GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm
Abstract
:1. Introduction
- (1)
- A GIS fault prediction model based on IPSO-LSSVM is established.
- (2)
- The PSO algorithm is improved through weight nonlinear adjustment and iterative speed optimization, so as to improve the optimization ability and convergence speed of the algorithm.
- (3)
- The normalization parameter c of LSSVM and the parameter of radial basis kernel function are optimized by the improved PSO algorithm, so as to improve the accuracy of the prediction model.
2. GIS Fault Feature Analysis
3. GIS Fault Prediction Approach Based on Improved PSO-LSSVM
3.1. Least Squares Support Vector Machine
3.2. Kernel Function and Parameter Selection
4. Improved LSSVM Parameter Optimization for PSO
4.1. PSO Weight Nonlinear Adjustment
4.2. PSO Iteration Speed Optimization
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Wang, B.; Ma, F.; Zheng, Q.; Yao, L.; Zhang, C.; Mohamed, M.A. A concurrent fault diagnosis method of transformer based on graph convolutional network and knowledge graph. Front. Energy Res. 2022, 10, 127. [Google Scholar] [CrossRef]
- Zhuang, Y.; Hu, X.; Tang, B.; Wang, S.; Cui, A.; Hou, K.; He, Y.; Zhu, L.; Li, W.; Chu, J. Effects of SF6 decomposition components and concentrations on the discharge faults and insulation defects in GIS equipment. Sci. Rep. 2020, 10, 15039–15048. [Google Scholar] [CrossRef] [PubMed]
- Orrù, P.F.; Zoccheddu, A.; Sassu, L.; Mattia, C.; Cozza, R.; Arena, S. Machine learning approach using MLP and SVM algorithms for the fault prediction of a centrifugal pump in the oil and gas industry. Sustainability 2020, 12, 4776. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, Y.; Dampage, U.; Alkuhayli, A.; Alhelou, H.H.; Annuk, A. An effective fault section location method based three-line defense scheme considering distribution systems resilience. Energy Rep. 2022, 8, 10937–10949. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, T.; Mohamed, M.A. An innovative minimum hitting set algorithm for model-based fault diagnosis in power distribution network. IEEE Access 2019, 7, 30683–30692. [Google Scholar] [CrossRef]
- Faraz, B.; Alesheikh, A.A.; Sharif, M.; Farnaghi, M. FLCSS: A fuzzy-based longest common subsequence method for uncertainty management in trajectory similarity measures. Trans. GIS 2022, 26, 2244–2262. [Google Scholar]
- Wen, T.; Zhang, Q.; Ma, J.; Wu, Z.; Shimomura, N.; Chen, W. A new method to evaluate the effectiveness of impulse voltage for detecting insulation defects in GIS equipment. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1301–1307. [Google Scholar] [CrossRef]
- Thacker, H.; Shah, Y.; Borah, A.J.; Jadeja, Y.; Thakkar, M.; Bhimani, S.; Chauhan, G. Assessment of groundwater potential zones across Katrol hill fault, Kachchh, Western India: A remote sensing and GIS approach. Open J. Geol. 2022, 12, 25–33. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, T.; Mohamed, M.A.; Deb, D. A novel linear optimization method for section location of single-phase ground faults in neutral noneffectively grounded systems. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Chen, Z.; He, G.; Li, J.; Liao, Y.; Gryllias, K.; Li, W. Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery. IEEE Trans. Instrum. Meas. 2020, 23, 61–73. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, R.; Jin, W.; He, T.; Ma, S.; Shi, M. Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network. Appl. Intell. 2020, 5, 21–29. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Q.; Ma, J.; Li, X.; Wen, T. Effectiveness of on-site dielectric test of GIS equipment. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1454–1460. [Google Scholar] [CrossRef]
- Zhang, L.; He, C.; Guo, R.; Yuan, W.; Li, J. Research on effectiveness of lightning impulses with different parameters for detecting protrusion defects in GIS. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1354–1362. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, Q.; Ma, J.; Liu, X.; Wu, Z.; Zhang, L.; Zhao, J.; Shimomura, N.; Chen, W. Research on the detecting effectiveness of on-site lightning impulse test for GIS equipment with insulation defects. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 551–558. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, G. Family defect early warning of multi-factor GIS equipment based on ARMA and copula theory. High Volt. Electr. Appl. 2022, 58, 9–16. [Google Scholar]
