A Meta-Regression Analysis of Hunters’ Valuations of Recreational Hunting
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Studies and Data
2.2. Meta Regression Modeling and Prediction
3. Results
3.1. Descriptive Data Analysis
3.2. Meta-Regression Results
3.3. Predictions
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Barnes, J.I.; Schier, C.; Van Rooy, G. Tourists’ willingness to pay for wildlife viewing and wildlife conservation in Namibia. S. Afr. J. Wildl. Res. 1999, 29, 101–111. [Google Scholar]
- Hofer, D. The Lion’s Share of the Hunt. Trophy Hunting and Conservation—A Review of the Legal Eurasian Tourists Hunting Market and Trophy Trade under CITES. Brussels: TRAFFIC Europe Regional Report. 2002. Available online: www.traffic.org/general-reports/traffic_pub_gen9.pdf (accessed on 18 August 2020).
- Gren, I.-M.; Elofsson, K.; Häggström Svensson, T.; Engelman, M. Economics of wildlife management: An overview. Eur. J. Wildl. Res. 2018, 64, 22. [Google Scholar] [CrossRef]
- Di Minin, E.; Clements, H.S.; Correia, R.A.; Cortés-Capano, G.; Fink, C.; Haukka, A.; Hausmann, A.; Kulkarni, R.; Bradshaw, C.J. Consequences of recreational hunting for biodiversity conservation and livelihoods. One Earth 2021, 4, 238–253. [Google Scholar] [CrossRef]
- Pack, S.; Golden, R.; Walker, A. Comparison of National Wildlife Management Strategies: What Works Where, and Why? Heinz Center for Science, Economics & Environment. Available online: https://www.academia.edu/4059587/Comparison_of_national_wildlife_management_strategies_what_works_where_and_why (accessed on 19 August 2021).
- Sorg, C.F.; Loomis, J. Empirical Estimates of Amenity Forest Values: A Comparative Review; USDA Forest Service General Technical Report RM-107; Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1984. [Google Scholar]
- Kerr, G.N.; Woods, A. New Zealand Big Game Hunting Values: A Benefit Transfer Study; Land Environment and People Report No. 23; Lincoln University: Lincoln, New Zealand, 2010. [Google Scholar]
- Rosenberger, R.S.; Loomis, J.B. Benefit transfer. In A Primer on Nonmarket Valuation, 2nd ed.; Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 431–462. [Google Scholar]
- USGS. USGS Benefit Transfer Toolkit. United States Geological Service. Available online: https://sciencebase.usgs.gov/benefit-transfer/ (accessed on 12 November 2020).
- FPTF (Federal-Provincial Task Force). The Importance of Nature to Canadians: The Economic Significant of Nature-Related Activities; Environment Canada: Ottawa, ON, Canada, 2000. [Google Scholar]
- Pang, A. Incorporating the effect of successfully bagging big game into recreational hunting: An examination of deer, moose and elk hunting. J. For. Econ. 2017, 28, 12–17. [Google Scholar] [CrossRef]
- Glass, G.V. Primary, secondary, and meta-analysis of research. Educ. Res. 1976, 10, 3–8. [Google Scholar] [CrossRef]
- Tipton, E.; Pusejovksy, J.; Ahmadi, H. A history of meta-regression: Technical, conceptual and practical developments between 1974 and 2018. Res. Synth. Methods 2019, 10, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Stanley, T.D.; Jarrell, S.B. Meta-regression analysis: A quantitative method of literature surveys. J. Econ. Surv. 1989, 3, 299–308. [Google Scholar] [CrossRef]
- Nelson, J.P.; Kennedy, P.E. The use (and abuse) of meta-analysis in environmental and natural resource economics. Environ. Resour. Econ. 2008, 42, 345–377. [Google Scholar] [CrossRef]
- Lindhjem, H.; Navrud, S. How reliable are meta-analyses for international benefit transfers? Ecol. Econ. 2008, 66, 425–435. [Google Scholar] [CrossRef]
- Schägner, J.P.; Brander, L.; Paracchini, M.L.; Maes, J.; Gollnow, F.; Bertzky, B. Spatial dimensions of recreational ecosystem service values: A review of meta-analyses and a combination of meta-analytic value-transfer and GIS. Ecosyst. Serv. 2018, 31, 395–409. [Google Scholar] [CrossRef]
- Shrestha, R.; Rosenberger, R.; Loomis, J. Benefit transfer using meta-analysis in recreation economic valuation. In Environmental Value Transfer: Issues and Methods; Navrud, S., Ready, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 161–177. [Google Scholar] [CrossRef]
- Rosenberger, R.S.; Loomis, J.B. Benefit Transfer of Outdoor Recreation Use Values. US Department of Agriculture and Forest Service. Available online: https://www.fs.fed.us/rm/pubs/rmrs_gtr072.pdf (accessed on 12 November 2020).
