.26 \\ \pm 0.26 \\ \pm 0.27 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | April<br>May<br>June<br>July           | BcA<br>CgA<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA                                   | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14<br>0.21<br>7.43                                                 | ±0.01       ±0.69       ±0.01       ±0.02       ±0.02       ±0.02       ±0.01       ±0.02       ±0.01       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05       ±0.05       ±0.01       ±0.02       ±0.03       ±0.04       ±0.05       ±0.05       ±0.05       ±0.05       ±0.05       ±0.05                                       | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu                                   | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0.03<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.15<br>0.39                                   | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.03 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.12 \\ \pm 0.27 \\ \pm 0.27 \end{array}$                                                                |
| April<br>May<br>June<br>July           | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA                      | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38<br>0.38<br>1.16<br>0.02                                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.14 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.0$ | Kae<br>Lu<br>Nar<br>Lu<br>Kae<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Kae                                                                                                                                                                                                                                                                                                                                                                           | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01<br>1.27<br>1.25<br>0.01                                                         | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.05 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.26 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | April<br>May<br>June<br>July           | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA                             | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14<br>0.21<br>7.43<br>0.01                                         | +0.01       ±0.09       ±0.02       ±0.02       ±0.02       ±0.02       ±0.01       ±0.02       ±0.01       ±0.02       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05       ±0.04       ±0.05       ±0.05       ±0.02       ±0.03       ±0.03       ±0.04                                                                           | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar                            | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0.03<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.15<br>0.39<br>0.01                           | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.12 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.01 \\ \end{array}$                                                 |
| April<br>May<br>June<br>July           | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA<br>CgA<br>Dz<br>Fmnt | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38<br>0.38<br>1.16<br>0.02<br>1.51                         | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.10 \\ \pm 0.40 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.14 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.26 \\ \pm 0.26 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.26 \\ \pm 0.2$ | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que                                                                                                                                                                                                                                                                                                                                                      | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01<br>1.27<br>1.25<br>0.01<br>0.01                                                 | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.26 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.26 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | April<br>May<br>June<br>July           | BcA<br>CgA<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA<br>Dz<br>Fmnt              | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14<br>0.21<br>7.43<br>0.01<br>0.74                                 | ±0.01       ±0.69       ±0.01       ±0.02       ±0.02       ±0.02       ±0.01       ±0.02       ±0.01       ±0.02       ±0.01       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05       ±0.05       ±0.01       ±0.02       ±0.03       ±0.03       ±0.04       ±0.05       ±0.05       ±0.04       ±0.05       ±0.05       ±0.04   | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar                            | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0.03<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.15<br>0.39<br>0.01<br>0.01                   | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.12 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \end{array}$    |
| April<br>May<br>June<br>July           | BcA<br>CgA<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA              | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38<br>0.38<br>1.16<br>0.02<br>1.51<br>3.25                 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.40 \\ \pm 0.20 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.01 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.0$ | Kae<br>Lu<br>Nar<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae                                                                                                                                                                                                                                                                                                                                                      | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01<br>1.27<br>1.25<br>0.01<br>0.01<br>0.03                                         | $\begin{array}{c} \pm 0.13 \\ \pm 0.23 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.25 \\ \pm 0.17 \\ \pm 0.01 \\ \pm 0.05 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.26 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.0$ | April<br>May<br>June<br>July           | BcA<br>CgA<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>Cg | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14<br>0.21<br>7.43<br>0.01<br>0.74<br>0.74                         | $\pm 0.01$ $\pm 0.69$ $\pm 0.01$ $\pm 0.02$ $\pm 0.02$ $\pm 0.02$ $\pm 0.02$ $\pm 0.01$ $\pm 0.02$ $\pm 0.01$ $\pm 0.02$ $\pm 0.02$ $\pm 0.03$ $\pm 0.04$ $\pm 0.03$ $\pm 0.24$ $\pm 0.24$ $\pm 0.18$                                                                     | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae              | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0.03<br>0.03<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.15<br>0.39<br>0.01<br>0<br>0.13                   | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.03 \\ \pm 0.01 \\ \pm 0.03 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.12 \\ \pm 0.27 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.05 \\ \pm 0.05 \\ \end{array}$             |
| April<br>May<br>June<br>July<br>August | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38<br>0.38<br>1.16<br>0.02<br>1.51<br>3.25<br>0.83         | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.10 \\ \pm 0.40 \\ \pm 0.10 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.14 \\ \pm 0.27 \\ \pm 0.14 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.00 \\ \pm 0.06 \\ \pm 0.06 \\ \pm 0.06 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.06 \\ \pm 0.06 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.06 \\ \pm 0.06 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.06 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.0$ | Kae           Lu           Nar           Que           Kae           Lu                                                                                                    | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01<br>1.27<br>1.25<br>0.01<br>1.25<br>0.01<br>0.01<br>0.03<br>0.06                 | $\pm 0.13$<br>$\pm 0.23$<br>$\pm 0.02$<br>$\pm 0.01$<br>$\pm 0.25$<br>$\pm 0.17$<br>$\pm 0.01$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.26$<br>$\pm 0.26$<br>$\pm 0.27$<br>$\pm 0.01$<br>$\pm 0.01$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | April<br>May<br>June<br>July<br>August | BcA<br>CgA<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>CgA<br>CgA<br>CgA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA       | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14<br>0.21<br>7.43<br>0.01<br>0.74<br>0.74<br>0.45<br>5.49         | +10.011       ±0.01       ±0.69       ±0.02       ±0.02       ±0.02       ±0.01       ±0.02       ±0.01       ±0.02       ±0.01       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05       ±0.04       ±0.05       ±0.05       ±0.01       ±0.02       ±0.03       ±0.04       ±0.05       ±0.05       ±0.01       ±0.18       ±0.89 | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae              | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0<br>0.03<br>0.03<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.15<br>0.39<br>0.01<br>0.13<br>0.13           | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.12 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.05 \\ \pm 0.06 \end{array}$                |
| April<br>May<br>June<br>July<br>August | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>Oz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz  | 0.07<br>0.77<br>0.35<br>0.3<br>0.06<br>1.73<br>0.01<br>4.36<br>0.57<br>1.55<br>0.01<br>1.38<br>0.38<br>1.16<br>0.02<br>1.51<br>3.25<br>0.83<br>0.28 | $\begin{array}{c} \pm 0.01 \\ \pm 0.05 \\ \pm 0.59 \\ \pm 0.01 \\ \pm 0.30 \\ \pm 0.01 \\ \pm 0.40 \\ \pm 0.20 \\ \pm 0.10 \\ \pm 0.20 \\ \pm 0.14 \\ \pm 0.27 \\ \pm 0.14 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.44 \\ \pm 0.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kae           Lu           Nar           Que           Kae           Lu           Nar           Que           Kae           Lu           Nar           Que           Kae           Lu           Nar           Que           Kae           Que           Kae           Lu           Nar           Que           Kae           Lu           Nar           Que           Kae           Nar           Que           Kae           Nar           Que           Kae | 0.84<br>0.9<br>0.02<br>0.01<br>1.23<br>1.29<br>0.01<br>0.04<br>0.89<br>0.87<br>0.02<br>0.01<br>1.27<br>1.25<br>0.01<br>1.27<br>1.25<br>0.01<br>0.03<br>0.03<br>0.06<br>0.01 | $\pm 0.13$<br>$\pm 0.23$<br>$\pm 0.02$<br>$\pm 0.01$<br>$\pm 0.25$<br>$\pm 0.17$<br>$\pm 0.01$<br>$\pm 0.05$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.26$<br>$\pm 0.27$<br>$\pm 0.01$<br>$\pm 0.01$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.00$<br>$\pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | April<br>May<br>June<br>July<br>August | BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA<br>Dz<br>Fmnt<br>BcA<br>CgA | 0.06<br>7.36<br>0.02<br>0.35<br>0.05<br>9.58<br>0.01<br>0.11<br>0.06<br>8.08<br>0.01<br>0.14<br>0.21<br>7.43<br>0.01<br>0.74<br>0.74<br>0.45<br>5.49<br>0.01 | +20.01       ±0.09       ±0.09       ±0.02       ±0.02       ±0.02       ±0.01       ±0.02       ±0.01       ±0.02       ±0.02       ±0.03       ±0.04       ±0.05       ±0.04       ±0.05       ±0.04       ±0.05       ±0.02       ±0.03       ±0.04       ±0.05       ±0.05       ±0.01       ±0.02       ±0.18       ±0.02       ±0.02  | Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar<br>Que<br>Kae<br>Lu<br>Nar | 0.04<br>0.02<br>0.01<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.15<br>0.39<br>0.01<br>0.13<br>0.13<br>0.1 | $\begin{array}{c} \pm 0.02 \\ \pm 0.02 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.03 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.01 \\ \pm 0.12 \\ \pm 0.27 \\ \pm 0.01 \\ \pm 0.00 \\ \pm 0.05 \\ \pm 0.06 \\ \pm 0.01 \\ \end{array}$ |