- Xu, D.; Zhou, C.; Guan, C.; Wang, X. Equipment failure rate prediction method based on ARMA-BP combined model. Firepower Command. Control. 2021, 46, 83–87. [Google Scholar]
- Ji, H.; Ma, G.; Li, C.; Pang, Z.; Zheng, S. Influence of voltage waveforms on partial discharge characteristics of protrusion defect in GIS. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1058–1067. [Google Scholar] [CrossRef]
- Han, X.; Li, J.; Zhang, L.; Liu, Z. Partial discharge characteristics of metallic protrusion in GIS under different lightning impulse voltage waveforms based on UHF method. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3722–3729. [Google Scholar] [CrossRef]
- He, S.; Zhang, T.; Zhou, L.; Peng, X.; He, L. GIS fault diagnosis strategy based on feature classification algorithm. Autom. Instrum. 2019, 232, 197–200. [Google Scholar]
- Wu, X.; Li, Y. Pang, W. Research on the electric field degradation characteristics and fault probability prediction of GIS bus latent faults. Power Grid Technol. 2014, 12, 1–12. [Google Scholar]
- Wu, Z.; Lyu, B.; Zhang, Q.; Liu, L.; Zhao, J. Phase-space joint resolved PD characteristics of defects on insulator surface in GIS. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 156–163. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, S.; Wu, J.; Jia, B.; Li, W.; Luo, X. Frequency feature learning from vibration information of GIS for mechanical fault detection. Sensors 2019, 19, 1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Ma, S.; Wu, J.; Jia, B.; Li, W.; Luo, X. Fault diagnosis in gas insulated switchgear based on genetic algorithm and density-based spatial clustering of applications with noise. IEEE Sens. J. 2019, 21, 965–973. [Google Scholar] [CrossRef]
- Ma, S.; Chen, M.; Wu, J.; Wang, Y.; Jia, B.; Jiang, Y. Intelligent fault diagnosis of HVCB with feature space optimization-based random forest. Sensors 2018, 18, 1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Yang, J.; Zhang, Z.; Li, Z.; Ding, D.; Yuan, M.; Li, R.; Chen, M. Research on mechanical defect detection and diagnosis method for GIS equipment based on vibration signal. Energies 2021, 14, 5507. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, M.; Ren, M.; Huang, W.; Zhou, J.; Gao, X.; Albarracín, R. Partial discharge monitoring on metal-enclosed switchgear with distributed non-contact sensors. Sensors 2018, 18, 551. [Google Scholar] [CrossRef]
Fault State | Sample Eigenvalues | ||
---|---|---|---|
SO2/(μL·L−1) | SO2F2/(μL·L−1) | SO2F2/SO2 | |
Arc discharge | 19.47 | 4.14 | 0.213 |
Arc discharge | 16.41 | 3.70 | 0.225 |
Arc discharge | 12.73 | 3.29 | 0.258 |
Spark discharge | 18.74 | 55.95 | 0.986 |
Spark discharge | 21.11 | 44.87 | 2.126 |
Spark discharge | 17.55 | 45.35 | 2.584 |
Corona discharge | 26.77 | 151.91 | 5.675 |
Corona discharge | 20.99 | 84.50 | 4.026 |
Corona discharge | 23.12 | 121.07 | 5.237 |
Parameter | Numerical Value |
---|---|
0.8 | |
0.5 | |
25 | |
C1, C2 | 1.5 |
number of particles | 100 |
Optimization Algorithm | IGA | PSO | IPSO |
---|---|---|---|
Number of iterations at convergence | 154 | 126 | 52 |
Minimum fitness value | 0.0918 | 0.0642 | 0.0223 |
Convergence time/ms | 7.49 | 8.66 | 4.24 |
Method of Prediction | SO2 | HF | SO2F2 | SOF2 |
---|---|---|---|---|
Actual value | 11.84 | 0.67 | 0.15 | 0.8 |
IGA-LSSVM predictive value | 11.21 | 0.69 | 0.175 | 0.72 |
Absolute error | −0.63 | 0.02 | 0.025 | 0.08 |
PSO-LSSVM predictive value | 11.19 | 0.64 | 0.159 | 0.75 |
Absolute error | 0.65 | −0.03 | 0.009 | −0.05 |
IPSO-LSSVM predictive value | 11.79 | 0.68 | 0.143 | 0.82 |
Absolute error | −0.05 | 0.01 | 0.007 | 0.02 |
Fault Type | Number of Samples | Accuracy | ||
---|---|---|---|---|
IGA-LSSVM | PSO-LSSVM | IPSO-LSSVM | ||
1 | 15 | 86.4 | 77.6 | 85.7 |
2 | 10 | 81.7 | 89.5 | 90.1 |
3 | 8 | 77.4 | 87.4 | 99.8 |
4 | 20 | 83.2 | 85.2 | 95.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhang, G.; Yang, X. GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm. Sustainability 2023, 15, 235. https://doi.org/10.3390/su15010235
Zhao H, Zhang G, Yang X. GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm. Sustainability. 2023; 15(1):235. https://doi.org/10.3390/su15010235
Chicago/Turabian StyleZhao, Hengyang, Guobao Zhang, and Xi Yang. 2023. "GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm" Sustainability 15, no. 1: 235. https://doi.org/10.3390/su15010235
APA StyleZhao, H., Zhang, G., & Yang, X. (2023). GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm. Sustainability, 15(1), 235. https://doi.org/10.3390/su15010235