- Hjerpe, E.; Hussain, A.; Phillips, S. Valuing type and scope of ecosystem conservation: A meta-analysis. J. For. Econ. 2015, 21, 32–50. [Google Scholar] [CrossRef]
- Loomis, J.; Richardson, L. Technical Documentation of Benefit Transfer and Visitor Use Estimating Models of Wildlife Recreation, Species and Habitats. National Council for Science and the Environment, Wildlife Policy Research Program, USA. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.499.547andrep=rep1andtype=pdf (accessed on 1 November 2020).
- Huber, C.; Meldrum, J.; Richardson, L. Improving confidence by embracing uncertainty: A meta-analysis of U.S. hunting values for benefit transfer. Ecosyst. Serv. 2018, 33, 225–236. [Google Scholar] [CrossRef]
- Filho, L.M.; Roebeling, P.; Bastos, M.; Rodrigues, W.; Ometto, G. A Global Meta-Analysis for Estimating Local Ecosystem Service Value Functions. Environments 2021, 8, 76. [Google Scholar] [CrossRef]
- RUVD (Recreational Use Values Database). Oregon State University. Available online: http://recvaluation.forestry.oregonstate.edu/database (accessed on 23 May 2021).
- Sorg, C.F.; Loomis, J. An introduction to wildlife valuation techniques. In Wildlife Society Bulletin; Springer: Berlin/Heidelberg, Germany, 1985; Volume 13, pp. 38–46. [Google Scholar]
- Bittner, L. The Economics of Spring Turkey Hunting in Virginia. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1999. [Google Scholar]
- Bolon, N. Estimates of the Values of Elk in the Blue Mountains of Oregon and Washington: Evidence from Existing Literature; Technical report PNW-GTR-316; US Department of Agriculture: Portland, OR, USA, 1994; p. 316. [Google Scholar] [CrossRef]
- Loomis, J. Updated Outdoor Recreation Use Values on National Forest and Other Public Lands. USDA Forest Service Technical Report PNW-GTR-658. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.8045andrep=rep1andtype=pdf (accessed on 11 November 2020).
- Rosenberger, R. Recreation Use Values Bibliography; Department of Forest Ecosystems and Society, College of Forestry, Oregon State University: Corvallis, OR, USA, 2016. [Google Scholar]
- Tinch, R.; Beaumont, N.; Sunderland, T.; Ozdemiroglu, E.; Barton, D.; Bowe, C.; Börger, T.; Burgess, P.; Cooper, C.N.; Faccioli, M.; et al. Economic valuation of ecosystem goods and services: A review for decision makers. J. Environ. Econ. Policy 2019, 8, 359–378. [Google Scholar] [CrossRef]
- Davis, R.K. The value of big game hunting in a private forest. In Proceedings of the Transactions of the Twenty-Ninth North American Wildlife and Natural Resources Conference, Las Vegas, NV, USA, 9–11 March 1964; Volume 29, pp. 393–403. [Google Scholar]
- Fagarzzi, C.; Sergiacomi, C.; Stefanini, F.M.; Marone, E. A model for the economic evaluation of the cultural ecosystem services: The recreational hunting function in the agroforestry territories of Tuscany (Italy). Sustainability 2021, 13, 11229. [Google Scholar] [CrossRef]
- Brown, G.; Hay, M. Net Economic Recreation Values for Deer and Waterfowl Hunting and Trout Fishing; Working paper No. 23; USDI Fish and Wildlife Service, Division of Policy and Directive Management: Washington, DC, USA, 1987. [Google Scholar]
- World Bank. Consumer Price Index. Available online: https://data.worldbank.org/indicator/FP.CPI.TOTL (accessed on 6 November 2021).
- OECD Stat. PPPs and Exchange Rates. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=SNA_TABLE4 (accessed on 21 June 2021).
- Shelby, L.B.; Vaske, J.J. Perceived Crowding among Hunters and Anglers: A Meta-Analysis. Hum. Dimens. Wildl. 2007, 12, 241–261. [Google Scholar] [CrossRef]
- QDMA (The Quality Deer Management Association). Whitetail Report 2019. Available online: https://www.deerassociation.com/wp-content/uploads/2019/01/2019-WR.pdf (accessed on 13 July 2022).