Table 3. Cont.

This study found chlorogenic acid to be the predominant polyphenol among the grass forages (i.e., perennial ryegrass, timothy) (p < 0.05), with concentrations accounting for 10–37% of the overall TPC, and varying within species and throughout the grazing season. In perennial ryegrass, chlorogenic acid continuously decreased from 6.62 mg/g in April to 1.94 mg/g in August, while in timothy it increased from 14.61 mg/g to 20.69 mg/g. Chlorogenic acid was also found in the herb forages (1–7% of the overall TPC), and concentrations were at their highest in the month of May (9.58 mg/g in plantain and 1.73 mg/g in chicory).

Formononetin and biochanin A were found in red clover (10–19% and 4–7% of the overall TPC, respectively), white clover (0–18% and 0–10%) and chicory (0–12% and 0–9%) (p < 0.05). Concentrations of the two flavonoids in red clover almost doubled during the grazing season (4.29 mg/g of formononetin and 1.60 mg/g of biochanin A in April, 8.23 mg/g and 3.03 mg/g in August), possibly due to the maturation of the plant. Indeed, biochanin A and formononetin are the predominant isoflavones in all the plant parts of the red clover (e.g., leaves, stems, flowers) [26]; as the plant grows, an increase is expected in the overall concentration of these compounds. Daidzein, a derivative of biochanin A, was also detected in red clover (p < 0.05) and its concentration remained constant throughout the season.

Kaempferol and luteolin were found in chicory (p < 0.05) and detected at a range of 0.84–1.27 mg/g and 0.90–1.29 mg/g, respectively, throughout the grazing season (accounting for 1–3% of the overall TPC). Quercetin was not found among any of the six species studied (p < 0.05). Quercetin is one of the strongest antioxidants present in nature, but it is usually found in plants in glycoside forms (e.g., glucorhamnoside rutin). Several studies have reported the presence of glycoside quercetin in red clover, in chicory [27] and plantain [28], while few have reported the aglycone forms. Hence, the absence of quercetin in this study could be due to structural reasons.

#### 3.3. Antioxidant Studies

Diets high in antioxidants have been proven to be advantageous to livestock, as they decrease the incidence of mastitis and lower the development of off-flavour compounds in milk. Cattle can be supplemented with selenium and vitamin E, but this method can be expensive and could impact the consumer desire to consume organic products. Forages rich in antioxidants could represent a more appealing option to farmers, as they offer a natural and economic option, while also possessing environmental benefits. The antioxidant capacity of the multi-species sward components was investigated with three assays (FRAP, DPPH•• and ORAC), and the results are reported in Table 4.

FRAP is an electro-transfer assay which measures the ability of the antioxidant to transfer electrons onto a reducing agent. In this case, the antioxidant agent donates electrons to the Fe<sup>3+</sup> ion, reducing it into Fe<sup>2+</sup> [29]. DPPH•• and ORAC are free radical scavenging assays that also measure the antioxidant capacity. While DPPH•• measures the ability of an antioxidant to scavenge a free radical by a donating electron, ORAC measures it by a donating hydrogen atom [29].

Plantain showed the highest FRAP, DPPH•• and ORAC values throughout the study period (482.49  $\mu$ M TroloxE/g, 80.94% and 2478.93  $\mu$ M TroloxE/g, respectively), almost one and a half more than timothy (352.00  $\mu$ M TroloxE/g, 68.07% and 1665.46  $\mu$ M TroloxE/g), and twice as much as chicory (286.71  $\mu$ M TroloxE/g, 58.98% and 1594.22  $\mu$ M TroloxE/g). The antioxidant capacity was not found to be significantly different over the grazing season (p > 0.05). Timothy exhibited a high antioxidant capacity, in addition to being the species with the highest concentration of chlorogenic acid. A strong correlation (p < 0.05) between the antioxidant capacity and chlorogenic acid concentrations was also found in this study. The Antioxidant capacity of forages can be explained by the presence of polyphenols, and also by non-polyphenols phytochemicals. For example, plantain and chicory are rich in other reactive oxygen species-scavenging compounds, such as iridoids (e.g., aucubin, catalpol, acteoside) and sesquiterpene lactones [30]; it is plausible that these compounds contribute to the high antioxidant capacity of these forage species.

**Table 4.** FRAP ( $\mu$ M TroloxE/g), DPPH•<sup>•</sup> (%) and ORAC ( $\mu$ M TroloxE/g) values of the mix swards components (perennial ryegrass, timothy, red clover, white clover, chicory, plantain) over the grazing season. Values are represented as mean of three replicates  $\pm$  standard deviation (in italics). Significant difference (p < 0.05) between species is indicated with letter superscript.