- BEA (Bureau of Economic Analysis). Regional Data. GDP and Personal Income. Available online: https://apps.bea.gov/iTable/iTable.cfm?reqid=70&step=1#reqid=70&step=1 (accessed on 20 January 2020).
- BEA (Bureau of Economic Analysis). Comprehensive Revision of Gross State Product and Accelerated GSP Estimates for 2003. Available online: https://apps.bea.gov/regional/histdata/releases/1204gsp/index.cfm (accessed on 20 January 2022).
- Statistics Canada 2021. Income of Individuals by Age Group, Sex and Provinces and Selected Census Metropolitan Areas. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1110023901 (accessed on 13 January 2022).
- World Bank. GDP per Capita. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.KD?locations=ES-NZ-SE (accessed on 6 November 2021).
- CDC (Centers for Disease Control and Prevention). Bridged-Race Population Estimates 1990–2019. Available online: t https://wonder.cdc.gov/Bridged-Race-v2019.HTML (accessed on 5 May 2021).
- World Bank. Population Density (People per sq. km of Land Area). Available online: https://data.worldbank.org/indicator/EN.POP.DNST (accessed on 6 November 2021).
- Boyle, K.J.; Wooldridge, J.M. Understanding error structures and exploiting panel data, in meta-analytic benefit transfers. Environ. Resour. Econ. 2018, 69, 609–635. [Google Scholar] [CrossRef]
- Zandersen, M.; Tol, R.S. A meta-analysis of forest recreation values in Europe. J. For. Econ. 2009, 15, 109–130. [Google Scholar] [CrossRef]
- Rosenberger, R.S.; Johnston, R.J. Selection Effects in Meta-Analysis and Benefit Transfer: Avoiding Unintended Consequences. Land Econ. 2009, 85, 410–428. [Google Scholar] [CrossRef]
- Vedogbeton, H.; Johnston, R.J. Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat. Environ. Resour. Econ. 2020, 75, 835–865. [Google Scholar] [CrossRef]
- Wright, W.C.; Eppink, F.V. Drivers of heritage value: A meta-analysis of monetary valuation studies of cultural heritage. Ecol. Econ. 2016, 130, 277–284. [Google Scholar] [CrossRef]
- Johnston, R.; Ranson, M.H.; Besedin, E.Y.; Helm, E.C. What Determines Willingness to Pay per Fish? A Meta-Analysis of Recreational Fishing Values. Mar. Resour. Econ. 2006, 21, 1–32. [Google Scholar] [CrossRef]
- Katz, M.H. Multivariable Analysis, 2nd ed.; Cambridge University Press: Cambridge, NY, USA, 2006. [Google Scholar]
- Harbord, R.; Higgins, J. Meta-Regression in Stata. The Stata Journal, Dec. Available online: https://journals.sagepub.com/doi/10.1177/1536867 × 0800800403 (accessed on 12 November 2021).
- Hedges, L.V.; Tipton, E.; Johnson, M.C. Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods 2010, 1, 39–65. [Google Scholar] [CrossRef] [PubMed]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Woolridge, J.M. Introductory Econometrics: A Modern Approach, 5th ed.; South-Western, Cengage Learning: Mason, OH, USA, 2013. [Google Scholar]
- Stewart, K.G. Introduction to Applied Econometrics; Thomson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- McFadden, D. Quantitative methods for analysing travel behavior of individuals: Some recent developments. In Behavioural Travel Modelling; Hensher, D.A., Stopher, P.R., Eds.; Croom Helm: London, UK, 1979; pp. 279–318. [Google Scholar]
- Engelman, M.; Lagerkvist, C.-J.; Gren, I.-M. Hunters’ trade-off in valuation of different game animals in Sweden. For. Policy Econ. 2018, 92, 73–81. [Google Scholar] [CrossRef]
- Brander, L.M.; van Beukering, P.; Cesar, H.S. The recreational value of coral reefs: A meta-analysis. Ecol. Econ. 2007, 63, 209–218. [Google Scholar] [CrossRef]