|                         | Perennia           | l Ryegrass           |              | Timothy |                    |                      |              |  |  |  |  |
|-------------------------|--------------------|----------------------|--------------|---------|--------------------|----------------------|--------------|--|--|--|--|
|                         | FRAP               | 90.04 <sup>a</sup>   | $\pm 3.01$   |         | FRAP               | 216.75 <sup>b</sup>  | ±7.92        |  |  |  |  |
| April                   | DPPH••             | 20.93 <sup>a</sup>   | $\pm 3.19$   | April   | DPPH••             | 42.96 <sup>c</sup>   | $\pm 7.51$   |  |  |  |  |
| •                       | ORAC               | 1053.55 <sup>a</sup> | $\pm 111.18$ |         | ORAC               | 1027.61 <sup>c</sup> | $\pm 106.38$ |  |  |  |  |
|                         | FRAP               | 80.26 <sup>a</sup>   | ±5.38        |         | FRAP               | 154.15 <sup>b</sup>  | $\pm 8.03$   |  |  |  |  |
| May                     | DPPH••             | 19.27 <sup>a</sup>   | $\pm 3.54$   | May     | DPPH••             | 43.90 <sup>c</sup>   | $\pm 2.75$   |  |  |  |  |
|                         | ORAC               | 1038.14 <sup>a</sup> | $\pm 109.19$ |         | ORAC               | 1243.69 <sup>c</sup> | $\pm 132.59$ |  |  |  |  |
|                         | FRAP               | 102.77 <sup>a</sup>  | $\pm 3.92$   |         | FRAP               | 352.00 <sup>b</sup>  | $\pm 6.97$   |  |  |  |  |
| June                    | DPPH● <sup>●</sup> | 23.01 <sup>a</sup>   | $\pm 5.98$   | June    | DPPH● <sup>●</sup> | 68.07 <sup>c</sup>   | $\pm 2.81$   |  |  |  |  |
|                         | ORAC               | 960.15 <sup>a</sup>  | $\pm 100.64$ |         | ORAC               | 1586.34 <sup>c</sup> | $\pm 68.96$  |  |  |  |  |
| July                    | FRAP               | 79.04 <sup>a</sup>   | $\pm 6.76$   |         | FRAP               | 307.18 <sup>b</sup>  | $\pm 8.98$   |  |  |  |  |
|                         | DPPH••             | 25.87 <sup>a</sup>   | $\pm 3.31$   | July    | DPPH••             | 62.48 <sup>c</sup>   | $\pm 6.50$   |  |  |  |  |
|                         | ORAC               | 769.36 <sup>a</sup>  | $\pm 46.27$  |         | ORAC               | 1510.63 <sup>c</sup> | ±73.57       |  |  |  |  |
|                         | FRAP               | 67.36 <sup>a</sup>   | ±7.96        |         | FRAP               | 326.84 <sup>b</sup>  | $\pm 4.62$   |  |  |  |  |
| August                  | DPPH••             | 23.50 <sup>a</sup>   | $\pm 4.97$   | August  | DPPH••             | 60.05 <sup>c</sup>   | $\pm 1.93$   |  |  |  |  |
|                         | ORAC               | 755.08 <sup>a</sup>  | $\pm 156.06$ |         | ORAC               | 1665.46 <sup>c</sup> | $\pm 94.46$  |  |  |  |  |
| White Clover Red Clover |                    |                      |              |         |                    |                      |              |  |  |  |  |
|                         | FRAP               | 108.57 <sup>a</sup>  | $\pm 6.43$   |         | FRAP               | 97.25 <sup>a</sup>   | $\pm 8.43$   |  |  |  |  |
| April                   | DPPH••             | 23.30 <sup>ab</sup>  | $\pm 5.54$   | April   | DPPH••             | 23.74 <sup>b</sup>   | $\pm 4.57$   |  |  |  |  |
|                         | ORAC               | 1251.90 <sup>b</sup> | $\pm 108.17$ |         | ORAC               | 1082.85 <sup>b</sup> | $\pm 81.19$  |  |  |  |  |
| May                     | FRAP               | 50.58 <sup>a</sup>   | $\pm 4.33$   |         | FRAP               | 89.54 <sup>a</sup>   | ±7.22        |  |  |  |  |
|                         | DPPH••             | 24.40 <sup>ab</sup>  | $\pm 5.52$   | May     | DPPH••             | 29.22 <sup>b</sup>   | $\pm 3.76$   |  |  |  |  |
|                         | ORAC               | 1009.17 <sup>b</sup> | $\pm 85.25$  |         | ORAC               | 1176.31 <sup>b</sup> | $\pm 102.53$ |  |  |  |  |
| June                    | FRAP               | 97.95 <sup>a</sup>   | ±6.20        |         | FRAP               | 136.05 <sup>a</sup>  | ±5.35        |  |  |  |  |
|                         | DPPH••             | 27.21 <sup>ab</sup>  | $\pm 3.85$   | June    | DPPH••             | 37.58 <sup>b</sup>   | $\pm 2.87$   |  |  |  |  |
|                         | ORAC               | 1185.22 <sup>ь</sup> | $\pm 65.08$  |         | ORAC               | 1220.49 <sup>b</sup> | $\pm 71.11$  |  |  |  |  |
|                         | FRAP               | 94.53 <sup>a</sup>   | $\pm 6.20$   | July    | FRAP               | 90.91 <sup>a</sup>   | ±7.62        |  |  |  |  |
| July                    | DPPH••             | 30.19 <sup>ab</sup>  | $\pm 4.34$   |         | DPPH••             | 30.39 <sup>b</sup>   | $\pm 4.51$   |  |  |  |  |
|                         | ORAC               | 1319.97 <sup>ь</sup> | $\pm 82.71$  |         | ORAC               | 1051.56 <sup>b</sup> | $\pm 93.29$  |  |  |  |  |
|                         | FRAP               | 69.07 <sup>a</sup>   | ±3.26        |         | FRAP               | 92.02 <sup>a</sup>   | ±7.28        |  |  |  |  |
| August                  | DPPH••             | 18.44 <sup>ab</sup>  | $\pm 2.71$   | August  | DPPH••             | 23.36 <sup>b</sup>   | $\pm 6.86$   |  |  |  |  |
|                         | ORAC               | 1219.08 <sup>b</sup> | $\pm 107.26$ |         | ORAC               | 988.17 <sup>b</sup>  | $\pm 53.15$  |  |  |  |  |
|                         | Chi                | cory                 |              |         | Plar               | ntain                |              |  |  |  |  |
|                         | FRAP               | 270.24 <sup>b</sup>  | $\pm 10.53$  |         | FRAP               | 368.70 <sup>c</sup>  | $\pm 9.40$   |  |  |  |  |
| April                   | DPPH••             | 54.96 <sup>c</sup>   | $\pm 8.00$   | April   | DPPH••             | 71.59 <sup>d</sup>   | $\pm 5.22$   |  |  |  |  |
|                         | ORAC               | 1594.22 <sup>c</sup> | $\pm 132.29$ |         | ORAC               | 2200.39 <sup>d</sup> | $\pm 123.70$ |  |  |  |  |
|                         | FRAP               | 286.71 <sup>b</sup>  | ±12.19       |         | FRAP               | 448.14 <sup>c</sup>  | 17.78        |  |  |  |  |
| May                     | DPPH● <sup>●</sup> | 56.22 <sup>c</sup>   | $\pm 4.92$   | May     | DPPH••             | 79.94 <sup>d</sup>   | $\pm 5.22$   |  |  |  |  |
|                         | ORAC               | 1289.67 <sup>c</sup> | $\pm 112.20$ |         | ORAC               | 2478.93 <sup>d</sup> | $\pm 125.47$ |  |  |  |  |
|                         | FRAP               | 244.75 <sup>b</sup>  | $\pm 8.35$   |         | FRAP               | 482.49 <sup>c</sup>  | $\pm 6.75$   |  |  |  |  |
| June                    | DPPH••             | 58.98 <sup>c</sup>   | $\pm 6.78$   | June    | DPPH● <sup>●</sup> | 80.94 <sup>d</sup>   | $\pm 3.50$   |  |  |  |  |
|                         | ORAC               | 1224.31 <sup>c</sup> | ±71.76       |         | ORAC               | 2230.17 <sup>d</sup> | $\pm 73.90$  |  |  |  |  |
|                         | FRAP               | 194.44 <sup>b</sup>  | $\pm 4.14$   |         | FRAP               | 457.90 <sup>c</sup>  | ±7.12        |  |  |  |  |
| July                    | DPPH••             | 50.83 <sup>c</sup>   | $\pm 6.47$   | July    | DPPH••             | 78.21 <sup>d</sup>   | $\pm 3.80$   |  |  |  |  |
|                         | ORAC               | 1306.99 <sup>c</sup> | $\pm 69.78$  |         | ORAC               | 2032.51 <sup>d</sup> | $\pm 132.40$ |  |  |  |  |
|                         | FRAP               | 211.46 <sup>b</sup>  | $\pm 8.90$   |         | FRAP               | 450.94 <sup>c</sup>  | $\pm 14.06$  |  |  |  |  |
| August                  | DPPH• <sup>●</sup> | 35.74 <sup>c</sup>   | $\pm 2.16$   | August  | DPPH• <sup>●</sup> | 79.82 <sup>d</sup>   | $\pm 4.00$   |  |  |  |  |
| -                       | ORAC               | 1301.14 <sup>c</sup> | $\pm 13.97$  | -       | ORAC               | 2394.90 <sup>d</sup> | $\pm 109.01$ |  |  |  |  |
|                         |                    |                      |              |         |                    |                      |              |  |  |  |  |

A correlation between the total phenolic content (TPC), total flavonoid content (TFC) and the antioxidant capacities (FRAP, DPPH•• and ORAC) is shown in Figure 1. The results show a positive linear correlation between the phenolic component of each species and the antioxidant capacities.





Figure 1. Matrix correlation between total phenolic/flavonoid content and the antioxidant capacity.

The correlation between phenolic content and antioxidant was at its strongest with FRAP (TPC, R = 0.968; TFC R = 0.984), followed by DPPH•• (TPC, R = 0.923; TFC R = 0.953), and ORAC (TPC, R = 0.921; TFC R = 0.899). These results show that the phenolic compounds, such as phenolic acids and flavonoids, are some of the main factors contributing to the antioxidant capacity of the forages.

## 4. Discussion

Variations in the polyphenol composition of plants are dictated by the botanical classification. For instance, species from the Leguminosae family (e.g., red clover and white clover) tend to be a rich source of isoflavonoids [31], whereas perennial herbs from the Plantaginacea (e.g., plantain) and Asteraceae (e.g., chicory) families have high levels of phenolic acids, flavones and flavonols [27,28]. The Pomacea family, which includes grass species (e.g., perennial ryegrass), is a rich source of hydroxycinnamic acids, particularly chlorogenic acid and its isomers [32]. Conversely, changes in phenolic compound concentrations over time are dependent on the season, phenological stage, stress response of the plant and weather conditions. In particular, defoliation from repeated grazing can impact the polyphenol content of the plant [33]. Thus, predicting patterns of polyphenols' biosynthesis and accumulation can be challenging [34]. This study showed that the sum of chlorogenic acid from perennial ryegrass, timothy, chicory and plantain remained consistent every month through the grazing season (7.5 mg/g); therefore, it would be possible for multi-species swards to somehow supply animals with a constant rate of dietary chlorogenic acid. Chlorogenic acid, and its several ester forms, have been linked to improved animal performance through their role as substrates for polyphenol oxidase (PPO). Activated PPO oxidises o-diphenols into *o*-quinones, which are reactive metabolites able to bind to proteins and protect them against proteolysis. The presence of *o*-quinone has been shown to ensure more protein assimilation during animal digestion, leading to an improved animal performance [35]. In vitro studies with chlorogenic acid have demonstrated promising results for reducing the risk of mastitis, caused by Staphylococcus aureus [36]. Mastitis is an inflammation of the cow's mammary gland that is usually caused by a bacterial infection; it causes significant economic losses through veterinary costs, decreased production and discarded

milk. Gong [36] reported that  $30 \ \mu\text{g/mL}$  of chlorogenic acid was enough to inhibit *S. aureus* growth. As cattle tend to consume between 16 and 18 kg of DM a day [37], the utilisation of high chlorogenic acid could support mastitis reduction. More animal studies are necessary in order to consolidate the association between forage-derived chlorogenic acid, and a positive impact on animal performance.