- Sen, A.; Harwood, A.R.; Bateman, I.J.; Munday, P.; Crowe, A.; Brander, L.; Raychaudhuri, J.; Lovett, A.A.; Foden, J.; Provins, A. Economic Assessment of the Recreational Value of Ecosystems: Methodological Development and National and Local Application. Environ. Resour. Econ. 2013, 57, 233–249. [Google Scholar] [CrossRef]
- Carson, R.; Flores, N.E.; Martin, K.M.; Wright, J.L. Contingent Valuation and Revealed Preference Methodologies: Comparing the Estimates for Quasi-Public Goods. Land Econ. 1996, 72, 80. [Google Scholar] [CrossRef]
- MacKinnon, J.G.; Nielsen, M.; Webb, M.D. Cluster-robust inference: A guide to empirical practice. J. Econ. 2022, in press. [Google Scholar] [CrossRef]
- Kerr, G.N.; Abell, W. What are they hunting for? Investigating heterogeneity among sika deer (Cervus nippon) hunters. Wildl. Res. 2016, 43, 69–79. [Google Scholar] [CrossRef]
- Kerr, G. Himalayan tahr (Hemitragus jemlahicus) recreational hunting values. Wildl. Res. 2019, 46, 114. [Google Scholar] [CrossRef]
- Apollonio, M.; Andersen, R.; Putnam, R. European Ungulates and Their Management in the 21st Century; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Decker, D.J.; Riley, S.J.; Siemer, W.F. (Eds.) Human Dimensions of Wildlife Management, 2nd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2012. [Google Scholar]
Variable | Description |
---|---|
Dependent variable | Value per day in the primary studies converted to 2020 prices followed by exchange rate conversion in purchasing power parity USD |
Explanatory variables | |
Hunt attributes; | |
Elk | Indicator variable = 1 when elk was the target animal, 0 otherwise |
Moose | Indicator variable = 1 when moose was the target animal, 0 otherwise |
Deer | Indicator variable = 1 when deer was the target animal, 0 otherwise |
Waterfowl | Indicator variable = 1 when waterfowl was the target animal, 0 otherwise |
Small game | Indicator variable = 1 when small game was the target animal, 0 otherwise |
Big game | Indicator variable = 1 when big game was the target animal, 0 otherwise |
Other game | Indicator variable = 1 when other game was the target animal, 0 otherwise |
Contextual variables | |
GDP/capita | Continuous; GDP per capita, thousand purchasing power parity USD in 2020 |
Population density | Continuous; people/km2 |
USA | Indicator variable = 1 when the study was conducted in the USA, 0 otherwise |
Canada | Indicator variable = 1 when the study was conducted in Canada, 0 otherwise |
Other country | Indicator variable = 1 when the study was conducted in another country, 0 otherwise |
Year | Continuous; the year of the study |
Study characteristics | |
CVM | Indicator variable = 1 when the contingent valuation method (CVM) was used, 0 otherwise |
TCM | Indicator variable = 1 when the travel cost method (TCM) was used, 0 otherwise |
CE | Indicator variable = 1 when the choice experiment (CE) method was used, 0 otherwise |
Hedonic | Indicator variable = 1 when the hedonic valuation method was used, 0 otherwise |
Journal | Indicator variable = 1 when the study was published in a journal, 0 otherwise |
USA | Canada | Other Countries | Total | |
---|---|---|---|---|
Total | 63 | 9 | 8 | 80 |
Game animal: | ||||
Moose | 9 | 1 | 1 | 11 |
Elk | 15 | 0 | 0 | 15 |
Deer | 32 | 2 | 2 | 36 |
Waterfowl | 19 | 3 | 1 | 23 |
Small game | 12 | 2 | 1 | 15 |
Big game | 19 | 4 | 1 | 24 |
Other animals | 9 | 1 | 1 | 14 |
Valuation method: | ||||