Concentrations of formononetin and biochanin A varied throughout the grazing season in white clover (7.25 mg/g of formononetin and 4.04 mg/g of biochanin A in July, 1.71 mg/g of formononetin in August), as well as in chicory (4.36 mg/g formononetin in May, 5.68 mg/g of formononetin and 3.25 mg/g biochanin A in August). The non-linear change in the concentration of isoflavones could be due to a change in the phenological stage (i.e., appearance and disappearance of flowering parts) or change in leaf to stem ratio of the plant. Indeed, this study did not take into account the compositional differences between parts of the plants, therefore, variations within species could be expected. Furthermore, field sampling was carried out randomly every month, resulting in various parts of the forages being collected at different growth stages. Nevertheless, combining red clover, white clover and chicory still resulted in an increase in the overall isoflavones' concentration through time (combined red clover, white clover and chicory had 1.72 mg/gof formononetin and 0.56 mg/g of biochanin A in April, and 5.2 mg/g and 2.1 mg/g in August), demonstrating that multi-species swards can provide an increasing supply of these compounds throughout the grazing season. The animals' intake of isoflavones through their diet, particularly formononetin, can impact the quality of the milk; this is because these compounds are precursors to equol. Equol is an oestrogen receptor modulator with indications of a possible positive impact on human bone health, blood pressure, cardiovascular conditions and oestrogen-related cancer types (e.g., breast, prostate) [38]. While only one-third of the human population is able to produce equol in the gut, ruminants are able to naturally convert formononetin into daidzein, and subsequently into equol. A Finnish study established that animal diets that are rich in legume-derived formononetin, can be associated with a higher concentration of equol in milk [39]. While the specific concentrations required to achieve these human-health benefits have not yet been established, forages with high isoflavones can present opportunities for enhancing the nutraceutical properties of milk and the subsequent benefits to the consumer.

Although kaempferol and luteolin were present at a lower concentration than the other polyphenols analysed in this study, ruminants tend to consume great proportions of chicory due to its palatability and rapid digestion. Thus, it could be possible that enough of these two flavonoids are ingested to impart biological activity. Further in vivo studies are required to establish an association between the concentration of flavonoids and specific animal health benefits. Kaempferol and luteolin are considered important in the ruminal microbial fermentation, as they can reduce methanogenic activity in the rumen [40,41]. It has been argued that flavonoids, in general, can act against methanogenic bacteria by inhibiting cytoplasmatic membrane function, bacterial cell wall synthesis, or nucleic acid synthesis; flavonoids, therefore, decrease methane production [42]. Sinz [41] reported the ability of luteolin to reduce ammonia formation during ruminal fermentation, thus improving nitrogen utilisation. Ammonia is a by-product of the dietary protein breakdown during animal digestion. Dietary protein structures are metabolised in the rumen by the microbial population and degraded into peptides, amino acids, and, ultimately, ammonia. Ammonia is expelled through urines, and, once it is in the soil, it gets converted into nitrous oxide, which is a powerful green-house gas. Luteolin has been shown to have the ability to bind proteins in *o*-quinone-protein complexes; therefore, it potentially reduces protein degradation and ammonia formation [43]. It is worth noting that the studies presented above were carried out *in vitro*, therefore, they did not necessarily consider other variables that might be present in the rumen. Nonetheless, such findings are of interest and could have far reaching environmental impacts. Certainly, further in vivo animal studies are required to confirm associations between flavonoids and reduced gas emissions.

Overall, grass species were found to have chlorogenic acid, clover species were found to have formononetin and biochanin A, and herbs were found to contain chlorogenic acid, kaempferol and luteolin. Complementing grasses with legumes and herbs creates a synergetic nutritional effect, as it combines different phenolic compounds, as well as other properties peculiar to individual species. For instance, red clover is rich in PPO, which reduces proteolysis and lipolysis in the rumen. While reducing proteolysis is considered beneficial because it improves protein utilisation, reducing lipolysis increases the fat concentration in milk. Herbs contain high mineral content, which is indispensable for optimal animal performance and productivity. Grasses tend to have a high neutral detergent fibre (NDF) value [44], which is an indicator of the content of dietary soluble carbohydrates that can be converted into acetate and, further, into fatty acids. Diets rich in NDF are important for the fat component in milk, as they aid fat synthesis and avoid fat depression [45].

Furthermore, from an Irish climate-adaptability point of view, perennial ryegrass, plantain and timothy grow well during springtime, while white clover, red clover plantain and chicory grow well during summertime [46]. Hence, farmers establishing multi-species swards can find forages rich in nutrients that can potentially improve animal productivity and product quality, as well as have diversified pastures available all year around.

# 5. Conclusions

Multi-species swards are a sustainable alternative to ryegrass monoculture swards due to their capacity to improve soil functionality, increase biodiversity and reduce fertilization requirement. Additionally, multi-species swards include various phenolic compounds that have been associated with antioxidant and anti-inflammatory properties, which are identified as precursors for nutraceutical compounds in milk and linked to animal emission reduction. Variations in the phenolic concentration and antioxidant capacity were found to be more significant between species than between seasons within species. Farmers should consider implementing multi-species swards, as they can provide micronutrients linked to animal health and productivity, in addition to positively impacting the environment.

**Author Contributions:** S.R.: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data Curation, Writing—original draft preparation, N.A.-G.: Conceptualization, Methodology, Formal analysis, Validation, Writing—Review and Editing, Supervision, Project Administration, Funding Acquisition. All authors have read and agreed to the published version of the manuscript.

**Funding:** The research reported herein was funded by the Irish Department of Agriculture, Food and the Marine's competitive funding programmes, [SMARTSWARD: "Future proofing Irish livestock sustainability" (17/S/267; Dublin Ireland)], in conjunction with commercial industry.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

**Data Availability Statement:** The data used to support the findings of this study are included within the article.

Conflicts of Interest: The authors declare no conflict of interest.

#### References

- DCCAE (Department of Communications, Climate Action and the Environment). National Energy and Climate Plan 2021–2030. 2019. Available online: https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energyand-climate-governance-and-reporting/national-energy-and-climate-plans\_en (accessed on 15 November 2022).
- EPA (Environmental Protection Agency). Latest Emissions Data. 2021. Available online: https://www.epa.ie/our-services/ monitoring---Assessment/climate-change/ghg/latest-emissions-data/ (accessed on 15 November 2022).
- 3. EPA (Environmental Protection Agency). Understanding Global Warming Potentials. 2021. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#:~{}:text=Nitrous%20Oxide%20(N2O,than%2010 0%20years%2C%20on%20average (accessed on 15 November 2022).
- Jaramillo, D.M.; Sheridan, H.; Soder, K.; Dubeux, J.C.B., Jr. Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards. Agronomy 2021, 11, 1912. [CrossRef]

- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [CrossRef]
- 6. Cranston, L.M.; Kenyon, P.R.; Morris, S.T.; Kemp, P.D. A review of the use of chicory, plantain, red clover and white clover in a sward mix for increased sheep and beef production. *J. N. Z. Grassl.* **2015**, *77*, 89–94. [CrossRef]
- Distel, R.A.; Arroquy, J.I.; Lagrange, S.; Villalba, J.J. Designing diverse agricultural pastures for improving ruminant production systems. *Front. Sustain. Food Syst.* 2020, 4, 596869. [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Kagan, I.A.; Goodman, J.P.; Klotz, J.L.; Aiken, G.E. Isoflavone supplementation, via red clover hay, alters the rumen microbial community and promotes weight gain of steers grazing mixed grass pastures. *PLoS ONE* 2020, 15, e0229200. [CrossRef]
- Stoldt, A.-K.; Derno, M.; Nürnberg, G.; Weitzel, J.M.; Otten, W.; Starke, A.; Wolffram, S.; Metges, C.C. Effects of a 6-wk intraduodenal supplementation with quercetin on energy metabolism and indicators of liver damage in periparturient dairy cows. J. Dairy Sci. 2015, 98, 4509–4520. [CrossRef]
- 10. Burmańczuk, A.; Hola, P.; Milczak, A.; Piech, T.; Kowalski, C.; Wojciechowska, B.; Grabowski, T. Quercetin decrease somatic cells count in mastitis of dairy cows. *Res. Vet. Sci.* 2018, *117*, 255–259. [CrossRef]
- 11. Clarkson, T.B. Soy, Soy Phytoestrogens and Cardiovascular Disease. Nutr. Bull. 2006, 31, 150–159. [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [CrossRef]
- 13. Fraisse, D.; Carnat, A.; Viala, D.; Pradel, P.; Besle, J.M.; Coulon, J.B.; Felgines, C.; Lamaison, J.L. Polyphenolic composition of a permanent pasture: Variations related to the period of harvesting. *Sci. Food Agric.* **2007**, *87*, 2427–2435. [CrossRef]
- 14. Gupta, S.; Rajauria, G.; Abu-Ghannam, N. Study of the microbial diversity and antimicrobial properties of Irish edible brown seaweeds. *Int. J. Food Sci. Technol.* **2010**, *45*, 482–489. [CrossRef]
- Jaiswal, A.K.; Abu-Ghannam, N.; Gupta, S. A comparative study on the polyphenolic content, antibacterial activity and antioxidant capacity of different solvent extracts of *Brassica oleracea* vegetables. *Int. J. Food Sci. Technol.* 2011, 47, 223–231. [CrossRef]
- Vlaisavljević, S.; Kaurinović, B.; Popović, M.; Vasiljević, S. Profile of phenolic compounds in *Trifolium pratense* L. extracts at different growth stages and their biological activities. *Int. J. Food Prop.* 2016, 20, 3090–3101. [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. *Methods Enzymol.* 1999, 299, 15–27. [PubMed]
- Shannon, E.; Jaiswal, A.K.; Abu-Ghannam, N. Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: A kinetic study. *Food Res.* 2017, 2, 1–11. [CrossRef] [PubMed]
- 19. Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. *J. Agric. Food Chem.* **2001**, *49*, 4619–4626. [CrossRef]
- Dalar, A.; Uzun, Y.; Turker, M.; Mukemre, M.; Konczak, I. Health attributes of ethnic vegetables consumed in the Eastern Anatolia region of Turkey: Antioxidant and enzyme-inhibitory properties. J. Ethn. Foods 2016, 3, 142–149. [CrossRef]
- Dalar, A.; Konczak, I. Cichorium intybus from Eastern Anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. Ind. Crops Prod. 2014, 60, 79–85. [CrossRef]
- Milala, J.; Grzelak, K.; Król, B.; Juśkiewicz, J.; Zduńczyk, Z. Composition and properties of chicory extracts rich in fructans and polyphenols. *Pol. J. Food Nutr. Sci.* 2009, 59, 35–43.
- Saviranta, N.; Julkunen-Tiitto, R.; Oksanen, E.; Karjalainen, R.O. Red clover (*Trifolium pratense* L.) isoflavones: Root phenolic compounds affected by biotic and abiotic stress factors. J. Sci. Food Agric. 2010, 90, 418–423. [CrossRef]
- Qawasmeh, A.; Obied, H.K.; Raman, A.; Wheatley, W. Influence of Fungal Endophyte Infection on Phenolic Content and Antioxidant Activity in Grasses: Interaction between *Lolium perenne* and Different Strains of *Neotyphodium lolii*. J. Agric. Food Chem. 2012, 60, 3381–3388. [CrossRef] [PubMed]
- 25. Besle, J.M.; Viala, D.; Martin, B.; Pradel, P.; Meunier, B.; Berdagu'e, J.L.; Fraisse, D.; Lamaison, J.L.; Coulon, J.B. Ultravioletabsorbing compounds in milk are related to forage polyphenols. *J. Dairy Sci.* 2010, *93*, 2846–2856. [CrossRef] [PubMed]
- Tsao, R.; Papadopoulos, Y.; Yang, R.; Young, J.C.; McRae, K. Isoflavone Profiles of Red Clovers and Their Distribution in Different Parts Harvested at Different Growing Stages. J. Agric. Food Chem. 2006, 54, 5797–5805. [CrossRef]
- 27. Iqbal, Y.; Ponnampalam, E.N.; Suleria, H.A.R.; Cottrell, J.J.; Dunshea, F.R. LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities. *Antioxidants* **2021**, *10*, 932. [CrossRef]
- Beara, I.N.; Lesjak, M.M.; Orčić, D.Z.; Simin, N.D.; Četojević-Simin, D.D.; Božin, B.N.; Mimica-Dukić, N.M. Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely related Plantain species: *Plantago altissima* L. and *Plantago lanceolata*. Food Sci. Technol. 2012, 47, 64–70. [CrossRef]
- 29. Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [CrossRef]
- 30. Peña-Espinoza, M.; Valente, A.H.; Thamsborg, S.M.; Simonsen, H.T.; Boas, U.; Enemark, H.L. Antiparasitic activity of chicory (*Cichorium intybus*) and its natural bioactive compounds in livestock: A review. *Parasites Vectors* **2018**, *11*, 475. [CrossRef]
- 31. Dixon, R.A. Phytoestrogens. Annu. Rev. Plant Biol. 2004, 55, 225–261. [CrossRef]