CVM | 35 | 6 | 5 | 46 |
TCM | 34 | 4 | 2 | 40 |
CE | 0 | 0 | 1 | 1 |
Hedonic | 2 | 0 | 0 | 2 |
Mean | St Dev | Minimum | Maximum | |
---|---|---|---|---|
Dependent variable: | ||||
Hunt value per day, 2020 USD | 69.37 | 41.42 | 4.2 | 325.86 |
Explanatory variables: | ||||
Hunt attributes | ||||
Game animal: | ||||
Moose | 0.02 | 0 | 1 | |
Elk | 0.06 | 0 | 1 | |
Deer | 0.52 | 0 | 1 | |
Waterfowl | 0.21 | 0 | 1 | |
Small game | 0.05 | 0 | 1 | |
Big game | 0.11 | 0 | 1 | |
Other animals | 0.02 | 0 | 1 | |
Contextual variables | ||||
GDP/capita, constant thousand 2020 USD | 37.12 | 10.11 | 16.02 | 75.68 |
Population density, people/km2 | 45.19 | 67.21 | 0.1 | 467 |
Region | ||||
USA | 0.84 | 0 | 1 | |
Canada | 0.14 | 0 | 1 | |
Other countries | 0.02 | 0 | 1 | |
Year of study | 1991 | 11 | 1961 | 2020 |
Study characteristics | ||||
Valuation method: | ||||
CVM | 0.89 | 0 | 1 | |
TCM | 0.09 | 0 | 1 | |
CE | 0.01 | 0 | 1 | |
Hedonic | 0.01 | 0 | 1 | |
Journal publication | 0.08 | 0 | 1 |
Full | Deer | Waterfowl | CVM | |
---|---|---|---|---|
Constant | −9.438 (18.724) | −17.954 (23.296) | 29.934 (43.368) | 29.401 (22.845) |
Elk | 0.146 * (0.078) | 0.152 * (0.079) | ||
Moose | 0.157 (0.226) | 0.479 ** (0.197) | ||
Waterfowl | −0.374 *** (0.044) | −0.377 *** (0.042) | ||
Small game | −0.928 *** (0.108) | −0.994 *** (0.099) | ||
Big game | −0.055 (0.11) | −0.069 (0.114) | ||
Other game | −0.928 *** (0.211) | −0.568 *** (0.198) | ||
Ln (income/capita) | 0.503 *** (0.092) | 0.512 *** (0.115) | 0.494 *** (0.089) | 0.504 *** (0.095) |
Ln (person/km2) | −0.017 (0.015) | −0.027 (0.020) | 0.001 (0.027) | −0.012 (0.015) |
Canada | 0.047 (0.312) | 0.423 (0.537) | −0.896 *** (0.340) | 0.018 (0.374) |
Other country | −0.115 (0.359) | −1.214 ** (0.512) | 0.273 (0.663) | 0.277 (0.331) |
Year | 0.006 (0.009) | 0.010 (0.112) | −0.014 (0.022) | −0.014 (0.011) |
TCM | 0.353 ** (0.188) | 0.546 ** (0.271) | 0.078 (0.142) | |
CE | 1.106 *** (0.351) | 2.559 *** (0.328) | NA | |
Hedonic | 1.100 *** (0.188) | NA | NA | |
Journal | −0.342 (0.214) | −0.406 (0.516) | 0.274 (0.244) | −0.235 (0.235) |
Random effects | ||||
0.392 | 0.467 | 0.146 | 0.412 | |
0.125 | 0.113 | 0.104 | 0.113 | |
Model statistics | ||||
N | 588 | 307 | 125 | 549 |
Studies | 80 | 36 | 23 | 46 |
McFadden’s R2 | 0.248 | 0.123 | 0.153 | 0.310 |
AIC/N | 1.107 | 1.001 | 1.002 | 0.898 |
BIC/N | 1.239 | 1.133 | 1.232 | 1.015 |
Data Mean | Pred. Mean (s.e.) | 95% Confidence Interval: | MPE (%) | RMSE/Mean | ||
---|---|---|---|---|---|---|
Low | High | |||||
Full | 69.3 | 68.7 (1.36) | 66.1 | 71.5 | 29.7 | 0.42 |
Deer | 79.5 | 78.9 (1.33) | 76.3 | 81.5 | 27.6 | 0.41 |
Waterfowl | 50.5 | 49.7 (2.29) | 45.1 | 54.2 | 25.5 | 0.32 |
CVM | 66.6 | 66.2 (1.33) | 63.6 | 68.8 | 28.3 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gren, I.-M.; Kerr, G. A Meta-Regression Analysis of Hunters’ Valuations of Recreational Hunting. Sustainability 2023, 15, 27. https://doi.org/10.3390/su15010027
Gren I-M, Kerr G. A Meta-Regression Analysis of Hunters’ Valuations of Recreational Hunting. Sustainability. 2023; 15(1):27. https://doi.org/10.3390/su15010027
Chicago/Turabian StyleGren, Ing-Marie, and Geoffrey Kerr. 2023. "A Meta-Regression Analysis of Hunters’ Valuations of Recreational Hunting" Sustainability 15, no. 1: 27. https://doi.org/10.3390/su15010027
APA StyleGren, I.-M., & Kerr, G. (2023). A Meta-Regression Analysis of Hunters’ Valuations of Recreational Hunting. Sustainability, 15(1), 27. https://doi.org/10.3390/su15010027