- 32. Kagan, I.A. Soluble phenolic compounds of perennial ryegrass (*Lolium perenne* L.): Potential effects on animal performance, and challenges in determining profiles and concentrations. *Anim. Feed. Sci. Technol.* **2020**, 277, 114960. [CrossRef]
- 33. Diago, M.P.; Ayestarán, B.; Guadalupe, Z.; Poni, S.; Tardáguila, J. Impact of prebloom and fruit set basal leaf removal on the flavonol and anthocyanin composition of Tempranillo grapes. *Am. J. Enol. Vitic.* **2012**, *63*, 367–376. [CrossRef]
- 34. Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147. [CrossRef]
- Lee, M.R.F.; Olmos Colmenero, J.J.O.; Winters, A.L.; Scollan, N.D.; Minchin, F.R. Polyphenol oxidase activity in grass and its effect on plant-mediated lipolysis and proteolysis of *Dactylis glomerata* (cocksfoot) in a simulated rumen environment. *J. Sci. Food Agric.* 2006, *86*, 1503–1511. [CrossRef]
- Gong, X.X.; Su, X.S.; Zhan, K.; Zhao, G.Q. The protective effect of chlorogenic acid on bovine mammary epithelial cells and neutrophil function. J. Dairy Sci. 2018, 101, 10089–10097. [CrossRef] [PubMed]
- Kavanagh, S. Teagasc Dairy Manual. 2016; Volume 6, p. 34. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://www.teagasc.ie/media/website/animals/dairy/FeedingDiaryCow.pdf (accessed on 15 November 2022).
- Křížová, L.; Křešťáková, V.; Dadáková, K.; Kašparovský, T. Production of Bovine Equol-Enriched Milk: A Review. Animals 2021, 11, 735. [CrossRef] [PubMed]
- Hoikkala, A.; Mustonen, E.; Saastamoinen, I. High levels of equol in organic skimmed Finnish cow milk. *Mol. Nutr. Food Res.* 2007, 51, 782–786. [CrossRef]
- 40. Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. *BioMed Res. Int.* **2013**, 2013, 349129. [CrossRef]
- 41. Sinz, S.; Kunz, C.; Liesegang, A.; Braun, U.; Marquardt, S.; Soliva, C.R.; Kreuzer, M. In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. *Czech J. Anim. Sci.* **2018**, *63*, 293–304.
- 42. Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [CrossRef]
- 43. Wang, D.; Huang, J.; Zhang, Z.; Tian, X.; Huang, H.; Yu, Y.; Zhang, G.; Ding, J.; Huang, R. Influences of Portulaca oleracea extracts on in vitro methane emissions and rumen fermentation of forage. *J. Food Agric. Environ.* **2013**, *11*, 483–488.
- Minneé, E.M.K.; Waghorn, G.C.; Lee, J.M.; Clark, C.E.F. Including chicory or plantain in a perennial ryegrass/white clover-based diet of dairy cattle in late lactation: Feed intake, milk production and rumen digestion. *Anim. Feed. Sci. Technol.* 2017, 227, 52–61. [CrossRef]
- 45. Palmquist, D.L.; Beaulieu, D.; Barbano, A.D.M. Feed and Animal Factors Influencing Milk Fat Composition. *J. Dairy Sci.* **1993**, *76*, 1753–1771. [CrossRef] [PubMed]
- Teagasc. Grassland Re-Seeding: How to Establosh Multispecies Swards. 2020. Available online: https://www.teagasc.ie/ publications/2020/grassland-re-seeding-how-to-establish-multi-species-swards.php (accessed on 15 November 2022).

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.